干细胞之家 - 中国干细胞行业门户第一站

标题: Determination of Thrombopoietin-Derived Peptides Recognized by Both Cellular and [打印本页]

作者: 江边孤钓    时间: 2009-3-5 10:49     标题: Determination of Thrombopoietin-Derived Peptides Recognized by Both Cellular and

a Department of Immunology and
7 z6 l  F  z  y6 U: O& G
+ _) J; Z# o* h: j" ]1 Y" Jb 2nd Department of Internal Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan;( L6 a- j) r4 ?- v# Y

3 f9 n( _) I' e7 o# a) F. [% u" cc Pharmaceutical Research Laboratory, Kirin Brewery Co., Ltd., Takasaki, Gunma, Japan/ r5 D; w, _* u2 d3 S4 j/ m  [  {
- k7 o$ a. m# O) k2 e
Key Words. Human ? T cells ? Epitope ? Thrombopoietin ? Thrombocytopenia ? Autoimmunity
: x8 T; M0 }0 N+ Y5 w- i0 _% f! y/ ?. T% k
Correspondence: Hiroko Takedatsu, M.D., Ph.D., Department of Immunology, Kurume University School of Medicine, 67 Asahimachi, Kurume, Fukuoka 830-0011, Japan. Telephone: 81-942-31-7551; Fax: 81-942-31-7699; e-mail: takedatu@med.kurume-u.ac.jp. `8 d8 y, _/ m# U3 E! w. r
# l& {1 J6 K# V5 B+ y
ABSTRACT
. p; W3 S/ y8 h0 y, E  _: ?6 g* D0 M; P7 h% h1 j
Thrombopoietin (TPO), the c-Mpl ligand, is a key regulator of platelet production . TPO stimulates the growth of committed megakaryocyte progenitors, the progressive maturation of megakaryocytes, and proplatelet formation. TPO is synthesized primarily in the liver as a single 353–amino acid precursor protein. On removal of the 21–amino acid signal peptide, the mature molecule consists of two domains that show considerable homology to erythropoietin and a carbohydrate-rich carboxy-terminus of the protein that is highly glycosylated and important in maintaining protein stability . The production of TPO is elevated in patients with several thrombocytopenic disorders but not in those with immune thrombocytopenic purpura (ITP) . Two recombinant TPOs were provided for use in extensive clinical trials. One of these TPOs was recombinant hTPO (rHuTPO), a glycosylated molecule with an identical amino acid sequence to that of endogenous TPO, whereas the other was pegylated recombinant megakaryocyte growth and development factor (PEG-rHuMGDF), a nonglycosylated molecule that contained the first 163 amino acids of endogenous TPO, that is, the biologically active domain, which was coupled to polyethylene glycol . Both reagents are potent stimulators of platelet production in humans and thus have the ability to rescue the extent of thrombocytopenia associated with chemotherapy, thus providing the potential advantage of reducing the need for platelet transfusions . However, in clinical studies conducted during the past decade, PEG-rHuMGDF induced antibodies that cross-reacted with endogenous TPO, and severe thrombocytopenia persisted in 4% of healthy volunteers and 0.6% of oncology patients who received intensive chemotherapy . It was of note that immuno-competent individuals were likely to become thrombocytopenic at lower doses, since healthy volunteers became thrombocytopenic after receiving two or three administrations whereas oncology patients became thrombocytopenic after receiving multiple administrations . Such results suggest that autoimmune reactions are responsible for the observed adverse effects. However, the immunogenic epitopes of TPO recognized by host T cells have not yet been determined. We previously reported that antibodies reactive to cytotoxic T lymphocyte (CTL) epitope peptides derived from cancer-associated self-antigens were detected in healthy donors (HDs), patients with atopic disease, and cancer patients . Immunoglobulin G (IgG) reactive to certain CTL-directed epitopes of self-antigens is either lacking or unbalanced in atopic dermatitis patients . In contrast, increases in the levels of IgG to such peptides have been shown to be well-correlated with the overall survival of cancer patients vaccinated with these peptides . These results suggest the positive role of IgG reactive to CTL epitope peptides in patients with atopic diseases and cancer patients. To better understand the immunogenic epitopes of PEG-rHuMGDF, we investigated in the present study the reactivity of 18 TPO-derived peptides with HLA-A2–binding motifs to plasma and T cells, both from patients with thrombocytopenia (n = 24) and from HDs (n = 24), respectively; we then report five such epitope peptides.1 D: J1 I, K# E6 G- v

0 v8 {4 R) f7 q, d# w( R, K8 DMATERIALS AND METHODS7 {0 C1 G+ i! E/ E% b5 v
0 \5 b$ K+ y4 D9 k2 ?- M- P" n
Detection of IgG Reactive to TPO-Derived Peptide0 F% t" g+ V: u7 |! A
2 U& X, W$ H" A& Z3 M- L% i0 j+ i
We first investigated the levels of IgG reactive to 18 kinds of TPO-derived peptides in the patients (n = 24) and HDs (n = 24). Representative results showing positive and negative responses are shown in Figure 1. A linear inverse correlation was observed between the OD values of peptide-specific ELISA and plasma dilutions. The cut-off value was set as 0.06 of the OD values (mean ± 2 SD) at a plasma dilution of 1:100, based on the fact that the mean ± 2 SD of the HIV peptide-specific IgG of HD was 0.02 ± 0.04. Under this condition, significant levels of IgG reactive to the TPO peptide at position of 101–110 (TPO-101) were detectable in eight (33%) and seven (29%) of the patients and HDs, respectively. IgG reactive to TPO peptides at positions 89–98 (TPO-89), 109–118 (TPO-109), 162–171 (TPO-162), and 164–173 (TPO-164) was detectable in five, six, five, and seven patients, whereas these levels were found in one, zero, two, and two HDs, respectively. IgG reactive to some other peptides was also detectable in a few patients, with much lower frequency in HDs, whereas IgG reactive to TPO-35 was detected only in HDs but not in the patients. The overall summary is given in Table 2. Collectively, the mean number of peptides recognized by TPO peptide–reactive IgG was 2.2 in ITP patients, 1.0 in AA patients, 3.8 in the patients with other thrombocytopenic disorders, and 0.8 in the HDs. Based on these results, six peptides (TPO-35, -89, 101, -109, -162, and -164) were intensively investigated in the following experiments.: ]- w: q8 w+ I& N3 X: t) ]* i
0 l6 H3 I, v8 X7 x" Z+ r9 |" b/ I! N
Specificity of Peptide-Reactive IgG
! m  Y) e! a1 w6 s6 b" ~  |
/ `5 v; k, `& J& oThe specificity of the peptide-specific IgG was confirmed by an absorption test using immobilized peptides. The representative results are shown in Figure 2. IgG reactive to each of the six peptides (TPO-35, -89, -101, -109, -162, and -164) was absorbed by the corresponding peptide but not by the irrelevant TPO-derived peptides or HIV peptide. IgG reactive to the other peptides (TPO-60, -94, -119,-191, and -201) was also absorbed by the corresponding peptide but not by a negative control (HIV) peptide (data not shown).
  S' ~$ b- |2 f+ k1 \# v; ]( {! _+ a
9 K8 k& P. o. g2 Y, h4 }/ }Anti-peptide IgG reactive to the CTL epitope usually failed to recognize the parent protein, as reported previously . We then considered whether the anti-TPO peptide–reactive IgG shown above would recognize TPO. As expected, the patients’ plasma containing the anti-TPO peptide IgG failed to react to the native (dot-plot method) and denatured (Western blot method) rhTPO protein (data not shown). Furthermore, the reactivity of anti-TPO peptide–reactive IgG was not absorbed by the rhTPO, whereas it was absorbed by the corresponding peptide. Representative results of IgG reactive to the six peptides (TPO-35, -89, -101, -109, -162, and -164) are shown in Figure 3. The present results did not indicate any reactivity of the anti-TPO peptide IgG to the whole TPO protein.
. J. A! r' [) y6 E$ m; r) N4 @! a- S: J2 L$ @7 B1 ^
Induction of Peptide-Reactive CTLs by TPO-Derived Peptide
9 Q' D; y# F7 L' f9 \- Y# \0 |4 N" I' C. v. ]
Next, the six peptides (TPO-35, -89, -101, -109, -162, and -164) were tested for their ability to induce HLA-A2–restricted CTL activity in PBMCs from 6 HLA-A2  patients and 10 HDs. The PBMCs were repeatedly stimulated in vitro with each of the six TPO-derived peptides or with an HIV peptide as a control for up to 14 days, followed by a test of their ability to produce IFN in response to T2 cells prepulsed with a corresponding peptide or an HIV peptide as a negative control (Tables 3, 4). The TPO-35 peptide failed to induce peptide-reactive CTLs from any of the thrombocytopenic patients and HDs; thereafter, we used this peptide as a negative control. None of the patients or HDs reacted to the HIV peptide. In contrast, TPO-101, -109, -162, and -164 peptides induced peptide-reactive CTLs in one of five to six thrombocytopenic patients. CTL precursors to these peptides were also found in HDs at a higher frequency. Namely, the TPO-89 and -164 peptides induced peptide-reactive CTLs in 3 of 10 HDs, the TPO-101 and -109 peptides induced peptide-reactive CTLs in 2 of 10 HDs, and the TPO-162 peptides induced peptide-reactive CTLs in 1 of 10 HDs.% ~  K' C/ j5 `1 L+ G- z! x( q% @

$ P6 p. J1 M* @1 ~  i8 Q: I+ Q. M% XTable 3. Induction of TPO peptide–reactive PBMCs in thrombocytopenic patients
6 o! r0 j9 K) G5 m9 U
7 R+ }$ L8 j5 C% mTable 4. Induction of TPO peptide–reactive PBMCs in healthy donors# E6 L8 `" T; g3 x- `
, V! p- Z3 O$ w+ D0 m9 {
To test the reactivity of these peptide-reactive CTLs to TPO peptides processed by the intrinsic machinery of the major histocompatibility complex class I molecule, their IFN- production against COS-7 cells, which were transfected with HLA-A2, with or without TPO was examined. The peptide-reactive CTLs exhibited higher levels of IFN- production against the COS-7 cells transfected with HLA-A2 and TPO than those against the COS-7 cells transfected with HLA-A2 but not TPO cells (Fig. 4). The expression of both HLA-A2 and TPO in COS-7–transfected cells was determined by flow cytometry and Western blot analysis, respectively (data not shown). The blocking assay was also performed to confirm the specificity of the response. As a result, the reactivity against COS-7 cells transfected with HLA-A2 and TPO was significantly blocked by the addition of anti-CD8 and anti-HLA class I mAb but not by the other mAb tested. Representative results of TPO-89, -101, -109, and -164 peptide–reactive CTLs are shown in Figure 4. We could not examine the specificity of TPO-162 peptide–reactive CTLs because of the sample limitation.3 l9 L; K- ?0 c* C* ~& ~5 v
. s  u; K* u9 h+ ?1 f& g
Figure 4. The specificity of peptide-stimulated CTLs. Peptide-stimulated CTLs were tested for their IFN- production by recognition of either TPO  HLA-A2  COS-7 cells or TPO– HLA-A2  COS-7 cells at an E:T ratio of 20:1. IFN- production by peptide-specific CTLs in response to HLA-A2  TPO  COS-7 cells was also tested in the presence of 20 μg/ml of anti-CD4, anti-CD8, anti-HLA class I, anti-HLA class II, anti-CD14 mAbs. Representative data from HD1, HD5, and HD6 are shown. *p
' V3 K1 n% G5 [8 k- A! |8 q1 Y: ?- M7 N
These peptide-reactive CTLs from both the patients and HDs were further cultured for 14 days with IL-2 alone, and the cultures were examined for cytotoxicity. The peptide-reactive CTLs exhibited a higher level of cytotoxicity against the T2 cells pulsed with corresponding peptide than against T2 cells pulsed with TPO-35 or HIV peptide. The representative results are shown in Figure 5A. Furthermore, the cold inhibition test showed that the cytotoxicity against TPO  Hep-G2 cells was significantly blocked by unlabeled T2 cells loaded with the corresponding peptide but not by unlabeled T2 cells loaded with TPO-35 or HIV peptide, used as a negative control (Fig. 5B). These results indicate that the reactivity of peptide-stimulated CTLs against TPO producing HLA-A2  cells was largely mediated by CD8  T cells in a peptide-specific and an HLA-A2–restricted manner.
, w& W% {: m& F; n# J( p
' E$ o' P$ _+ h0 gFigure 5. Cytotoxicity. (A): Peptide-stimulated PBMCs were tested for their cytotoxicity against T2 cells pulsed with the corresponding peptide, TPO-35 peptide, or an HIV peptide by the standard 6-hour 51Cr-release assay. Values represent the means of triplicate assays. A two-tailed Student’s t-test was used for the statistical analysis of the percentage lysis of T2 cells pulsed with the corresponding peptide and that of T2 cells pulsed with TPO-35 peptide. *p ( P: A: ~- v( Q" W
; n) e; ~0 u9 M) t7 y! C( n9 v9 }0 _
DISCUSSION
2 D2 W( U! P8 I  O( M* s- F  G1 h
: a2 m8 m0 C+ w3 V. a7 ZThis work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports, and Culture of Japan (No. 12213134 to K.I.) and Research Center of Innovative Cancer Therapy of 21st Century COE Program for Medical Science (to T.O., M.S., and K.I.) and from the Ministry of Health and Welfare, Japan (No. H14-trans-002, 11–16 to K.I.).
; O9 y: Q1 }9 V4 y
! l2 f/ Y5 y! J/ O" _REFERENCES1 O; d0 q# Z1 j6 l
, k" L$ F% M' R. }# i5 I+ R( t7 Q
Kaushansky K. Thrombopoietin. N Engl J Med 1998;339:746–754.6 z0 j' m0 P. X9 o

" ^5 @# c  L, Z- B( N3 vKuter DJ, Begley CG. Recombinant human thrombopoietin: basic biology and evaluation of clinical studies. Blood 2002;100:3457–3469.
" }% K7 j/ `* k( B
7 \. F; E* P2 v5 sYang C, Li YC, Kuter DJ. The physiological response of thrombopoietin (c-Mpl ligand) to thrombocytopenia in the rat. Br J Haematol 1999;105:478–485.* T7 I4 d, z4 M. P, m- \
  x) g/ W- v$ k
Kappers-Klunne MC, de Haan M, Struijk PC et al. Serum thrombopoietin levels in relation to disease status in patients with immune thrombocytopenic purpura. Br J Haematol 2001;115:1004–1006.
( L, P7 Q4 [* p' m5 p# }8 L8 |; k6 b! A
Kuter DJ. Future directions with platelet growth factors. Semin Hematol 2000;37:41–49.6 V- s" g" |1 |( T) l% D

% |0 M' G  S) e$ i5 e4 ]Vadhan-Raj S, Verschraegen CF, Bueso-Ramos C et al. Recombinant human thrombopoietin attenuates carboplatin-induced severe thrombocytopenia and the need for platelet transfusions in patients with gynecologic cancer. Ann Intern Med 2000;132:364–368.
8 r9 O/ j3 k( c/ `  w( d' W7 u) ^- _* i" U* S  V
Vadhan-Raj S, Patel S, Bueso-Ramos C et al. Importance of predosing of recombinant human thrombopoietin to reduce chemotherapy-induced early thrombocytopenia. J Clin Oncol 2003;21:3158–3167.  S/ W5 ?/ b- |5 ^
- p8 X9 }. e% E" `. c( n
Ohkouchi S, Yamada A, Imai N et al. Non-mutated tumor-rejection antigen peptides elicit type-I allergy in the majority of healthy individuals. Tissue Antigens 2002;59:259–272.
( r. F2 Y  I1 p) z! O; h4 c. ?1 j+ N# J5 ?! w( x4 N* P% d
Kawamoto N, Yamada A, Ohkouchi S et al. IgG reactive to CTL-directed epitopes of self-antigens is either lacking or unbalanced in atopic dermatitis patients. Tissue Antigens 2003;61:352–361.
! k8 n: R) @6 i6 q% g4 |/ q: u9 q7 l. G! \+ m# e7 h
Mine T, Sato Y, Noguchi M et al. Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccinated with peptides based on pre-existing, peptide-specific cellular responses. Clin Cancer Res 2004;10:929–937.
* Y. [1 R( f" m2 E5 i
$ d3 C- n* o$ E7 C# gMatsueda S, Kobayashi K, Nonaka Y et al. Identification of new prostate stem cell antigen-derived peptides immunogenic in HLA-A2  patients with hormone-refractory prostate cancer. Cancer Immunol Immunother 2004;53:479–489.: k- S1 L8 L2 w% Z  E8 F1 W
' {  s; i) ~- Y/ y5 U
Emmons RV, Reid DM, Cohen RL et al. Human thrombopoietin levels are high when thrombocytopenia is due to megakaryocyte deficiency and low when due to increased platelet destruction. Blood 1996;87:4068–4071.) \9 K& R0 v: _, X% k' N; y+ Z
* p7 y4 U6 r7 p( o
Sasaki Y, Takahashi T, Miyazaki H et al. Production of thrombopoietin by human carcinomas and its novel isoforms. Blood 1999;94:1952–1960.4 n, E( _6 L& s2 q- |
/ {7 n& `  j( m
Ishihara Y, Harada M, Azuma K et al. HER2/neu-derived peptides recognized by both cellular and humoral immune systems in HLA-A2  cancer patients. Int J Oncol 2004;24:967–975.
5 s6 O5 [! Q4 _& w8 c/ |1 W' H  R3 x( u2 K# I
Feese MD, Tamada T, Kato Y et al. Structure of the receptor-binding domain of human thrombopoietin determined by complexation with a neutralizing antibody fragment. Proc Natl Acad Sci U S A 2004;101:1816–1821.
$ k7 S: f2 s( y* N* ~" P5 n2 C; F1 q8 N6 @6 |4 m+ X* C3 w* ~
Kuroki R, Hirose M, Kato Y et al. Crystallization of the functional domain of human thrombopoietin using an antigen-binding fragment derived from neutralizing monoclonal antibody. Acta Crystallogr D Biol Crystallogr 2002;58:856–858.* ]/ Y4 U5 Q% v% ~$ H: i, x# x
8 Y4 I7 y% y0 U+ U, M# h6 _
Gurunath R, Beena TK, Adiga PR et al. Enhancing peptide antigenicity by helix stabilization. FEBS Lett 1995;361:176–178.3 |& F2 g2 W+ {1 J" R) g- @

" P% }- N: P9 J& Z# p& a. F5 T! r0 ^) MJager D, Taverna C, Zippelius A et al. Identification of tumor antigens as potential target antigens for immunotherapy by serological expression cloning. Cancer Immunol Immunother 2004;53:144–147.$ {% ^1 ]- d) Z. ^2 R$ i* O9 O3 u5 z
7 Y: ]' g  i- p& H
Muro Y. Autoantibodies in atopic dermatitis. J Dermatol Sci 2001;25:171–178.
+ `% I- h) m4 [  _! E, S5 H* C' F# V$ B  q- y4 ]! J
Craft J, Fatenejad S. Self antigens and epitope spreading in systemic autoimmunity. Arthritis Rheum 1997;40:1374–1382.
( r; c( v2 R3 C, `8 K
5 j+ ^/ v/ X; A2 X# e1 X8 i$ \* d0 vJames JA, Gross T, Scofield RH et al. Immunoglobulin epitope spreading and autoimmune disease after peptide immunization: Sm B/B3-derived PPPGMRPP and PPPGIRGP induce spliceosome autoimmunity. J Exp Med 1995;181:453–461.- O, x$ }1 {6 n8 F! ^$ w

5 O: h+ I; o' ^; w. w! ~0 {Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4  T-helper and a T-killer cell. Nature 1998;393:474–478.
$ s6 d/ i; {6 X
9 O9 c; y  j1 g/ o+ H3 HSchoenberger SP, Toes RE, van der Voort EI et al. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998;393:480–483.
- t8 K' ?6 \% T, @! I4 ?. w" x& J3 M  ^, i- V6 q2 l
Bristol JA, Orsini C, Lindinger P et al. Identification of a ras oncogene peptide that contains both CD4  and CD8  T cell epitopes in a nested configuration and elicits both T cell subset responses by peptide or DNA immunization. Cell Immunol 2000;205:73–83.
  O$ Y) S9 A# H- X/ F1 ?) i3 a( d9 z( t) W) q& [. _0 Q
Harada M, Gohara R, Matsueda S et al. In vivo evidence that peptide vaccination can induce HLA-DR-restricted CD4  T cells reactive to a class I tumor peptide. J Immunol 2004;172:2659–2667.' Z7 Q; B) |* q$ f  G7 W
* U; P6 }, ~. ~3 q2 A& A: G
El Andaloussi AE, Duchez P, Rieffers J et al. Expression of thrombopoietin by umbilical vein endothelial cells. Eur Cytokine Netw 2001;12:268–273.
( U& v) |" ?" Z7 ~/ Q( f
0 g: x5 M+ R3 q$ y1 gDormady SP, Bashayan O, Dougherty R etal. Immortalized multipotential mesenchymal cells and the hematopoietic microenvironment. J Hematother Stem Cell Res 2001;10:125–140.(Hiroko Takedatsua, Kohji )
作者: 剑啸寒    时间: 2015-6-6 13:13

楼主,支持!  
作者: yukun    时间: 2015-6-14 02:54

既然来了,就留个脚印  
作者: xuguofeng    时间: 2015-6-14 17:08

做一个,做好了,请看  
作者: marysyq    时间: 2015-6-17 20:22

病毒转染干细胞
作者: beautylive    时间: 2015-7-12 22:42

谁都不容易啊 ~~  
作者: sky蓝    时间: 2015-7-18 14:32

哎 怎么说那~~  
作者: 123456zsz    时间: 2015-7-19 15:17

免疫细胞疗法治疗肿瘤有效  
作者: 陈晴    时间: 2015-8-5 09:35

我等你哟!  
作者: foxok    时间: 2015-8-10 17:15

我是来收集资料滴...  
作者: beautylive    时间: 2015-9-28 06:26

慢慢来,呵呵  
作者: 泡泡鱼    时间: 2015-11-25 18:01

顶你一下,好贴要顶!  
作者: laoli1999    时间: 2016-1-3 18:58

干细胞美容
作者: aakkaa    时间: 2016-2-1 00:18

间充质干细胞
作者: myylove    时间: 2016-2-15 19:46

生殖干细胞
作者: haha3245    时间: 2016-2-26 16:27

真是有你的!  
作者: 依旧随遇而安    时间: 2016-3-22 16:43

不错啊! 一个字牛啊!  
作者: s06806    时间: 2016-3-22 19:19

好人一生平安  
作者: dr_ji    时间: 2016-4-5 10:01

顶一个先  
作者: tempo    时间: 2016-4-11 17:10

干细胞疾病模型
作者: myylove    时间: 2016-5-2 21:27

努力,努力,再努力!!!!!!!!!!!  
作者: 三好学生    时间: 2016-5-9 15:43

干细胞研究还要面向临床
作者: 石头111    时间: 2016-8-4 09:28

干细胞与基因技术
作者: 丸子    时间: 2016-8-5 23:17

干细胞与基因技术
作者: highlight    时间: 2016-9-2 23:35

ips是诱导多能干细胞induced pluripotent stem cells iPS
作者: xiaomage    时间: 2016-9-28 11:28

青春就像卫生纸。看着挺多的,用着用着就不够了。  
作者: 小小C    时间: 2016-10-8 09:42

牛牛牛牛  
作者: keanuc    时间: 2016-10-20 21:59

家财万贯还得回很多贴哦  
作者: doors    时间: 2016-11-16 17:10

支持~~顶顶~~~  
作者: 生物小菜鸟    时间: 2016-11-18 11:43

风物长宜放眼量  
作者: 再来一天    时间: 2016-11-24 18:25

真是有你的!  
作者: doc2005    时间: 2016-11-30 18:43

做对的事情比把事情做对重要。  
作者: heart10    时间: 2016-12-13 22:48

貌似我真的很笨????哎  
作者: yukun    时间: 2016-12-22 12:54

干细胞研究非常有前途
作者: awen    时间: 2016-12-23 11:35

慢慢来,呵呵  
作者: txxxtyq    时间: 2016-12-23 20:13

看完了这么强的文章,我想说点什么,但是又不知道说什么好,想来想去只想  
作者: tempo    时间: 2017-1-4 01:31

做对的事情比把事情做对重要。  
作者: tempo    时间: 2017-1-8 23:35

神经干细胞
作者: abc987    时间: 2017-1-25 08:10

慢慢来,呵呵  
作者: 草长莺飞    时间: 2017-2-4 10:02

我的啦嘿嘿  
作者: 加菲猫    时间: 2017-2-7 21:37

干细胞存储  
作者: nauticus    时间: 2017-3-10 06:18

呵呵 那就好好玩吧~~~~  
作者: xuguofeng    时间: 2017-3-21 17:26

羊水干细胞
作者: HongHong    时间: 2017-4-30 20:35

祝干细胞之家 越办越好~~~~~~~~~`  
作者: popobird    时间: 2017-5-17 13:54

这个站不错!!  
作者: tuanzi    时间: 2017-5-19 17:21

谢谢分享了!   
作者: immail    时间: 2017-5-25 07:27

这年头,分不好赚啊  
作者: 昕昕    时间: 2017-7-12 13:01

今天没事来逛逛,看了一下,感觉相当的不错。  
作者: alwaysniu    时间: 2017-7-19 12:15

你加油吧  
作者: biopxl    时间: 2017-7-22 14:35

生殖干细胞
作者: yukun    时间: 2017-7-26 17:07

顶一个先  
作者: xuguofeng    时间: 2017-8-19 15:35

端粒酶研究
作者: 安安    时间: 2017-9-13 20:40

看贴回复是好习惯  
作者: 兔兔    时间: 2017-9-30 11:35

哈哈,顶你了哦.  
作者: www1202000    时间: 2017-10-7 00:06

先顶后看  
作者: IPS干细胞    时间: 2017-10-16 18:21

不管你信不信,反正我信  
作者: 杏花    时间: 2017-11-23 20:59

嘿嘿......哈哈......呵呵.....哟~呼  
作者: 小丑的哭泣    时间: 2017-12-18 08:27

世界上那些最容易的事情中,拖延时间最不费力。  
作者: 石头111    时间: 2017-12-26 09:54

一个有信念者所开发出的力量,大于99个只有兴趣者。  
作者: 一个平凡人    时间: 2017-12-28 12:54

进行溜达一下  
作者: 丸子    时间: 2018-1-6 02:13

似曾相识的感觉  
作者: abc987    时间: 2018-1-10 13:36

心脏干细胞
作者: 草长莺飞    时间: 2018-1-16 05:24

今天临床的资料更新很多呀
作者: 若天涯    时间: 2018-1-16 12:49

来几句吧  
作者: laoli1999    时间: 2018-1-20 03:55

给我一个女人,我可以创造一个民族;给我一瓶酒,我可以带领他们征服全世界 。。。。。。。。。  
作者: myylove    时间: 2018-1-23 20:01

支持一下  
作者: 狂奔的蜗牛    时间: 2018-2-12 19:18

希望大家帮我把这个帖发给你身边的人,谢谢!  
作者: 碧湖冷月    时间: 2018-2-20 13:41

这贴?不回都不行啊  
作者: apple0    时间: 2018-3-4 18:49

我是来收集资料滴...  
作者: tuting    时间: 2018-3-16 18:33

问渠哪得清如许,为有源头活水来。  
作者: youngcell    时间: 2018-3-25 06:06

哈哈,这么多的人都回了,我敢不回吗?赶快回一个,很好的,我喜欢  
作者: beautylive    时间: 2018-4-12 23:34

神经干细胞
作者: 张佳    时间: 2018-5-5 08:18

慢慢来,呵呵  
作者: beautylive    时间: 2018-5-13 11:08

太棒了!  
作者: dypnr    时间: 2018-5-22 18:34

加油啊!!!!顶哦!!!!!支持楼主,支持你~  
作者: 碧湖冷月    时间: 2018-5-31 13:01

想都不想,就支持一下  
作者: 榴榴莲    时间: 2018-6-12 01:44

有空一起交流一下  
作者: 狂奔的蜗牛    时间: 2018-6-13 14:10

一楼的位置好啊..  
作者: 考拉    时间: 2018-6-16 18:26

水至清则无鱼,人至贱则无敌!  
作者: beautylive    时间: 2018-6-20 11:42

加油啊!偶一定会追随你左右,偶坚定此贴必然会起到抛砖引玉的作用~  
作者: dongmei    时间: 2018-6-20 16:10

赚点分不容易啊  
作者: Kuo    时间: 2018-6-22 04:15

楼主good  
作者: 三星    时间: 2018-7-4 00:00

楼主也是博士后吗  
作者: 未必温暖    时间: 2018-7-4 18:07

想都不想,就支持一下  
作者: 小倔驴    时间: 2018-7-10 23:25

怎么就没人拜我为偶像那?? ~  
作者: leeking    时间: 2018-7-16 17:27

真好。。。。。。。。。  
作者: 未必温暖    时间: 2018-8-20 04:38

人气还要再提高  
作者: 剑啸寒    时间: 2018-9-16 16:09

看或者不看,贴子就在这里,不急不忙  
作者: 123456zsz    时间: 2018-10-4 23:05

不知道说些什么  
作者: tuanzi    时间: 2018-10-20 23:53

好啊,,不错、、、、  
作者: HongHong    时间: 2018-10-29 08:54

我的妈呀,爱死你了  
作者: nauticus    时间: 2018-11-4 12:10

我又回复了  
作者: nosoho    时间: 2018-11-21 10:43

我顶啊。接着顶  
作者: immail    时间: 2018-11-29 10:28

回答了那么多,没有加分了,郁闷。。  
作者: biobio    时间: 2018-11-29 11:43

围观来了哦  
作者: yunshu    时间: 2018-12-4 03:59

端粒酶研究
作者: 365wy    时间: 2018-12-4 08:35

进行溜达一下  
作者: 快乐小郎    时间: 2018-12-14 02:10

一个人最大的破产是绝望,最大的资产是希望。  
作者: 龙水生    时间: 2019-2-9 07:08

我是来收集资料滴...  
作者: 快乐小郎    时间: 2019-2-28 00:47

谢谢楼主啊!




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5