作者:何觅春 李静 赵春华作者单位:中国医学科学院基础医学研究所、中国协和医科大学基础医学院 组织工程研究中心,北京 100005 # `% [7 }/ I+ f; L, e- |" v" \( p
3 p Y1 r: P% L$ O
& w7 `! B c/ f% ^9 M4 j $ f# r+ m" L" I5 L; d
( {( r4 L) |3 x" N ' M% @" f5 u# h8 e/ t5 C
1 Y; x$ y+ n4 N1 G3 u
! V4 @: I+ V! X( k( K4 W& d4 C
7 o3 c* u6 a( U7 a" e4 I ; p0 k. F, B8 m t" t# S6 H
2 ~4 Q4 N- u$ D+ r5 V + M$ o" b; Q0 Q/ Y# ^ 【摘要】 氧对于几乎所有的生命都是必需的,它维持能量代谢及细胞的功能,但机体多种细胞是处于生理或病理性低氧状态中,而体外细胞实验一般是在20%氧浓度下进行,并不符合生理状态。直到最近,关于低氧对于间充质干细胞(mesenchymal stem cells, MSC)的影响有了一系列的研究。体外实验表明,适度低氧下MSC的生长和存活能力更好,氧浓度可以影响MSC向成骨、成软骨、成脂的分化倾向,低氧能提高特异性受体和配体相结合所介导的迁移。低氧可影响胚胎干细胞、造血干细胞、神经干细胞的生理学特性也是一证据。干细胞对缺氧反应的分子机制主要涉及低氧诱导因子1 (hypoxic inducible factor1,HIF1)信号通路。本文综述了低氧对MSC的存活、增殖、分化和迁移的影响,以及涉及HIF1等的分子机制。 * y* y, \* j: l0 V1 L 【关键词】低氧;间充质干细胞;细胞增殖; 细胞分化; 细胞迁移 D; k+ v% _+ x( J: o) C
Effect of Hypoxia on Mesenchymal Stem Cells ——Review6 A4 b& z& a0 C, `7 O3 S
! _9 ?" D( F' j: n- eHE MiChun, LI Jing, ZHAO ChunHua" y* d2 b+ S2 p$ g j6 s
3 y$ ~& Q8 h/ E4 m! BCenter of Tissue Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing,100005, China ( E" F+ _& d9 s q) i% s0 h. s( K4 Y4 ?" \
AbstractOxygen is issentialfor life,but cultivation of cells is usually performed under 20%O2 , that do not replicate normal physiological hypoxia or pathological hypoxia conditions in the body. Recently, the effect of hypoxia on mesenchymal stem cells (MSCs) has been studied, under physiological hypoxia, MSCs thrive well, and the abilitydifferentianing to osteoblast, chondrocyte andadipocyteas well as the ability of migrationare changed. Hypoxia changes the physiological characteristics of embryonic stem cell, hematopoietic stem cell and neuron stem cell as well. The mechanism of these responses might be primarily involved in the hypoxic inducible factor1 (HIF1) signal pathway. This review emphasizes that hypoxia is an important factor onall major aspects of stem cell biology including survival, proliferation, differentiation, and migration, and the mechanism involved in HIF1 signaling pathway behind these responses was also discussed. ) y) |' r- G6 R9 O$ J( I ! r( F, x! v: E" V HKey wordshypoxia; mesenchymal stem cell; cell proliferation; cell differentiation; cell migration9 y+ v7 i; T% P g5 g4 `0 [% r
$ T4 a+ Q4 }3 R
J Exp Hematol 2007; 15(2):433-436 9 ^$ A- c. g p& b0 Y E 4 |, ?' E: _, k6 T0 w间充质干细胞(mesenchymal stem cells,MSC)具有强大的自我更新及多系分化潜能,体内移植后可以迁移至损伤的部位(多数为缺血缺氧的环境)修复相应的组织。干细胞体外增殖分化的研究通常是在20%O2的条件下,然而体内氧浓度显著低于此值,动脉血氧浓度约为12%,组织的平均氧浓度约为3%,MSC的主要积聚部位骨髓的氧浓度为1%-7%, 富集干细胞的胚体氧浓度更低,而且处于一种动态变化之中。通常所谓的低氧更符合生理状态,过高浓度的氧对细胞反而具有损伤应激作用。除生理性低氧外,机体经常会有病理性低氧的发生,如心肌梗塞,脑卒中等,这时相应的组织细胞处于缺血缺氧的状态中,尽管缺血的组织氧和营养都不足,但缺氧可单独影响细胞的生理学特性。那么在低氧下,MSC的存活、增殖、分化,以及迁移能力有什么样的变化呢?( [5 T! f' M# h4 n
# o; n' ^- e1 }6 H" r# ?低氧对间充质干细胞凋亡和存活的影响 / @( _( Y/ u2 V2 S9 X; r6 @5 M( I* E6 M% w- ~. P# [- v" z/ m, w
干细胞移植研究是一大热点,但移植到缺血的部位后不是所有细胞都可以存活。实验证明,适度的低氧并不引发MSC凋亡。虽然Geng[1]将MSC注射到发生心肌梗塞SCID小鼠的心室,4天后99%的MSC死亡;Zhu等[2]将MSC置于低氧(3%O2)及无血清的条件下(模拟缺血环境)培养, 细胞中caspase3(半胱天冬蛋白酶3)活性增高,发生依赖caspase的凋亡,但单独的低氧条件不能增高caspase3活性,诱导凋亡的效应不明显,只是能提高无血清诱导的凋亡效率。此研究结果表明,MSC对缺血缺氧的环境敏感,但导致其凋亡的主要因素不为低氧。Follmar等[3]发现,在0.1% O2(极度低氧)下兔来源的干细胞死亡增多,但他们同时证明在有限的氧浓度下干细胞依旧可以存活。Greijer等[4]的实验表明,缺氧的严重程度决定着细胞凋亡或者适应缺氧而存活, 0.5% O2可以启动细胞的凋亡,从而阻止低氧诱导突变的积累,在此过程中存在着复杂诱导凋亡和抗凋亡间的平衡,涉及低氧诱导因子1(hypoxic inducible foctor1, HIF1)与多种因子的结合,如胚胎干细胞在0.5% O2的条件下,HIF1诱导VEGF表达升高,若抑制VEGF的表达,细胞凋亡数增加10倍[5]。用适当的基因修饰后,MSC对缺血缺氧的耐受力提高。缺血的组织中缺氧/再灌注、炎性因子、诱导凋亡因子等是导致细胞死亡的因素,而HO1(血红素加氧酶)是抑制这些因子的关键成分。将转染HO1基因的MSC及对照组细胞移植入发生急性心肌梗塞的小鼠心脏,7天后实验组的移植细胞存活率比对照组高3倍[6]。而Akt1(蛋白激酶B)修饰的MSC也能更好的存活于缺血缺氧的环境,可有效抑制大鼠缺血心肌的重塑,完全纠正心脏的舒缩功能,修复的心容量比未用Akt1修饰的MSC所修复的高4倍[7]。 7 V4 W' [9 [' `- J, I ) d4 Q6 B: W; J: x9 d中国实验血液学杂志J Exp Hematol 2007; 15(2)低氧对间充质干细胞的影响低氧对间充质干细胞增殖和原始状态9 z. Q- a9 q( o$ x# n% G
, P* z1 b7 J: s低氧是一种重要的生理和病理现象,在不同氧浓度下,MSC具有不同存活能力、增殖潜能、分化倾向以及迁移能力。目前,低氧对MSC分化影响的研究主要集中在向成软骨、成骨、成脂方面,对其向其它类型细胞分化的影响未有报道;关于低氧影响MSC迁移的分子机制研究得也不够充分,这些方面有待深入探讨;另一方面,探索究竟什么样的氧浓度最有利于MSC的培养、扩增,这方面的研究将为临床移植提供重要的参考依据。" X" |& P5 h2 x
【参考文献】8 U( Y" Q; B6 j' v0 q
1Geng YJ. Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Ann NY Acad Sci, 2003;1010:687- 697) r! s9 p# ]6 R
0 j& f5 v# Z. ]: a
|) I1 K) F* j3 G; V* `8 G8 j4 W {- y Q' C
2Zhu W, Chen J, Cong X, et al. Hypoxia and serum deprivationinduced apoptosis in mesenchymal stem cells.Stem Cells, 2006;24:416-425 3 ?6 S3 i# r- h0 j. d. ~9 W & i2 z& i$ e7 s6 r: p* G7 W$ h2 W! N- F6 v7 \0 q0 j( Z
- y, x r1 I2 A# H 3Follmar KE, Decroos FC, Prichard HL, et al. Effects of glutamine, glucose, and oxygen concentration on the metabolism and proliferation of rabbit adiposederived stem cells. Tissue Eng, 2006; [Epub ahead of print]' }+ L' y0 q4 p: P7 K, i/ y
5 c! Z) p% U0 d5 r, J: F+ w
1 |" v" ~% W5 Q3 n# ~# Q+ q7 f% ~
% C& L6 c& Q; @3 i; b- @
4Greijer AE, vanderWall E. The role of hypoxia inducible factor 1 (HIF1) in hypoxia induced apoptosis. J Clin Pathol, 2004;57:1009-1014 2 d% Q/ q$ g3 B! W" A ~" w h' @9 G9 B( B
* `3 A0 D7 _7 s$ E1 |" ` N5 R' q5 `: T! ?/ ~8 \& @
5Brusselmans K, Bono F, Collen D, et al. A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem, 2005;280:3493-3499 ) `) c7 z- i" l3 q+ _ s2 s - n ^# L; K+ i9 v' J: V4 W 1 y+ Z/ w, r% S, P2 d- z . t* ?# c0 J/ j( v7 s+ Q 6Tang YL, Tang Y, Zhang YC, et al. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxiaregulated heme oxygenase1 vector. J Am Coll Cardiol, 2005;46:1339-1350 , s! T6 I: b+ C/ x! E) |- S l* _6 `8 i0 @( W& E
% v7 k! k. ?2 I5 ^; R; \& D: z, Z6 \$ U, Z1 P0 x2 _/ ?2 _# A
7Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med, 2003;9:1195-1201 4 v! M/ F7 ? W& a( f% j7 l 7 A, d( I' S' t5 e6 R/ |. q, p9 Z( g+ p0 w2 g
! n6 n. E7 Z) y* ^ 8D′ Ippolito G, Diabira S, Howard GA, et al. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone, 2006;39:513-522 7 T3 V& s% ]) r ! m$ _& m K) z1 R5 U# p9 P7 W% |5 z$ W4 o* a8 D# K
& |- E3 I% [5 I 9Grayson WL, Zhao F, Izadpanah R, et al. Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs. J Cell Physiol, 2006;207:331-339$ u' _) T2 z! m9 b J. A# v5 _
" C' P: u M, M' s' m) X# i& F: ]3 s+ s% C) Z
& X- G. d( ^( R3 @/ |0 | 10 Bosch P, Pratt SL, Stice SL. Isolation, characterization, gene modification, and nuclear reprogramming of porcine mesenchymal stem cells. Biol Reprod, 2006;74:46-57: b7 ^5 `; P$ Y! p. ^& b9 W
& Z5 n! R( e4 V % p0 Q0 o, K1 K& O + U5 c8 R, {5 @% w; E7 t 11Lin Q, Lee YJ, Yun Z. Differentiation arrest by hypoxia. J Biol Chem, 2006;281:30678-30683( @, `# e5 T e9 G7 u3 {- z4 t- ?2 O
. D4 H6 E+ Z/ ~$ M( X( Z5 o 9 o0 U: V0 L0 h: k; r4 {3 ]. m. i/ @, p: R
12Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrowderived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol, 2001;187:345-355 % s( U& ?4 B' q4 K- x, f5 e2 q' ]( }% }5 ~( e
0 N. r2 V1 e7 B
! L2 ?- D. z# D3 d& Q8 C- h
13Xie XJ, Wang JA, Cao J, et al. Differentiation of bone marrow mesenchymal stem cells induced by myocardial medium under hypoxic conditions. Acta Pharmacol Sin, 2006; 27:1153-11586 b7 H: r% Y" u
6 X- I7 x8 {0 {
# C U; [2 B1 j, Z6 U" g4 p/ } ! E! ]0 `5 C( Q$ {4 t! M/ h 14MoussaviHarami F, Duwayri Y, Martin JA, et al. Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering. Iowa Orthop J, 2004;24:15-20 + Q% t' z8 X0 ^% N4 C; K! W* B. _' ~% Y6 p8 W
5 q+ E, t4 u, D
, @' A. ?0 U& q) `- h
15Genbacev O, Zhou Y, Ludlow JW, et al. Regulation of human placental development by oxygen tension. Science, 1997; 277(5332):1669-1672 ) v6 }# R- H7 }1 s / t& m/ P$ M6 i) x2 t$ g" c+ Y$ S* o& @# s6 A3 n
, E2 s. b7 }9 V) Q6 _% v 16Giaccia AJ, Simon MC, Johnson R. The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev, 2004;18:2183-2194 " k6 a- l' b% M, n1 i2 ` : b$ P) K$ E3 M: |/ m4 r7 y w" d k# h5 c- A h2 s
# \2 B. L9 h0 Q3 s5 q; M 17Schipani E, Ryan HE, Didrickson S, et al. Hypoxia in cartilage: HIF1alpha is essential for chondrocyte growth arrest and survival. Genes Dev, 2001; 15:2865-2876: U3 |* D+ K+ z* P+ z) r* M
6 f. ~# ?5 W, ?4 H6 r: c ~# m
/ D. y3 O% a( d& X8 _0 _* {2 Q: G" r' v9 X
18Studer L, Csete M, Lee SH, et al. Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci, 2000; 20:7377-7383 6 _! O! b6 a+ u% V) s! K" A. {$ [4 m% k3 w w
' O% y( I3 ~/ O $ m- Z& O& v3 P" G' K 19Yun Z, Maecker HL, Johnson RS, et al. Inhibition of PPAR gamma 2 gene expression by the HIF1regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell, 2002; 2:331- 341/ |2 N( q/ a5 M4 Q! Z
8 C8 f/ |4 r: i0 x0 x# J4 s4 s8 ~
" B" X' a! r) w% [2 ^% j
a6 W; V- ~9 W2 m8 F/ {' I2 } 20Wang DW, Fermor B, Gimble JM, et al. Influence of oxygen on the proliferation and metabolism of adipose derived adult stem cells.J Cell Physiol, 2005;204:184-191. E2 m' \1 R: k8 M
0 i! |, c3 F9 n& P- ^, b/ m4 x - g; X3 I5 |% V$ s" @* \' N$ ?; L4 ^$ o; i. q
21Malladi P, Xu Y, Chiou M, et al. Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adiposederived mesenchymal cells. Am J Physiol Cell Physiol, 2006;290:C1139-1146, E0 n p0 M' q% G% C4 A
+ n5 n1 _; W: U3 `- V' S
& B& `6 k/ N& ?# c
; _; T ~1 P) y& }6 G6 E4 \' E+ O
22Lee JH, Kemp DM. Human adiposederived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun, 2006;341:882-888$ K# Y# c% w- B! \
/ L( y$ a- T ^8 t9 K2 {0 N/ O/ p
+ [7 w6 R0 s* [0 y 5 P H* @! r- z5 A& `6 m 23Utting JC, Robins SP, BrandaoBurch A, et al. Hypoxia inhibits the growth, differentiation and boneforming capacity of rat osteoblasts. Exp Cell Res, 2006;312:1693-1702 5 [; h0 a7 n' S- o' u ) N1 h( {. q" {5 s; M6 p! E- E" \ ' `; g3 g3 `" E i. C' X W4 M/ e9 w6 o0 G- r, X2 i9 P
24Fink T, Abildtrup L, Fogd K, et al. Induction of adipocytelike phenotype in human mesenchymal stem cells by hypoxia. Stem Cells, 2004;22:1346-1355 ( z+ w9 ]2 c4 c" Y3 W0 D3 z 8 r" p( `& [* h+ M7 L0 u & n7 t" G: m1 d5 ]) ^! a# Z5 u! \( I j1 U
25Okuyama H, Krishnamachary B, Zhou YF, et al. Expression of vascular endothelial growth factor receptor 1 in bone marrowderived mesenchymal cells is dependent on hypoxiainducible factor 1. J Biol Chem. 2006;281:15554-15563; u% {! F+ @. Z% t" ?6 E
3 F) ?; W9 [1 m+ K8 a/ F# T
+ C! a) L ~; |$ N+ @8 `1 D- g8 L( P" {; u" J6 c% J8 l4 n! g5 K
26Ceradini DJ, Gurtner GC. Homing to hypoxia: HIF1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med, 2005;15:57-63# ] b3 |) J% A! N
5 e7 E F' x5 o
1 M* h' g6 A: W2 u& r& S, } 5 _+ n( u: n9 G! Z/ @1 W 27Zhu H, Mitsuhashi N, Klein A, et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells, 2006;24: 928-935 5 F* P. \+ ]$ ]3 r6 q. z' J1 y3 K8 L- ^! I; ]+ h2 {
9 l2 N4 x, A3 { Z) d, v3 L9 U9 G
9 @7 X" {1 \* {2 x" ]9 M9 } 28Bhakta S, Hong P, Koc O. The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cellderived factor1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovasc Revasc Med, 2006;7:19-24 6 o0 C/ I% n9 ? C2 T 9 ~; e1 [2 `) ^& r) x# Y+ F: ^6 y! g: z
1 l3 `2 c6 i3 S4 ~5 a4 ]* [ 29Csete M. Oxygen in the cultivation of stem cells. Ann NY Acad Sci, 2005;1049:1-89 e6 j5 [; h6 D- A/ Y: H4 G& M& k
6 K/ c6 Z. H. J+ e/ r. d0 `4 ?+ _. ~7 n! S Q
/ Q' N( j: ~ q1 r$ c3 u/ u 30Harris AL. Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer, 2002;2 :38-47 5 `) |( p1 G. z% c& r) b+ L. i i, y0 A
( }+ Z# H% L, g; S( g$ u0 H& C* q3 _, y
31Bracken CP, Fedele AO, Linke S, et al. Cellspecific regulation of HIF1alpha and HIF2alpha: Stabilization and transactivation in a graded oxygen environment. J Biol Chem, 2006;281:22575-225852 [; d1 |* h9 t4 ]) }9 A% @5 c
- u( X a0 B! J1 Y8 E! }
* s _, Z2 V! s
0 h7 Q3 S" h% D 32Esteban MA, Tran MG, Harten SK, et al.Regulation of Ecadhe rin expression by VHL and hypoxiainducible factor. Cancer Res, 2006;66:3567-3575作者: 陈晴 时间: 2015-6-4 16:02