干细胞之家 - 中国干细胞行业门户第一站

标题: Study of Telomere Length Reveals Rapid Aging of Human Marrow Stromal Cells follo [打印本页]

作者: 江边孤钓    时间: 2009-3-5 10:36     标题: Study of Telomere Length Reveals Rapid Aging of Human Marrow Stromal Cells follo

a Stem Cell Research Group, Giving for Living Postgraduate Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom;3 _& r5 Y2 z1 \# ^: ?" y

+ x/ w, [  O- U; b8 h  C! Kb Laboratory Medicine, Stepping Hill Hospital, Poplar Grove, Stockport, United Kingdom;5 Y2 g) j% q8 _7 `' {
5 N- V, o' o: N5 ~  g* Z3 j# C* b
c Willink Biochemical Genetics Unit, Royal Manchester Children’s Hospital, Manchester, United Kingdom;
  B1 E( H5 ?2 q/ a4 y  w
6 Y' w# H7 c0 r0 r6 H& J% dd Cancer Research UK Gene Therapy Group, Paterson Institute for Cancer Research, Christie Hospital, Manchester, United Kingdom" q1 N& B3 W4 Y( k+ g

) D8 F: L& d7 ~" {2 TKey Words. Mesenchymal stem cells ? Transplantation
. V- G4 A" a5 E% i- `/ Z5 Q7 L
Correspondence: Ilaria Bellantuono, Ph.D., Stem Cell Research Group, Giving for Living Postgraduate Centre, Royal Manchester Children’s Hospital, Manchester, United Kingdom, M27 4HA. Telephone: 44-161-7272385; Fax: 44-161-7272679; e-mail: Ilaria.Bellantuono@cmmc.nhs.uk3 }% t, U2 r/ y

& c. t( y% H* j& W: G# |. \  JABSTRACT. B' p5 r1 H8 K) s8 A1 _0 N

1 p9 ]  T; P! e3 p6 zMarrow stromal cells (MSCs), or mesenchymal stem cells, are a promising therapeutic tool. They can be readily isolated by plastic adherence, differentiated into tissues such as bone and cartilage, and genetically modified by viral vectors . Clinically, MSCs may be used to enhance hematopoietic stem cell (HSC) engraftment post-transplantation, to correct inherited disorders of bone and cartilage, or as vehicles for gene therapy such as in osteogenesis imperfecta .- a8 s6 N( Q) a4 e  f0 d

- z7 E2 Z+ P  i. R' FThe use of MSCs to reconstitute bone marrow stroma or to sustain healthy osteogenesis relies on the long-lasting engraftment of MSCs with a residual replicative capacity to produce differentiated progeny, substitute damaged tissue, and sustain tissue turnover for life. To date, reinfusion of MSCs has resulted in poor engraftment and limited cell survival . Previous studies have shown that human MSCs cultured in vitro display a tendency to lose their proliferative potential, homing capability, and in vivo bone-forming efficiency over time . Whether even a limited expansion in vitro is sufficient to age the cells to a point where their successful clinical use is compromised has not yet been addressed.
( A1 W2 A/ c0 V. x: ^& K! A) d* r7 s. [4 i
Telomeres are specialized structures present at the ends of eukaryotic chromosomes. They have been associated with the molecular machinery critical for cell replicative lifespan, and their shortening is known to play an important part in the cell molecular aging process . In human cells, such as fibroblasts, telomeres shorten progressively during successive cell divisions, down to a threshold length at which they undergo replicative senescence . Consequently, mean telomere restriction fragment (mTRF) lengths can be used to extrapolate the replicative history and remaining replicative capacity of a cell population.. K  z  G( _' p0 {- e# b  `4 w
. y, W0 L* V5 e
In the study reported here, we investigated the mTRFs of human MSCs during in vitro expansion and correlated this with mTRF changes with donor age. Our data show that, with present protocols, in vitro culture for just 7–10 population doublings (PDs) gives a reduction in mTRF length that, depending on the age of the MSC donor, is equivalent to the loss of more than half their lifespan by the time they are reinfused.
' Z: L) X, {3 u. g# |8 @6 {) X( U! c! g
MATERIALS AND METHODS' V8 H) P% Q4 A' h9 I

( _" J$ ?# ]6 x$ j, X8 S8 gIn Vitro Expansion of MSCs! t5 E5 _6 O6 p/ W9 `/ L! c

1 ~- ^- i* b$ o2 e9 dMSCs were derived from 10 donors of pediatric age (hMSC0–18) and five donors aged 59–75 years (hMSC59–75). After primary passage, fluorescence-activated cell sorter (FACS) analysis showed no expression of either CD34 or CD45 antigens in all MSC cultures, and all stained positive with SH2 antibody . MSC frequency in bone marrow samples, as determined by the CFU-F assay, showed a significant decrease in hMSC59–75 compared with hMSC0–18 (3.2 ± 1.7 versus 29.0 ± 4.7 per 106 mononuclear cells, p   l, H7 z- _5 i* A3 \: K
1 u& o$ b4 Q% c9 J
The in vitro growth kinetics of MSCs were investigated from the primary passage until cells in culture ceased to replicate for at least 3 weeks. At this point, the cultures were considered senescent and were terminated. Most of hMSC0–18 had a faster expansion rate than hMSC59–75 (Table 1; Fig. 1A, 1B) while exhibiting the well-documented spindle-shape cell morphology (Fig. 2A) and low levels of alkaline phosphatase expression (Fig. 2B). After primary confluence, their rate of growth progressively declined. At growth arrest, hMSC0–18 lines had undergone on average 30.6 ± 2.2 PDs after 197.4 ± 25.3 days of culture.
* u. ^, Y8 [+ W! N1 i9 X0 K* m  x4 }5 {
Table 1. Growth properties of hMSC0–18 , hMSC0–18E, and hMSC59–750 o! j7 l' v% c+ y

6 L8 C+ T: t0 R$ L; |+ i$ U3 B( K+ SFigure 1. Growth kinetics of hMSC cultures. The cumulative number of PDs were plotted against time in culture. (A): hMSC0–18 kinetics (filled circles), each line representing an hMSC0–18 culture (n = 8); hMSC0–18E kinetics (open circles), each line representing an hMSC0–18E culture (n = 2). (B): hMSC59–75 kinetics, each line representing an hMSC59–75 culture (n = 5). Abbreviations: hMSC, human marrow stromal cell; PD, population doubling.
3 o- F  W7 j3 b+ Y4 y6 ~% r- L7 Q! l( _5 l5 b* {( H. X; U, H
Figure 2. Osteogenic differentiation of hMSCs. (A–C): hMSC0–18 culture at 14 PDs. (D–F): hMSC0–18E culture at 37 PDs. (A, D): May and Grunwald and Giesma staining of undifferentiated cultures. Alkaline phosphatase expression stain (pink) and Von Kossa stain (black) (B, E) of undifferentiated cultures and (C, F) following osteogenic differentiation. (G): Alkaline phosphatase expression (pink) and Von Kossa stain (black) of undifferentiated hMSC0–18 culture at 28 PD. (H): Alkaline phosphatase expression of undifferentiated hMSC59–75 culture at 16 PDs. (I): Alkaline phosphatase expression and Von Kossa stain of hMSC59–75 culture at 16 PDs following osteogenic differentiation. Abbreviations: hMSC, human marrow stromal cell; PD, population doubling.
5 a2 ^7 m- x8 T( T( M9 g
( c0 f) H' R) b2 f$ z7 kInterestingly, two of the hMSC0–18 cultures (hMSC0–18E) proliferated for over 40 PDs (Fig. 1A). They followed a similar pattern of growth kinetics to hMSC0–18 in the first 25 PDs. Thereafter, the rate of growth was maintained at an average steady rate of 1 PD every 14.8 ± 0.6 days for over 40 PDs, with no growth arrest observed. They maintained the spindle-shape morphology even at later time points (Fig. 2D) and exhibited low levels of alkaline phosphatase expression (Fig. 2E). This was in contrast to all other hMSC0–18 lines where, even at earlier PDs, a progressive change in cell morphology was observed, with cells becoming wider and flatter and showing increased alkaline phosphatase expression and Von Kossa–stained mineralized deposits (Fig. 2G). hMSC0–18E retained good osteogenic capacity (Fig. 2F) but reduced adipogenic capacity (data not shown).
- u, W  f2 B3 A7 f4 P" [8 H; j9 r0 j2 v2 u6 M8 m; B$ j; y5 N% |5 H
hMSC59–75 showed severely reduced proliferative capacity (Table 1; Fig. 1B) with a slower growth rate than that in hMSC0–18. No cells with the spindle-shape morphology were observed; only cells exhibiting a larger and flatter morphology were present. They formed a significantly thinner monolayer at first confluence (1.7 ± 0.9 x 104 cells/cm2 versus 6.2 ± 0.1 x 104 cells/cm2, p ; V6 q1 e. S5 m' k

, q7 Y' S, ^5 k9 j- X8 hTelomere Kinetics during In Vitro Expansion and In Vivo
$ Y$ I% ~; M. O5 M, @& n
6 m6 B+ ~! u' h: dLength of mTRF was measured on genomic DNA taken from hMSC0–18 cells and hMSC59–75 at each passage when cell numbers were sufficient. A significant decrease was found in hMSC0–18 between the mTRF lengths at primary passage and at senescence by an average total of 1.0 kb ± 0.2 (range 0.4–2.5 kb, p = .002, Fig. 3A). The kinetic study in hMSC59–75 was limited, but no significant difference in the rate of mTRF loss was observed (on average, 88 bp/PD ± 10 for hMSC0–18 and 78 bp/PD ± 34 for hMSC59–75, p = .82). A strong correlation was found between total mTRF loss and total number of PDs occurring between the two measurements (R = .93 Pearson coefficient; Fig. 3B).
7 q( e  u9 M1 W: X  K: `& \1 ]* \( |5 r, u" V0 k# Q
Figure 3. mTRF lengths of hMSCs during in vitro expansion. (A): hMSC0–18 (n = 8, filled circles) and hMSC0–18E (n = 2, open circles) mTRF kinetics over cumulative PDs. (B): Total loss of telomere length in kb, calculated as the difference between the first mTRF measurement (mTRF1) and mTRF at the end of the culture (mTRFend) versus number of PDs. hMSC0–18 cultures are represented by filled circles (n = 8), hMSC0–18E by open circles (n = 2), and hMSC59–75 by triangles (n = 5). (C): Normal karyotype of one of two hMSC0–18E cultures at 35 PDs. (D): Average mTRF of hMSC0–18 plus hMSC0–18E (black bar, n = 10) and hMSC59–75 (gray bar, n = 5) at 16 PDs. (E): mTRF of hMSC0–18 plus hMSC0–18E (black bar, n = 10) and hMSC59–75 (gray bar, n = 5) at growth arrest. Abbreviations: hMSC, human marrow stromal cell; mTRF, mean telomere restriction fragment; PD, population doubling.# M& D3 c0 r# u, k/ `
: O0 T' E1 Q4 q- k
Interestingly, the two cultures hMSC0–18E that maintained the spindle-shape morphology and showed longer proliferative capacity also displayed mTRF shortening in a similar range to other hMSC0–18 over the first 25 PDs, but thereafter losses were below detection (Fig. 3A). No telomerase activity was detected in those cultures at 35 PDs (data not shown), and karyotypic analysis carried out at the same time did not show any abnormality (Fig. 3C).
, L8 |" l  s" d. z" t# H" q
/ C& O8 ~# Y9 G, v6 STo ascertain whether in vitro aging of MSCs was a natural property of MSC and not due to suboptimal culture conditions, we compared the mTRF of hMSC0–18 (n = 10) with that of hMSC59–75 (n = 5) after an equal number of divisions in culture. All MSC cultures were expanded in vitro, and mTRF was calculated at 16 PDs. We found that mTRF in hMSC0–18 was significantly longer than in hMSC59–75 (11.5 PDs ± 0.2 versus 10.3 PDs ± 0.1, p = .021; Fig. 3D). As the average total mTRF loss was 1.2 kb and the mean age difference between the two groups was 63 years, an average loss of 17 bp per year could be estimated. To determine whether there was an mTRF threshold at which MSCs stop proliferating regardless of their starting mTRF, mTRF length from cells at growth arrest was determined. We found no significant difference in mTRF length at growth arrest between hMSC0–18 and hMSC59–75 (10.4 ± 0.1 kb, n = 10 versus 10.4 ± 0.1, n = 5; p = .795; Fig. 3E). Interestingly, the mTRF length of hMSC59–75 at primary passage was found to be close to the mTRF threshold at which cells stopped proliferating.
, p: O6 e9 u, B/ @6 |: ?+ O' G) v4 ]8 V, W8 p. ~( \
DISCUSSION
. p2 _+ j- @7 b+ l. {" F& r8 V; O' j+ v5 h
In this study we used telomere length as a marker of aging, to quantify the remaining replicative capacity following in vitro expansion. Cells with great telomere shortening are expected to have little remaining proliferative capacity. This study highlights the severe aging of MSCs by expansion using present protocols. From our data expansion of about 10 PDs (minimal expansion of MSCs used for transplantation in osteogenesis imperfecta ), leads to an average loss of 1 kb of telomere sequence. Taking into account that the total loss can be at most about 2.5–3.5 kb when cells are derived from young donors, this loss is significant. As we have shown that cells derived from an adult donor have already undergone some substantial telomere erosion in vivo (17 bp/year), the expansion may lead to reinfusion of cells that have short telomeres and are severely compromised in their remaining long-term proliferative, differentiative, and homing capacity at a time when proliferation should be at its best to be able to initiate regenerative processes. The presence of lines where expansion occurs with little or no telomere erosion is encouraging and requires further investigation into the mechanisms of telomere maintenance and on culture conditions where this can reliably be obtained.
' ~% p0 Y+ y/ X! N( r0 c. t& z- [2 f  [: A0 I. I
ACKNOWLEDGMENTS
" C/ [# f# [# M4 v- q2 G
# N2 W9 r9 @! q9 g4 @5 n$ z2 R9 fProckop DJ. Marrow stromal cells as stem cells for non-haemopoietic tissues. Science 1997;276:71–74.
& n# m6 ?6 ?2 Q$ m' w- w2 K5 z+ e! w; J5 |
Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.4 e/ {. |' D. l! J. n

! U0 @1 Z# S' Z0 z+ X4 k. ?+ P! yBaxter MA, Wynn RF, Deakin JA et al. Retrovirally mediated correction of bone marrow-derived stem cells from patients with mucopolysaccharidosis type I. Blood 2002;99:1857–1859." l9 [! W7 i; X$ y: `7 Q  ?

. u4 h. e1 k) `" J% zBartholomew A, Patil S, Mackay A et al. Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther 2001;12:1527–1541.
, Y: ^5 a/ b% Q0 E
; B0 _# l5 I8 p% aHorwitz EM, Prockop DJ, Fitzpatrick LA et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with Osteogenesis imperfecta. Nat Med 1999;5:309–313.
2 Z5 C& p+ {' A+ Q4 m; b1 J' W& x6 E3 @
Gao J, Dennis JE, Muzic RF et al. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001;169:12–20.! ?+ E! M4 T/ `4 S

' s1 \  Z3 ?) L2 S" v1 V; |Devine SM, Bartholomew AM, Mahmud N et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 2001;29:244–255.
4 L% X+ k9 v7 ?9 Y8 y0 u6 ^3 u  ?: i4 D5 r: Q
Horwitz EM, Prockop DJ, Gordon PL et al. Clinical responses to bone marrow transplantation in children with severe Osteogenesis imperfecta. Blood 2001;97:1227–1231.% B" B) j3 R: T" E6 T$ F
6 {8 ^3 P2 c, `" P+ l' D
Mets T, Verdonk G. In vitro aging of human bone marrow derived stromal cells. Mech Ageing Dev 1981;16:81–89.
$ f; [5 J2 U/ e$ x4 |
' x' L/ e: \* _+ j3 |6 j% hD’Ippolito G, Schiller PC, Ricordi C et al. Age-related osteogenic potential of mesenchymal stromal cells from human vertebral bone marrow. J Bone Miner Res 1999;14:1115–1122.
+ L/ c, B! z' I; D0 y4 @* m: Y& X  S' p5 J
Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64:278–294.+ r4 H$ T3 f$ m' V

( g* k2 m/ T" K. e/ g0 s' }Digirolamo CM, Stokes D, Colter D. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol 1999;107:275–281.8 U4 h: v8 a7 j+ y1 Z8 {  V
& R2 H  F) c7 Y
Banfi A, Muraglia A, Dozin B et al. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 2000;28:707–715.0 p# \  n$ M# v, ~  d

( j; Z6 n0 k% OStenderup K, Justesen J, Clausen C et al. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow cells. Bone 2003;33:919–926.4 K8 ~  z) m5 |- i8 `8 i+ U8 H

( n) U8 V4 I0 W; c8 }4 D# {Rombouts WJC, Ploemacher RE. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 2003;17:160–170.
( m" [# L3 b( D! s6 U/ D: p
- s) A9 m+ |+ mWright WE, Shay JW. Historical claims and current interpretations of replicative aging. Nat Biotechnol 2002;20:682–688.' I! g% R5 T) E, J- @! l5 u7 N
3 R. v% G5 G- j9 O' c8 n/ m  s3 [
Blackburn EH. Switching and signaling at the telomere. Cell 2001;106:661–673.
# Y' v$ w) p& s# i  c" W/ E- a/ k% h) J9 ^' V
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 1990;345:458–460.3 b- j8 B9 H/ ?8 u6 N

# S1 p; O5 r2 k" o) F# h6 u+ PAllsopp RC, Harley CB. Evidence for a critical telomere length in senescent human fibroblasts. Exp Cell Res 1995;219:130–136.$ J" I, ~: X- i# h

' S2 y( l& z( l+ y6 |1 KReyes M, Lund T, Lenvik T et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;98:2615–2625.# e  @/ A# X- R

4 Q. G. O, Z! p( uFriedenstein AJ, Luria E, Molineux G. Assays of the haemopoietic microenvironment. In: Testa NG, Molineux G, eds. Haemopoiesis. New York: Oxford University Press, 1993:189–198.  q6 Q  B5 d( p2 o! o6 u

+ w3 }# r, o- g4 L( U1 K0 {Jaiswal N, Haynesworth SE, Caplan AI. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 1997;64:295–312.% c4 Q* l2 c% L, _

/ e, h, ?' f4 w' E/ M. Q3 A1 O6 DNuttall MSC, Patton AJ, Olivera DL. Human trabecular bone cells are able to express both osteoblast and adipocytic phenotype: implications for osteopenic disorders. J Bone Miner Res 1998;13:371–382.8 o: |3 l& C# ^
" _9 M$ V: f) Q, Q. L, {- S
Page K, Stevens A, Lowe J. Bone. In: Bancroft JD, Stevens A, eds. Theory and Practice of Histological Techniques. NewYork: Churchill Livingston, 1996;309–340.
* P3 @( X4 {- W, w" c$ s0 d% U7 w) G
Bayliss High OB, Lake B. Lipids. In: Bancroft JD, Stevens A, eds. Theory and Practice of Histological Techniques. NewYork: Churchill Livingston, 1996:213–242.  f  F8 j3 v: J" ~( m7 p

# i- J6 j6 t! s( sWynn RF, Cross MA, Hatton C et al. Accelerated telomere shortening in young recipients of allogeneic bone-marrow transplants. Lancet 1998;351:178–181./ L! |3 r3 V' m  b* J
# ^9 ^3 a; ]$ q0 @0 C
Barry FP, Boynton RE, Haynesworth S et al. The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an eptitope on endoglin (CD105). Biochem Biophys Res Commun 1999;265:134–139.4 l- y- p2 H8 ^( w3 x
( ?# v3 u! ^% Q. r! ^
Caplan AI. Mesenchymal stem cells. J Orthop Res 1991;9:641–650.5 n; Z* u# Y, g: c2 y2 p  N0 ?
: ^0 F6 r6 o7 d4 U9 }
Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000;28:875–884.
* W) x/ @0 ~7 ~4 U4 r
% K# I$ V1 [( \Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sc 2000;113:1161–1166.1 m% E/ h8 \1 _& z
, x9 y; i; G0 q
Colter DC, Sekiva I, Prockop DJ. Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci U S A 2001;98:7841–7845.( v7 F0 J3 |% f7 Q0 ]. i

$ h) c# [* N" N4 mVon Zglinicki T. Telomeres and replicative senescence: is it only length that counts? Cancer Lett 2001;168:111–116.
3 K0 `2 P: J) }8 l) x8 ^- C( S& ~' C% W
0 d& {* Y* H  GLundblad V. Telomere maintenance without telomerase. Oncogene 2002;21:522–531.6 A/ K$ W; m8 m' b2 S$ D# T2 B

3 s& D% S9 U& V) a2 \Bianchi G, Banfi A, Mastrogiacomo M. Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp Cell Res 2003;287:98–105.
0 }- T: V/ z1 A# a, h
0 `0 g! c+ P( x2 z1 NGreider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985;43:405–413.- N$ U* y% Q+ V* f; X, A' {
5 Y: \- P% B, r  |0 T0 i: }
Simonsen JL, Rosada C, Serakinci N et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 2002;20:592–596.  p( u" U' ]/ W  t

/ q5 a# W: \3 m: JShi S, Gronthos S, Chen S et al. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol 2002;20:587–591.& n' r# u" m! Z8 h; B

+ Q/ O! F$ T( C! i  ^+ J2 f* JZimmermann S, Voss M, Kaiser S et al. Lack of telomerase activity in human mesenchymal stem cells. Leukemia 2003;17:1146–1149.0 o% Z( `8 [( B; Y" t

: j" ?4 X' g- G  b6 y$ [. x& l/ l; R8 FMasutomi K, Yu EY, Khurts S et al. Telomerase maintains telomere structure in normal human cells. Cell 2003;114:41–253.(Melissa A. Baxtera, Rober)
作者: 罗马星空    时间: 2015-5-28 09:01

晕死也不多加点分  
作者: 龙水生    时间: 2015-6-9 19:59

干细胞之家是不错的网站
作者: haha3245    时间: 2015-6-12 14:42

谢谢哦  
作者: sky蓝    时间: 2015-6-25 18:54

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: 杏花    时间: 2015-7-20 19:54

朕要休息了..............  
作者: 罗马星空    时间: 2015-7-29 21:10

原来是这样  
作者: biobio    时间: 2015-7-30 17:35

昨晚多几分钟的准备,今天少几小时的麻烦。  
作者: haha3245    时间: 2015-8-12 11:10

其实回帖算是一种没德德,所以我快成圣人了  
作者: foxok    时间: 2015-8-24 19:10

拿把椅子看表演
作者: 红旗    时间: 2015-8-26 15:01

宁愿选择放弃,不要放弃选择。  
作者: yukun    时间: 2015-9-5 12:57

就为赚分嘛  
作者: 泡泡鱼    时间: 2015-9-8 14:54

干细胞美容
作者: beautylive    时间: 2015-9-20 16:54

抢座位来了  
作者: 陈晴    时间: 2015-9-25 19:16

佩服佩服啊.  
作者: immail    时间: 2015-10-16 19:45

我也来顶一下..  
作者: tempo    时间: 2015-10-26 11:09

支持你一下下。。  
作者: 剑啸寒    时间: 2015-11-17 10:18

要不我崇拜你?行吗?  
作者: laoli1999    时间: 2015-12-3 15:18

厉害!强~~~~没的说了!  
作者: immail    时间: 2016-1-27 16:35

我又回复了  
作者: 生物小菜鸟    时间: 2016-3-20 05:58

我等你哟!  
作者: doc2005    时间: 2016-3-24 17:39

干细胞治疗  
作者: 龙水生    时间: 2016-4-9 21:01

dddddddddddddd  
作者: leeking    时间: 2016-4-20 22:16

对不起,我走错地方了,呵呵  
作者: ines    时间: 2016-5-5 09:10

原来这样也可以  
作者: 杏花    时间: 2016-5-5 19:00

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: 安生    时间: 2016-6-1 08:43

我来看看!谢谢  
作者: 刘先生    时间: 2016-10-15 14:48

不知道说些什么  
作者: 再来一天    时间: 2016-12-11 13:40

拿分走人呵呵,楼下继续!
作者: youngcell    时间: 2016-12-13 16:35

不要等到人人都说你丑时才发现自己真的丑。  
作者: 坛中酒    时间: 2017-1-19 02:33

每天都会来干细胞之家看看
作者: dataeook    时间: 2017-2-13 21:06

对不起,我走错地方了,呵呵  
作者: sky蓝    时间: 2017-2-28 16:18

有才的不在少数啊  
作者: immail    时间: 2017-3-19 03:58

自己知道了  
作者: Whole    时间: 2017-4-16 08:35

角膜缘上皮干细胞
作者: beautylive    时间: 2017-4-25 09:27

嘿嘿......哈哈......呵呵.....哟~呼  
作者: lalala    时间: 2017-5-20 22:53

今天临床的资料更新很多呀
作者: lab2010    时间: 2017-5-23 12:18

我来看看!谢谢  
作者: heart10    时间: 2017-6-7 05:36

病毒转染干细胞
作者: 小倔驴    时间: 2017-6-7 17:25

ding   支持  
作者: 海小鱼    时间: 2017-6-26 07:36

很好!很强大!  
作者: Kuo    时间: 2017-7-16 03:18

人之所以能,是相信能。  
作者: HongHong    时间: 2017-8-5 22:06

干细胞我这辈子就是看好你
作者: 桦子    时间: 2017-9-6 00:34

原来这样也可以  
作者: 舒思    时间: 2017-9-11 03:41

谢谢分享了!   
作者: 求索迷茫    时间: 2017-10-6 07:10

干细胞与基因技术
作者: 海小鱼    时间: 2017-10-26 15:10

你还想说什么啊....  
作者: ladybird    时间: 2017-11-10 08:35

我十目一行也还是看不懂啊  
作者: 海小鱼    时间: 2017-12-7 06:00

世界上那些最容易的事情中,拖延时间最不费力。  
作者: xuguofeng    时间: 2017-12-22 03:58

正好你开咯这样的帖  
作者: 温暖暖    时间: 2017-12-31 15:51

肌源性干细胞
作者: 罗马星空    时间: 2018-1-20 09:55

呵呵,明白了  
作者: whyboy    时间: 2018-2-2 03:08

HOHO~~~~~~  
作者: bluesuns    时间: 2018-2-16 16:41

原来是这样  
作者: Greatjob    时间: 2018-2-18 13:54

声明一下:本人看贴和回贴的规则,好贴必看,精华贴必回。  
作者: ikiss    时间: 2018-3-22 03:22

一楼的位置好啊..  
作者: 8666sea    时间: 2018-3-26 03:25

围观来了哦  
作者: tian2006    时间: 2018-4-5 15:00

活着,以死的姿态……  
作者: 舒思    时间: 2018-4-19 07:26

嘿...反了反了,,,,  
作者: ikiss    时间: 2018-5-14 15:34

不要等到人人都说你丑时才发现自己真的丑。  
作者: 黄山    时间: 2018-5-17 13:41

都是那么过来的  
作者: sky蓝    时间: 2018-5-21 03:39

长时间没来看了 ~~  
作者: 干细胞2014    时间: 2018-6-7 21:32

免疫细胞治疗  
作者: 咕咚123    时间: 2018-6-14 14:54

朕要休息了..............  
作者: qibaobao    时间: 2018-6-26 18:44

神经干细胞
作者: myylove    时间: 2018-6-27 09:17

干细胞存储  
作者: xuguofeng    时间: 2018-6-29 06:29

初来乍到,请多多关照。。。  
作者: 草长莺飞    时间: 2018-7-19 19:53

不错,看看。  
作者: yukun    时间: 2018-7-23 16:00

干细胞之家是不错的网站
作者: chongchong    时间: 2018-7-29 01:52

我来了~~~~~~~~~ 闪人~~~~~~~~~~~~~~~~  
作者: 三好学生    时间: 2018-8-22 14:10

呵呵,明白了  
作者: 初夏洒脱    时间: 2018-9-7 03:34

看完了这么强的文章,我想说点什么,但是又不知道说什么好,想来想去只想  
作者: pcr    时间: 2018-9-15 13:28

楼上的稍等啦  
作者: ines    时间: 2018-9-19 03:36

声明一下:本人看贴和回贴的规则,好贴必看,精华贴必回。  
作者: 某某人    时间: 2018-10-3 08:35

不错啊! 一个字牛啊!  
作者: 坛中酒    时间: 2018-10-8 13:09

应该加分  
作者: pspvp    时间: 2018-10-24 19:14

我毫不犹豫地把楼主的这个帖子收藏了  
作者: lalala    时间: 2018-11-1 05:54

努力,努力,再努力!!!!!!!!!!!  
作者: MIYAGI    时间: 2018-11-1 16:59

支持你就顶你  
作者: doors    时间: 2018-11-11 05:38

顶的就是你  
作者: aakkaa    时间: 2018-11-21 17:04

你加油吧  
作者: 苹果天堂    时间: 2018-11-22 07:12

感谢党和人民的关爱~~~  
作者: 依旧随遇而安    时间: 2018-12-16 02:55

小心大家盯上你哦  
作者: lalala    时间: 2018-12-25 04:56

不错,感谢楼主
作者: dypnr    时间: 2018-12-27 17:18

朕要休息了..............  
作者: txxxtyq    时间: 2018-12-31 08:10

应该加分  
作者: alwaysniu    时间: 2019-1-5 12:31

家财万贯还得回很多贴哦  
作者: 榴榴莲    时间: 2019-1-5 17:12

谢谢哦  
作者: syt7000    时间: 2019-1-8 23:18

终于看完了~~~  
作者: haha3245    时间: 2019-1-10 15:01

好啊,,不错、、、、  
作者: lalala    时间: 2019-1-17 04:25

挤在北京,给首都添麻烦了……  
作者: haha3245    时间: 2019-2-3 18:31

顶你一下.  
作者: 科研人    时间: 2019-2-3 23:57

dc-cik nk  
作者: biodj    时间: 2019-2-22 12:22

昨晚多几分钟的准备,今天少几小时的麻烦。  
作者: 修复者    时间: 2019-2-26 16:43

终于看完了~~~  
作者: 知足常乐    时间: 2019-2-27 13:16

好贴坏贴,一眼就看出去  
作者: 罗马星空    时间: 2019-3-2 06:55

顶你一下,好贴要顶!  
作者: 兔兔    时间: 2019-3-2 17:40

间充质干细胞
作者: 20130827    时间: 2019-3-11 08:10

干细胞之家 我永远支持
作者: xuguofeng    时间: 2019-3-12 02:27

真是有你的!  




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5