干细胞之家 - 中国干细胞行业门户第一站

标题: Dinosaur Fossils Predict Body Temperatures [打印本页]

作者: 春天的风筝    时间: 2009-4-23 09:07     标题: Dinosaur Fossils Predict Body Temperatures

1 Department of Zoology, University of Florida, Gainesville, Florida, United States of America,2 National Center for Ecological Analysis and Synthesis, Santa Barbara, California, United States of America,3 Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America,4 Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, United States of America; o5 q# x% \5 u' m; z: S2 P1 c
7 z/ T7 ?1 E+ {5 j& n& K! U9 Q
Perhaps the greatest mystery surrounding dinosaurs concerns whether they were endotherms, ectotherms, or some unique intermediate form. Here we present a model that yields estimates of dinosaur body temperature based on ontogenetic growth trajectories obtained from fossil bones. The model predicts that dinosaur body temperatures increased with body mass from approximately 25 °C at 12 kg to approximately 41 °C at 13,000 kg. The model also successfully predicts observed increases in body temperature with body mass for extant crocodiles. These results provide direct evidence that dinosaurs were reptiles that exhibited inertial homeothermy.# L7 R. c) u' y6 B' S! q3 g

! A3 E2 `0 {1 RFunding. APA was supported as a Postdoctoral Associate at the National Center for Ecological Analysis and Synthesis, a Center funded by the National Science Foundation (NSF) (DEB-0072909), the University of California, Santa Barbara. ELC was supported during the summer by the Department of Biology at the University of New Mexico. JFG was supported in part by NSF Grant DEB-0083422 through the University of New Mexico, and in part by the Department of Zoology at the University of Florida.
8 ?7 {8 }8 L+ ?8 I% m) _+ `7 w! ?8 i+ q, V% U- n
Introduction0 M0 L4 _/ S, d$ k# C0 r5 G" u
! C4 C, k7 d8 C; o- ]
Body temperature regulation in dinosaurs has long been a topic of interest and debate in biology because of its importance to understanding the physiology and life history of these ancient, exceptionally large animals [1]. Some have argued that dinosaurs were endotherms with body temperatures that were high, relatively constant, and internally regulated, just as in contemporary birds and mammals (e.g., [2]). Others have argued that dinosaurs were reptile-like in their metabolism, but that large dinosaurs maintained higher, more constant body temperatures than smaller-sized reptiles due to thermal inertia (e.g., [3,4]). According to the latter ※inertial homeothermy hypothesis,§ dinosaur body temperatures were primarily determined by the interaction between environmental temperature and the production and dissipation of heat. The inertial homeothermy hypothesis has thus far been supported by physiological or morphological data from extant ectotherms and endotherms, and by predictions from biophysical models [5,6]. Resolution of the debate regarding body temperature regulation in dinosaurs has thus far been hampered by a lack of direct evidence [7].  b! e: E9 v$ }4 a% c8 K
. m5 @9 S5 f7 Q. [8 Y. g- V
Here we directly test the inertial homeothermy hypothesis by assessing whether dinosaur body temperatures increased with body size. To estimate body temperatures, we use data on the ontogenetic growth trajectories of eight dinosaur species〞Syntarsus rhodesiensis, Psittacosaurus mongoliensis, Apatosaurus excelsus, Tyrannosaurus rex, Daspletosaurus torosus, Gorgosaurus libratus, Albertosaurus sarcophagus, and Massospondylus carinatus〞that ranged in adult size from 15–25,952 kg, and that lived during the early Jurassic to late Cretaceous periods. These eight growth trajectories were obtained from published work that use newer methods of bone histology and body size estimation [8–11] to estimate the maximum growth rate, G (kg day1), and the mass at maximum growth, M (kg), which is about half of the asymptotic adult size (see Materials and Methods).
) }3 `* U5 `" w
& ~4 [& l3 _/ u0 p% M9 ?- E, iWhile data were also available for the dinosaur bird Shuvuuia deserti, this species was excluded from our analysis because it is a feathered species and is therefore fundamentally different than the eight more reptile-like species mentioned above.$ e$ i7 q7 h0 M; n3 `" ^1 J

; Y+ X9 n9 S+ X) k7 VThe recent availability of these data, along with recent advances in understanding the effects of body size and temperature on growth [12,13], allow us to apply a novel approach to estimate dinosaur body temperatures. Specifically, we analyze these data using a recently published model that predicts the combined effects of body size and temperature, Tb (°C), on maximum growth rate [12,13]:
2 t! n6 j6 E) w/ e  `7 O6 w8 t: c* x4 H9 Z7 w
Equation 1 builds on a previously published model that predicts growth rates for a broad assortment of ectotherms and endotherms [14]. It has now been used successfully to predict rates of embryonic growth in diverse taxa [13], rates of post-embryonic growth in zooplankton [13], rates of individual-level biomass production [15], and rates of population-level growth in diverse taxonomic groups [16]. Here go is a normalization constant that is independent of temperature and body size [11,12]. The temperature term, , describes the exponential effects of body temperature on whole-organism growth rates. Specifically, it assumes that the biochemical reactions controlling growth have an activation energy of 0.6–0.7 eV, reflecting the temperature dependence of individual metabolic rate [17,18]. The value  represents the mid-point of this range of activation energies. The use of this temperature term is supported by recent work for a broad assortment of organisms [11], and by work conducted near the beginning of the last century (i.e., Krogh's curve) [19]. The body size term, M3/4, is theoretically predicted [14,20] and empirically supported by extensive data [12], including maximum growth-rate data for extant reptiles [21] and mammals [22]. Given that the coefficient go is similar for taxa with different modes of body temperature regulation (‵2 ℅ 104 kg1/4 day1 for ectotherms and endotherms; see Materials and Methods), we can rearrange the terms in Equation 1 to estimate the body temperature of each dinosaur species as:
  H% a) {& K, f4 W) I) ~: ]+ [3 J& L: U& Y  J1 e8 Z- Y- M
based on its estimated maximum growth rate, G, and mass at the time of maximum growth, M (see Materials and Methods).
3 ~; a2 ^8 ^, ~* R  s, v  x
" ]7 z$ h! N- bResults/Discussion
% o+ C5 x2 N1 S, I2 p3 ~
  F+ @3 D$ R# g2 f# gEquation 2 yields body temperature estimates for each of the eight dinosaur species. Results for seven of the eight species indicate that body temperature increases curvilinearly with the logarithm of body size (Figure 1). The eighth species, Sy. rhodesiensis, is clearly an outlier, and is therefore excluded from subsequent analyses (but see discussion below). For the remaining species, body temperature increases by only 2 °C with size from the 12-kg P. mongoliensis to the 614-kg Al. sarcophagus, but then increases by nearly 15 °C from the 218-kg Al. sarcophagus to the 12, 979-kg Ap. excelsus. These results suggest that the smallest dinosaurs, with body temperatures of about 25 °C, had temperatures close to environmental temperatures, as observed for smaller-sized extant reptiles [5]. We can characterize this increase in body temperature with size by fitting a non-linear least squares regression model to the data depicted in Figure 1 (Tb = 23.3   (M/44.4)0.5, where 23.3 °C, 44.4 kg/°C2, and 0.5 are all fitted parameter estimates). Interestingly, the intercept of this equation, 23.3 °C, is the estimated average environmental temperature for these dinosaurs. This estimate is in agreement with most paleotemperature estimates during the dinosaur age, which generally range between 20 and 30 °C across latitudes [5]. We note that our body temperature estimates for dinosaurs should be relatively insensitive to the modest variation that exists in go between reptiles and mammals (see Materials and Methods), because the effect of go on Tb is only logarithmic in Equation 2. More importantly, the relative increase in body temperature with body mass predicted by the model is entirely independent of go.
+ w  P6 C# h! h: X' _2 q
& q# z+ C% L( z5 r" y) uFor dinosaurs, body temperatures were estimated from Equation 2 using data on ontogenetic growth trajectories determined from bone histology (see Materials and Methods). Body mass is expressed as the size at which maximum growth rates occur, which is about half of asymptotic adult size. The fitted line includes the following species in ascending order of weight: P. mongoliensis (12 kg), M. carinatus (140 kg), Al. sarcophagus (614 kg), G. libratus (622 kg), D. torosus (869 kg), T. rex (2,780 kg), and Ap. excelsus (12,979 kg) [8–11]. The line was fit to the data using non-linear least squares regression in order to generate predictions on the change in body temperature with body mass for crocodiles (Figure 2). This line does not include the two additional species shown here, the dinosaur bird Sh. deserti (1 kg), which was not considered because it was feathered, and Sy. rhodesiensis (11 kg), which was excluded because it was an outlier (see text). For crocodiles, body temperature estimates are based on the previously observed relative increase in body temperature with body size for individuals (32–1,010 kg) held under natural conditions, and by assuming a mean annual environmental temperature of 25 °C [5].  _: N/ _1 G6 B/ \( b+ y

- g% {, k* V' z! X) o$ gThe relationship depicted in Figure 1 also suggests that dinosaur body temperatures changed over the ontogeny of an individual, sometimes dramatically. More specifically, it suggests that body temperatures increased by less than 3 °C over ontogeny for species reaching adult sizes of 300 kg, but by more than 20 °C for species reaching sizes of approximately 25,000 kg, such as Ap. excelsus. If we extrapolate the model depicted in Figure 1 up to what is perhaps the largest dinosaur species (‵55,000 kg for an adult Sauroposeidon proteles [23]), the estimated body temperature at the mass of maximum growth is approximately 48 °C, which is just beyond the upper limit tolerated for most animals (‵45 °C). These findings suggest that maximum dinosaur size may have ultimately been limited by body temperature.
) u  j( b& s) k4 e# k$ k4 `6 X' s. p7 M" Z+ @' V0 D1 C
Model predictions regarding the change in body temperature with body size are strongly supported by a test using data from extant crocodiles ranging in size from 32–1,010 kg. The observed increase in body temperature with size for crocodiles [5] appears continuous with our estimates for dinosaurs if we assume that the average annual environmental temperature for crocodiles was 25 °C, close to empirical measures [5] (Figure 1). However, even without making any assumptions about environmental temperature, the relative change in body temperature predicted by the dinosaur model is similar to the empirically observed increase in temperature with size for extant crocodiles (see Materials and Methods). Specifically, a plot of the predicted versus observed change in body temperature with size for crocodiles yields a slope of 0.79, and an r2 value of 0.86 (Figure 2). Furthermore, the intercept of this relationship is near 0 (0.09), suggesting that environmental temperatures for dinosaurs were similar to those of extant crocodiles. Note that using a fitted non-linear regression model that includes the outlier S. rhodesiensis in Figure 1 (Tb = 26.31   (M/393.76)0.78) still gives a highly significant relationship between predicted and observed body temperatures for crocodiles (r2 = 0.86, p 1 z/ m1 w% u. z# C! ?0 D
( O) t! }' J, X1 [+ k, I% T
The observed increase in average body temperature for crocodiles ranging in mass from 32–1,010 kg [5] was plotted versus the predicted increase in average body temperature with body mass for these crocodiles based on the line fit to the dinosaur data shown in Figure 1 and predicted from Equation 2.
- i0 T% T6 ~  |8 a$ P; n
* G, f  a2 R9 e, R. M( bThe results presented here provide what is perhaps the first direct evidence that dinosaurs were reptiles whose body temperatures increased systematically with body size, consistent with the inertial homeothermy hypothesis [4,6,5,24]. The increase in body temperature with body size shown here for dinosaurs (26–41 °C in Figure 1) is far greater than for any animals living today. This would explain the observation that large dinosaurs grew at rates similar to those of extant eutherian mammals [8,9], which generally maintain body temperatures of 36–38 °C [25], but that small dinosaurs grew at rates similar to extant reptiles [8,9], which generally have lower body temperatures of 25–35 °C [26] (Figure 2). In other words, our model and these results indicate that the reason the body size scaling of maximum growth rate may be steeper than M3/4 for dinosaurs, but not for reptiles, birds, or mammals [8,9,27,28], is largely due to the confounding effects of increasing temperature with increasing body size over this large size range. An increase in body temperature of more than 15 °C from the smallest to largest dinosaurs (Figure 1) would likely have had important consequences for many aspects of dinosaur life history.9 |9 I: _; w5 K
( h' r8 |4 W! A# m( H7 w
Materials and Methods
/ `) u$ Z5 Y$ G9 m! E: w& f
7 \* S  Y# J, l' fEstimating size and maximum growth.
/ R" M4 `6 k6 y" ?! E
9 e* O$ K7 |0 A2 hOntogenetic growth curves of dinosaur species were fitted using the equation m(t) = (a/(1   exp[b(t  c)]))   m0 , where m(t) is the mass at time t, m0 is the mass at t = 0, and a   m0 is the asymptotic adult mass [8,9]. The fitted parameters in references [8,9] yielded estimates for the maximum growth rates, G = ab/4, and the mass at the time of maximum growth, M = a/2   m0. Given the difficulty in estimating G and M, and possible errors associated with different methodologies, we only included species from references [8,9] where G and M were estimated using the same methodology. These criteria exclude the one other known species of dinosaur for which a growth trajectory has been established [29]. See references [8–11] for more information on the methods used to estimate sizes and ages of individuals.* _$ T0 _( S8 B. g3 |
/ C; l; r' ^; I) t* q$ u: ]
Estimating go.
7 W3 [: C* _% d! J2 \
+ C* P3 I% z1 g, Q* o# gThe value of go used here was estimated from data on the scaling of maximum growth rates for reptiles [21] and mammals [22]. Linear regression models of the form log(G) versus log(M) were fitted to both sets of data. The slopes of both relationships include the value predicted by Equation 1 of 0.75 (95% confidence intervals: 0.58–0.84, n = 12, for reptiles and 0.69–0.75, n = 163, for mammals). Therefore, go was separately calculated as the geometric mean of the 12 estimates of GM3/4e0.1Tb for reptiles and the 163 estimates of GM3/4e0.1Tb for mammals. Taking Tb to be 37 °C for mammals [25] and 30 °C for reptiles [26] yielded geometric mean estimates for go that were remarkably similar for reptiles (1.7 ℅ 104 kg1/4 day1) and mammals (2.3 ℅ 104 kg1/4 day1). We therefore used the average of these two estimates (2 ℅ 104 kg1/4 day1) for our calculations of dinosaur body temperatures.2 x  W0 ^  [% y# M
2 n0 o: b9 }/ z" N! H2 D
Acknowledgments0 C- p" `5 d  _# X
. E* m/ k0 ~+ H  A- H: Q4 }" v
The authors thank J. H. Brown, J. Harte, R. M. Sibly, and G. B. West for helpful discussions and comments on this work. JFG also thanks G. Erickson and A. Chinsamy-Turan for helpful discussions on growth ring analyses, and on their respective studies, without which this work would not have been possible. The authors also thank S. White for help with graphics. Finally, we thank two reviewers, F. Seebacher and T. Kemp, for many helpful and insightful comments.
/ Q* ~- ^8 i3 L9 [& ^, w0 @! f" j# N5 W" {2 l: G+ O# R& {, T9 G2 F
Author contributions. JFG, APA, and ELC conceived and designed the experiments. JFG and APA performed the experiments. JFG and APA analyzed the data. JFG, APA, and ELC wrote the paper.
, k" j; T5 K- i3 v+ I  X' t# B7 P+ b
8 @4 V: Z# h  O9 p4 f" T0 T9 D& \References$ T" o" x, z7 P0 v! V* `
9 I0 V5 I" o) e+ |# y5 p9 X
Farlow JO, Dodson P, Chinsamy A (1995) Dinosaur biology. Ann Rev Ecol Systemat 26:445–471.- s& N: \2 B/ h, B" S; N

- U1 K$ r  Y! A0 {1 pde Ricqlès AJ (1974) Evolution of endothermy: Histological evidence. Evol Theory 1:51–80.$ W6 Y0 \1 Q- `4 H8 g

2 _6 I3 F& l: ?& O1 ]) Z' I9 eColbert EH, Cowles RB, Bogert CM (1947) Rates of temperature increase in dinosaurs. Copeia 141–142.& F/ {, C9 ^. l1 j1 ~! E9 r! a
6 T+ G3 ]1 M8 n4 E: V
Spotila JR, Lommen PW, Bakken GS, Gates DM (1973) A mathematical model for body temperature of large reptiles: Implications for dinosaur ecology. Am Nat 107:391–404.) K6 [4 |1 R$ @( a. K0 b, _# q
. q" P% ^& O1 M  i, i7 J& N
Seebacher F (2003) Dinosaur body temperatures: The occurrence of endothermy and ectothermy. Paleobiology 29:105–122.
7 v& A: j& H$ m/ p5 _8 {
5 t& l) O- F2 R3 s# Y7 vO'Connor MP, Dodson P (1999) Biophysical constraints on the thermal ecology of dinosaurs. Paleobiology 25:341–368.# |- n+ b- x: E/ {5 p  ^

  p1 k- B5 V0 M$ ~& ]Farlow JO (1990) Introduction. In: Weishampel DB, Dodson P, Osmolska H, editors. The dinosauria Berkeley: University of California Press. pp 43–55.
9 @& a7 Y* P8 b0 c9 s$ Q  r% [! ~1 J* Z5 u: c% z6 E
Erickson GM, Rogers KC, Yerby SA (2001) Dinosaurian growth patterns and rapid avian growth rates. Nature 412:429–432.
  ?+ t2 t5 k8 [4 j4 C
; V) z$ \; r& c3 G7 ?) kErickson GM, Makovicky PJ, Currie PJ, Norell MA, Yerby SA, et al. (2004) Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430:772–775.4 s6 T8 r8 A9 l5 `6 I
. C( y& B0 d$ L2 t
Chinsamy A (1990) Physiological implications of the bone histology of Syntarsus rhodesiensis (Saurischia: Theropoda). Palaeontol Afr 27:77–82.
- N) |- ?& T8 L( w$ @4 b8 L0 X. a3 Y! q
Chinsamy A (1993) Bone histology and growth trajectory of the prosauropod dinosaur Massopondylus carinatus Owen. Mod Geol 18:319–329.+ n) k* L; d, M$ {
* J6 [# E4 R" U7 ]1 ?
Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251.
4 _1 _% `2 W% ?8 D% n( j9 o# X& k2 n, s+ T
Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature 417:70–73.7 W( b) Y+ z9 ~" q  x1 m" X

0 ~) f; E- B8 E' g, D% j2 ^West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631.
+ y( a* s+ b+ Q+ c, X# i
: [+ b/ O- Q7 x: W$ Z8 vErnest SKM, Enquist BJ, Brown JH, Charnov EL, Gillooly JF, et al. (2003) Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol Lett 6:990–995.: ~! T( u4 O; n  E' k

* T" |$ F$ S7 ~, U4 X+ S# QSavage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2003) Effects of body size and temperature on population growth. Am Nat 163:429–441.
9 e8 @: G, [! `
7 M, X* ?% z8 O$ O/ ZCharnov EL, Gillooly JF (2003) Thermal time: Body size, food quality and the 10 °C Rule. Evol Ecol Res 5:43–51.
1 t6 U3 L& w+ F% c- r
# R$ U2 E; r0 P) LGillooly JF, Allen AP, Savage VM, West GB, Brown JH (2006) Response to Clarke and Fraser: Effects of temperature on metabolic rate. Funct Ecol 200:400–404.2 u5 k0 |& l$ z0 S7 }, D0 ?  J$ W
' }/ E8 I. x2 S2 B7 m7 P. {) Q/ a
Krogh A (1914) The quantitative relations between temperature and standard metabolism in animals. Int Z Phys Chem Biol 1:491–508.
7 g$ i  C0 f6 q
0 @/ ]5 R7 ~( K* c$ LWest GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126.5 B; I. v* p/ y  D: F9 S" }  b$ e
' ^# I; _6 w8 H9 v/ \4 U: I4 S
Andrews RM (1982) Patterns of growth in reptiles. In: Gans C, Pough FH, editors. Biology of the reptilia New York: Academic Press. pp 273–305.
9 Q( S/ ^4 L" C( E& b2 u8 F/ v0 _. c1 c6 n7 [$ @( L
Case TJ (1978) On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates. Q Rev Biol 53:243–282.: }- \- I4 k, C# r+ S5 Y: N( I7 Q5 y# L
% a3 @2 S" w* Z6 Z0 k4 C
Wedel MJ, Cifelli RL, Sanders RK (2000) Osteology, paleobiology, and relationships of the sauropod dinosaur Sauroposeidon. Acta Palaeontol Pol 45:343–388.
& ], d  v1 x' a
3 m7 k7 Z) X) jSeebacher F, Grigg GC, Beard LA (1999) Crocodiles as dinosaurs: Behavioural thermoregulation in very large ectotherms leads to high and stable body temperatures. J Exp Biol 202:77–86.
9 {, H$ d3 J# C! |; W6 A. \; L' [$ x: J3 H; m' [- c8 t
Schmidt-Nielsen K (1997) Animal physiology New York: Cambridge University Press. 607 p.6 S. M9 N, u% {+ z. T
3 {8 u! \' g* a# n
Brattstrom BH (1965) Body temperatures of reptiles. Am Midl Nat 73:376–422.2 e1 v6 D( N5 q* D* ~) o

( C$ {% J5 U  b( `4 OErickson GM, Brochu CA (1999) How the &terror crocodile' grew so big. Nature 398:205–206.; v* l' ?  c  D" w
& `, X4 C/ `: Q; D
Padian K, de Ricqlès AJ, Horner JR (2001) Dinosaurian growth rates and bird origins. Nature 412:405–408., S' Q; e  \# o) h
; @# s# G+ B% |# s6 {
Horner JR, de Ricqlès AJ, Padian K (2000) Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum Growth dynamics and physiology based on an ontogenetic series of skeletal elements. J Vertebr Paleontol 20:115–129.(James F. Gillooly, Andrew)
作者: 兔兔    时间: 2015-6-1 19:54

拿把椅子看表演
作者: biobio    时间: 2015-6-2 15:01

太棒了!  
作者: tuanzi    时间: 2015-6-25 17:29

干细胞之家
作者: yukun    时间: 2015-6-25 22:12

一楼的位置好啊..  
作者: 科研人    时间: 2015-6-26 09:01

帮顶  
作者: 昕昕    时间: 2015-7-2 16:22

加油站加油  
作者: foxok    时间: 2015-7-26 07:37

不错,感谢楼主
作者: 科研人    时间: 2015-7-29 17:28

彪悍的人生不需要解释。  
作者: 陈晴    时间: 2015-8-11 11:11

楼主good  
作者: haha3245    时间: 2015-8-19 18:25

赚点分不容易啊  
作者: 陈晴    时间: 2015-8-31 18:18

有空一起交流一下  
作者: marysyq    时间: 2015-10-5 12:24

间充质干细胞
作者: haha3245    时间: 2015-10-6 19:18

彪悍的人生不需要解释。  
作者: foxok    时间: 2015-10-14 13:50

ips是诱导多能干细胞induced pluripotent stem cells iPS
作者: tuanzi    时间: 2015-10-17 12:00

孜孜不倦, 吾等楷模 …………  
作者: sky蓝    时间: 2015-11-14 09:59

加油啊!偶一定会追随你左右,偶坚定此贴必然会起到抛砖引玉的作用~  
作者: 123456zsz    时间: 2015-11-30 11:10

看贴回复是好习惯  
作者: laoli1999    时间: 2015-12-10 13:43

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: txxxtyq    时间: 2015-12-12 21:09

好 好帖 很好帖 确实好帖 少见的好帖  
作者: 123456zsz    时间: 2015-12-13 19:50

干细胞美容
作者: aakkaa    时间: 2016-1-5 19:01

正好你开咯这样的帖  
作者: sky蓝    时间: 2016-1-15 13:10

我的啦嘿嘿  
作者: awen    时间: 2016-1-19 15:32

写得好啊  
作者: foxok    时间: 2016-1-19 17:27

你还想说什么啊....  
作者: 狂奔的蜗牛    时间: 2016-2-12 14:27

呵呵,等着就等着....  
作者: qibaobao    时间: 2016-3-21 19:32

好人一个  
作者: foxok    时间: 2016-4-14 20:11

给我一个女人,我可以创造一个民族;给我一瓶酒,我可以带领他们征服全世界 。。。。。。。。。  
作者: biopxl    时间: 2016-4-29 11:27

好困啊  
作者: 风云动    时间: 2016-5-2 12:17

很有吸引力  
作者: 追风    时间: 2016-5-24 16:43

…没我说话的余地…飘走  
作者: xiao2014    时间: 2016-5-25 09:43

加油啊!!!!顶哦!!!!!支持楼主,支持你~  
作者: HongHong    时间: 2016-8-7 05:56

呵呵,明白了  
作者: 糊涂小蜗牛    时间: 2016-8-8 05:52

我喜欢这个贴子  
作者: SCISCI    时间: 2016-9-1 16:35

皮肤干细胞
作者: abc987    时间: 2016-10-11 11:01

顶你一下,好贴要顶!  
作者: 我心飞翔    时间: 2016-11-26 20:01

不错不错.,..我喜欢  
作者: foxok    时间: 2016-12-9 15:13

偶啥时才能熬出头啊.  
作者: 化药所    时间: 2016-12-19 20:00

谢谢分享了!   
作者: 龙水生    时间: 2017-1-2 19:14

经过你的指点 我还是没找到在哪 ~~~  
作者: ikiss    时间: 2017-1-19 04:11

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: 舒思    时间: 2017-1-26 11:55

抢座位来了  
作者: 苹果天堂    时间: 2017-1-26 21:19

心脏干细胞
作者: htc728    时间: 2017-2-14 08:35

哦...............  
作者: laoli1999    时间: 2017-3-29 06:10

转基因动物
作者: abc987    时间: 2017-4-8 00:10

鉴定完毕.!  
作者: cjms    时间: 2017-4-14 09:01

活着,以死的姿态……  
作者: haha3245    时间: 2017-4-30 17:18

应该加分  
作者: yukun    时间: 2017-4-30 22:43

设置阅读啊  
作者: 王者之道    时间: 2017-5-10 09:18

好 好帖 很好帖 确实好帖 少见的好帖  
作者: 泡泡鱼    时间: 2017-5-19 17:10

回答了那么多,没有加分了,郁闷。。  
作者: 某某人    时间: 2017-6-8 08:54

真好。。。。。。。。。  
作者: xiaomage    时间: 2017-7-10 13:43

谁都不容易啊 ~~  
作者: 墨玉    时间: 2017-7-21 15:09

朕要休息了..............  
作者: nauticus    时间: 2017-7-21 17:51

谢谢分享  
作者: na602    时间: 2017-7-26 17:07

我该不会是最后一个顶的吧  
作者: 老农爱科学    时间: 2017-9-5 01:04

我该不会是最后一个顶的吧  
作者: na602    时间: 2017-9-11 08:09

不要等到人人都说你丑时才发现自己真的丑。  
作者: dmof    时间: 2017-9-18 20:10

支持你一下下。。  
作者: IPS干细胞    时间: 2017-9-19 18:18

人气还要再提高  
作者: nosoho    时间: 2017-9-21 17:31

我帮你 喝喝  
作者: 咕咚123    时间: 2017-9-25 22:54

看看..  
作者: 兔兔    时间: 2017-10-1 18:35

好帖子,要顶!
作者: youngcell    时间: 2017-11-6 00:18

不是吧  
作者: pcr    时间: 2017-11-6 16:35

我回不回呢 考虑再三 还是不回了吧 ^_^  
作者: 碧湖冷月    时间: 2017-11-19 20:47

干细胞美容
作者: txxxtyq    时间: 2017-12-11 09:10

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: 张佳    时间: 2017-12-21 21:54

呵呵,支持一下哈  
作者: Greatjob    时间: 2017-12-23 02:40

一个子 没看懂  
作者: 小小C    时间: 2018-1-14 17:17

拿把椅子看表演
作者: 温暖暖    时间: 2018-1-20 10:10

风物长宜放眼量  
作者: doors    时间: 2018-3-1 04:48

风物长宜放眼量  
作者: 未必温暖    时间: 2018-3-1 11:35

好 好帖 很好帖 确实好帖 少见的好帖  
作者: 365wy    时间: 2018-3-3 01:43

呵呵,找个机会...  
作者: syt7000    时间: 2018-3-4 04:31

楼上的话等于没说~~~  
作者: foxok    时间: 2018-3-13 18:37

知道了 不错~~~  
作者: biopxl    时间: 2018-3-25 12:25

哈哈,看的人少,回一下  
作者: haha3245    时间: 2018-4-2 10:01

呵呵 大家好奇嘛 来观看下~~~~  
作者: chinagalaxy    时间: 2018-4-9 09:54

哦...............  
作者: hmhy    时间: 2018-4-22 09:43

我该不会是最后一个顶的吧  
作者: frogsays    时间: 2018-4-26 17:34

偶真幸运哦...  
作者: yunshu    时间: 2018-5-21 08:11

在线等在线等  
作者: abc987    时间: 2018-6-1 10:27

正好你开咯这样的帖  
作者: 舒思    时间: 2018-6-11 07:50

一定要回贴,因为我是文明人哦  
作者: 糊涂小蜗牛    时间: 2018-7-4 02:18

应该加分  
作者: 123456zsz    时间: 2018-7-4 15:53

今天无聊来逛逛  
作者: 3344555    时间: 2018-7-5 04:57

人气还要再提高  
作者: youngcell    时间: 2018-7-27 16:04

神经干细胞
作者: xuguofeng    时间: 2018-9-2 15:42

看看..  
作者: dmof    时间: 2018-9-9 02:19

努力,努力,再努力!!!!!!!!!!!  
作者: 咖啡功夫猫    时间: 2018-9-12 06:26

偶真幸运哦...  
作者: 剑啸寒    时间: 2018-10-6 16:35

帮你项项吧  
作者: doc2005    时间: 2018-10-25 21:54

好贴子好多啊  
作者: 求索迷茫    时间: 2018-10-28 02:21

干细胞行业门户 干细胞之家
作者: 若天涯    时间: 2018-11-3 06:13

一楼的位置好啊..  
作者: keanuc    时间: 2018-11-13 18:51

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: 小小C    时间: 2018-12-16 06:27

嘿嘿......哈哈......呵呵.....哟~呼  
作者: 科研人    时间: 2019-2-5 03:39

朕要休息了..............  
作者: tuanzi    时间: 2019-2-15 14:27

看完了这么强的文章,我想说点什么,但是又不知道说什么好,想来想去只想  
作者: 求索迷茫    时间: 2019-2-28 02:24

好啊,谢楼主




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5