1. Orlando V. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 2000; 25: 99-104. & f7 g8 z1 A( }$ ?% p- b1 `0 i& E$ B0 ?
2. McGhee JD, von Hippel PH. Formaldehyde as a probe of DNA structure. II. Reaction with endocyclic imino groups of DNA bases. Biochemistry 1975; 14: 1297-1303." |+ J+ M0 [/ l! R
7 d: w; h# ?% ^; }! H. [3. McGhee JD, von Hippel PH. Formaldehyde as a probe of DNA structure. I. Reaction with exocyclic amino groups of DNA bases. Biochemistry 1975; 14: 1281-1296./ Z) R& \ a' R% I" \+ g
+ q E ~% G6 ^- d+ n+ }7 `8 {
4. Fujita N, Wade PA. Use of bifunctional cross-linking reagents in mapping genomic distribution of chromatin remodeling complexes. Methods 2004; 33: 81-85. 1 S# @5 C5 f8 F/ W( [. d2 a ! X# J: G. |1 X7 h% o+ j5. Thorstenson YR, Hunicke-Smith SP, Oefner PJ, Davis RW. An automated hydrodynamic process for controlled, unbiased DNA shearing. Genome Res 1998; 8: 848-855.5 [2 M% q* W, A% l5 _7 T, v
' A- l% i/ |$ j6 F: U! F7 M+ f
6. O'Neill LP, VerMilyea MD, Turner BM. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 2006; 38: 835-841. * x9 X+ {) t# h- I" w& {! { E1 l3 w5 G2 X3 o+ ?3 w& F4 A2 v
7. Buck MJ, Lieb JD. ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 2004; 83: 349-360. 9 s5 J6 i4 B2 j2 u ) n/ F& U( d' [" a8 O8. Weinmann AS et al. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev 2002; 16: 235-244. . ]7 y/ x/ N# ~; d \: O
9. Warrington JA, Nair A, Mahadevappa M, Tsyganskaya M. Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes. Physiol Genomics 2000; 2: 143-147. 2 `( p- W* ~- ?" X# K- l( A! P; |! ]# F' q3 a
10. Waterborg JH. Sequence analysis of acetylation and methylation in two histone H3 variants of alfalfa. J Biol Chem 1990; 265: 17157-17161. 2 L, t1 }& f8 @, L % d& t V- H7 z/ t5 y5 i11. Waterborg JH. Multiplicity of Histone H3 Variants in Wheat, Barley, Rice, and Maize. Plant Physiol 1991; 96: 453-458. 1 X( g3 a: l4 V& b" \1 j/ E" I$ b* F% I8 l- s% t
12. Waterborg JH. Existence of two histone H3 variants in dicotyledonous plants and correlation between their acetylation and plant genome size. Plant Mol Biol 1992; 18: 181-187.- O/ U& g: C R- c. o1 g' q" n
% I; l5 a1 k& K2 d! M
13. Waterborg JH. Identification of five sites of acetylation in alfalfa histone H4. Biochemistry 1992; 31: 6211-6219. " D, m! [4 P1 h0 i " x! v: { C9 b14. Waterborg JH. Dynamic methylation of alfalfa histone H3. J Biol Chem 1993; 268: 4918-4921. / _# r, b5 b" B& R- m" N5 v, ]0 I& Q6 V- ?) G: b& b
15. Waterborg JH. Histone synthesis and turnover in alfalfa. Fast loss of highly acetylated replacement histone variant H3.2. J Biol Chem 1993; 268: 4912-4917. / D2 J" k E2 r$ ^6 i; ?1 `+ c" K* ^ e
16. Waterborg JH. Dynamics of histone acetylation in vivo. A function for acetylation turnover? Biochem Cell Biol 2002; 80: 363-378.( E! S6 Y8 J, W
* Y( P$ ?3 U6 [- ?5 g
17. Waterborg JH, Kapros T. Kinetic analysis of histone acetylation turnover and Trichostatin A induced hyper- and hypoacetylation in alfalfa. Biochem Cell Biol 2002; 80: 279-293. 4 @7 F G) d z% q& Y% I2 b$ e0 Q6 _! t8 k5 J
18. Wang H, Tang W, Zhu C, Perry SE. A chromatin immunoprecipitation (ChIP) approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially accumulates in embryos. Plant J 2002; 32: 831-843.8 k w) [4 x: i7 s1 q
Cell, Vol. 115, 751–763, December 12, 2003, Copyright 2003 by Cell Press + W/ _, [# k) {' s% y8 O. {% M) h2 I; H, X) g3 }
Title: Estrogen Receptor- Directs Ordered, Cyclical, and Combinatorial Recruitment & c1 ?( S' W- f, f$ Dof Cofactors on a Natural Target Promoter." }0 l0 W7 i2 ]/ i' H/ H( t( y