干细胞之家 - 中国干细胞行业门户第一站

标题: The Molecular Perspective: Double-Stranded DNA Breaks [打印本页]

作者: 江边孤钓    时间: 2009-3-5 10:50     标题: The Molecular Perspective: Double-Stranded DNA Breaks

Correspondence: David S. Goodsell, Ph.D., Associate Professor, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. Telephone: 858-784-2839; Fax: 858-784-2860; e-mail: goodsell@scripps.edu Web site: http://www.scripps.edu/pub/goodsell
  Q2 E- W9 E3 q, H: z; W" J# ~% |: j! c% l" c& ~' }
Our long, delicate DNA strands are easily broken. Ionizing radiation, such as x-rays and gamma rays, as well as drugs like bleomycin (Blenoxane?; Bristol-Myers Squibb, Princeton, NJ, http://www.bms.com) create reactive forms of oxygen, which in turn attack DNA and cause breakage. Double-stranded DNA breaks can occur when DNA polymerase runs into an unrepaired nick in the DNA. Topoisomerase inhibitors can also cause breaks: Topoisomerase breaks and rejoins DNA in the course of its function, and inhibitors can block the rejoining step. Cells also break their DNA on purpose for special functions, most notably during the gene shuffling that occurs as lymphocytes mature, which generates diversity in antibodies, T-cell receptors, and other highly variable immune system proteins.# H8 T, r! _' u0 O3 H
; l, p9 [$ S8 l! y; o' b9 _; w
These breaks can cause serious problems. A single break in a key gene can kill a cell, or cause it to kill itself by apoptosis. So cells have powerful methods to repair this damage as soon as it happens. In your lifetime, each of your cells will have repaired, more or less successfully, several thousand double-stranded DNA breaks. Radiation therapy overwhelms this natural repair system, using high doses of radiation to fragment the DNA in cancer cells.7 b" ?$ \  f1 }5 A* {& w

6 Q3 W. E# F# D; [Cells use two major methods to repair double-stranded DNA breaks. The first method〞homologous recombination〞uses the fact that we carry a duplicate set of DNA in our cells. The break is repaired using the duplicate set as a template. As you might imagine, this can be very precise, since the cell can use the undamaged DNA strand to ensure that the repair is correct. The second method〞nonhomologous end joining〞repairs the break directly, without any outside information. It is less accurate, and may result in the addition or removal of a few nucleotides at the repair site.
8 r9 D' m( X; P' A7 T, j6 j# A1 E2 p8 T% }1 ]5 A7 l
Nonhomologous end joining requires the concerted action of a series of proteins. The process is thought to start with the Ku protein (Fig. 1), a dimer comprised of two similar proteins. It is prevalent in the cell nucleus and binds readily to DNA ends. Ku then binds to DNA-dependent protein kinase and begins the process of synapsis that holds the two broken ends in close proximity. Other proteins, such as Artemis, and perhaps polymerases, then bind to the break, trimming the two ends and filling in gaps, making them ready for rejoining. Finally, the two ends are rejoined by DNA ligase IV with the help of XRCC4 (Fig. 2).* Z' E3 R1 g% x4 u

- J" [+ {3 [) `+ iFigure 1. Ku protein. The structure of the Ku protein dimer (blue) reveals one of the mysteries of its action: How can a protein bind tightly to damaged DNA (pink and orange) but still allow access by other repair proteins? The protein wraps two thin arms around the DNA, gripping the DNA but still leaving most of the surface available. Coordinates were taken from entry 1jey at the Protein Data Bank (http://www.pdb.org)." W7 _& H3 W( m- W5 I$ x( K
8 |, h( e  G9 G: ]( x
Figure 2. DNA ligase and XRCC4. Human DNA ligases (purple) use ATP to rejoin breaks in DNA strands (the DNA is shown end-on in pink and orange). Ligases wrap entirely around the DNA when they perform their joining reaction. DNA ligase IV, used in non-homologous end joining, is assisted by the factor XRCC4 (green). Coordinates were taken from entries 1ik9, 1x9n and 1in1 at the Protein Data Bank.9 u% S* u$ p6 ~& k- _
- {  B& b- D# S" u) G/ l* Y. k  k
Because of the trimming that occurs at each end, and because synapsis may occur between any two broken DNA ends, this process is imprecise. In the case of the antibody genes, this is a good thing, since it is the way that our immune system builds a large repertoire of slightly different antibodies. But for repair of accidental damage, these small (and large) errors can be dangerous, in some cases leading to cancer. For instance, if two breaks occur at once, and the ends get mixed up when the repair is made, genes may be translocated from one place to another. In the case of Burkitt’s lymphoma, this process moves a normally inactive c-myc gene into a very active area, causing overexpression of the gene and leading to uncontrolled growth in the cell. In other forms of leukemia, the arms of two different chromosomes are switched, forming the "Philadelphia chromosome" with a fused Bcr-Abl protein at the join site. The fused protein is overactive and leads to transformation of the cell.
3 s- |% I9 o+ R8 `; }$ {+ F
5 ^& j9 E; e% TADDITIONAL READING  d8 V- D9 g3 A1 m" f" D& O
9 J: R) _6 F2 ~, l! `( o
Lees-Miller SP, Meek K. Repair of DNA double strand breaks by non-homologous end joining. Biochimie 2003;85:1161–1173.
# X5 J8 r, B$ h  l' s; |% Y+ I. L* r* y
Lieber MR, Ma Y, Pannicke U et al. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003;4:712–720.
3 O& v' X; j; A1 h8 a# V; ^+ @# K4 a! Y2 v0 J
Mills KD, Ferguson DO, Alt FW. The role of DNA breaks in genomic instability and tumorigenesis. Immunol Rev 2003;194:77–95.
$ k( ?+ u7 C, V' M; N# ^! ~2 [9 ~9 b' u# Z7 E
David S. Goodsell
9 U5 i. {$ j! {. @, j$ d  V+ `" y' s8 u
Correspondence: David S. Goodsell, Ph.D., Associate Professor, The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. Telephone: 858-784-2839; Fax: 858-784-2860; e-mail: goodsell@scripps.edu Web site: http://www.scripps.edu/pub/goodsell
& c$ r% q% q3 H# j& ]& j) \4 j, f+ L6 m7 F
Our long, delicate DNA strands are easily broken. Ionizing radiation, such as x-rays and gamma rays, as well as drugs like bleomycin (Blenoxane?; Bristol-Myers Squibb, Princeton, NJ, http://www.bms.com) create reactive forms of oxygen, which in turn attack DNA and cause breakage. Double-stranded DNA breaks can occur when DNA polymerase runs into an unrepaired nick in the DNA. Topoisomerase inhibitors can also cause breaks: Topoisomerase breaks and rejoins DNA in the course of its function, and inhibitors can block the rejoining step. Cells also break their DNA on purpose for special functions, most notably during the gene shuffling that occurs as lymphocytes mature, which generates diversity in antibodies, T-cell receptors, and other highly variable immune system proteins.
# v8 Y4 g) K% G) Y
& J( K2 j) M' t0 @0 x9 D# RThese breaks can cause serious problems. A single break in a key gene can kill a cell, or cause it to kill itself by apoptosis. So cells have powerful methods to repair this damage as soon as it happens. In your lifetime, each of your cells will have repaired, more or less successfully, several thousand double-stranded DNA breaks. Radiation therapy overwhelms this natural repair system, using high doses of radiation to fragment the DNA in cancer cells.+ _/ v7 q$ o: ~
6 z" u) g: m7 Q- Z) x
Cells use two major methods to repair double-stranded DNA breaks. The first method〞homologous recombination〞uses the fact that we carry a duplicate set of DNA in our cells. The break is repaired using the duplicate set as a template. As you might imagine, this can be very precise, since the cell can use the undamaged DNA strand to ensure that the repair is correct. The second method〞nonhomologous end joining〞repairs the break directly, without any outside information. It is less accurate, and may result in the addition or removal of a few nucleotides at the repair site.3 W+ a0 M: k/ _  O7 `: d6 q  s  x
! b* d: \) {# X" C
Nonhomologous end joining requires the concerted action of a series of proteins. The process is thought to start with the Ku protein (Fig. 1), a dimer comprised of two similar proteins. It is prevalent in the cell nucleus and binds readily to DNA ends. Ku then binds to DNA-dependent protein kinase and begins the process of synapsis that holds the two broken ends in close proximity. Other proteins, such as Artemis, and perhaps polymerases, then bind to the break, trimming the two ends and filling in gaps, making them ready for rejoining. Finally, the two ends are rejoined by DNA ligase IV with the help of XRCC4 (Fig. 2).
" L) A" u# N" c5 X* a$ b: P" b3 w* I3 P; R0 S. z- T. |! h! H
Figure 1. Ku protein. The structure of the Ku protein dimer (blue) reveals one of the mysteries of its action: How can a protein bind tightly to damaged DNA (pink and orange) but still allow access by other repair proteins? The protein wraps two thin arms around the DNA, gripping the DNA but still leaving most of the surface available. Coordinates were taken from entry 1jey at the Protein Data Bank (http://www.pdb.org).
; R" i1 }% b* B* Z  `. A
, d. G. U" E; ^8 o# x" d, s; B$ \Figure 2. DNA ligase and XRCC4. Human DNA ligases (purple) use ATP to rejoin breaks in DNA strands (the DNA is shown end-on in pink and orange). Ligases wrap entirely around the DNA when they perform their joining reaction. DNA ligase IV, used in non-homologous end joining, is assisted by the factor XRCC4 (green). Coordinates were taken from entries 1ik9, 1x9n and 1in1 at the Protein Data Bank.4 d# a4 @" ~  G, P) h/ g5 G
4 `% K! Z4 C5 d! h  e1 Y( O
Because of the trimming that occurs at each end, and because synapsis may occur between any two broken DNA ends, this process is imprecise. In the case of the antibody genes, this is a good thing, since it is the way that our immune system builds a large repertoire of slightly different antibodies. But for repair of accidental damage, these small (and large) errors can be dangerous, in some cases leading to cancer. For instance, if two breaks occur at once, and the ends get mixed up when the repair is made, genes may be translocated from one place to another. In the case of Burkitt’s lymphoma, this process moves a normally inactive c-myc gene into a very active area, causing overexpression of the gene and leading to uncontrolled growth in the cell. In other forms of leukemia, the arms of two different chromosomes are switched, forming the "Philadelphia chromosome" with a fused Bcr-Abl protein at the join site. The fused protein is overactive and leads to transformation of the cell.
% K5 ?7 w7 {6 x& Q& s& c0 u! H4 p; e: ^3 }- I& Y; s1 v
ADDITIONAL READING* ~, H* }" |5 a2 a! y
, E2 N1 ?' J& K
Lees-Miller SP, Meek K. Repair of DNA double strand breaks by non-homologous end joining. Biochimie 2003;85:1161–1173.
) f! O7 D3 }" {3 M6 a& _+ I! e
1 V7 h) \5 Q$ `2 X  MLieber MR, Ma Y, Pannicke U et al. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003;4:712–720.8 B$ X$ _0 M5 ?+ E0 z

3 p+ Q' k# r8 JMills KD, Ferguson DO, Alt FW. The role of DNA breaks in genomic instability and tumorigenesis. Immunol Rev 2003;194:77–95.(David S. Goodsell)
作者: efool    时间: 2009-4-7 12:35

不错,很有价值
作者: foxok    时间: 2015-6-1 09:27

挤在北京,给首都添麻烦了……  
作者: 榴榴莲    时间: 2015-6-26 16:27

挺好啊  
作者: laoli1999    时间: 2015-7-15 17:48

给我一个女人,我可以创造一个民族;给我一瓶酒,我可以带领他们征服全世界 。。。。。。。。。  
作者: laoli1999    时间: 2015-7-23 09:18

回复一下  
作者: bluesuns    时间: 2015-7-27 14:35

我想要`~  
作者: dypnr    时间: 2015-7-30 13:54

不对,就是碗是铁的,里边没饭你吃啥去?  
作者: bluesuns    时间: 2015-7-31 08:43

说嘛1~~~想说什么就说什么嘛~~  
作者: beautylive    时间: 2015-8-7 07:31

我也来顶一下..  
作者: 舒思    时间: 2015-8-20 15:43

我的啦嘿嘿  
作者: beautylive    时间: 2015-9-2 05:27

真是有你的!  
作者: biobio    时间: 2015-9-30 12:35

哦...............  
作者: tempo    时间: 2015-10-6 16:34

来几句吧  
作者: xuguofeng    时间: 2015-10-15 12:07

人气还要再提高  
作者: 杏花    时间: 2015-11-5 08:18

我帮你 喝喝  
作者: dypnr    时间: 2015-11-6 09:43

哈哈,顶你了哦.  
作者: foxok    时间: 2015-11-8 12:27

顶你一下,好贴要顶!  
作者: 张佳    时间: 2015-11-18 15:35

谢谢哦  
作者: yukun    时间: 2015-12-16 08:26

干细胞行业门户 干细胞之家
作者: aakkaa    时间: 2015-12-17 18:22

顶一个先  
作者: laoli1999    时间: 2015-12-18 19:03

观看中  
作者: awen    时间: 2016-1-28 14:43

不错,感谢楼主
作者: 陈晴    时间: 2016-2-26 15:10

今天没事来逛逛,看了一下,感觉相当的不错。  
作者: 昕昕    时间: 2016-3-3 12:02

@,@..是什么意思呀?  
作者: dr_ji    时间: 2016-3-18 14:30

写得好啊  
作者: frogsays    时间: 2016-4-18 13:35

哈哈,顶你了哦.  
作者: 未必温暖    时间: 2016-4-21 08:55

哈哈 瞧你说的~~~  
作者: 苹果天堂    时间: 2016-4-25 12:27

支持~~  
作者: dataeook    时间: 2016-6-24 11:54

看看..  
作者: sshang    时间: 2016-6-27 17:27

希望大家都有好运  
作者: 丸子    时间: 2016-7-13 14:00

佩服佩服啊.  
作者: 碧湖冷月    时间: 2016-7-16 13:17

不错 不错  比我强多了  
作者: DAIMAND    时间: 2016-8-1 14:53

我回不回呢 考虑再三 还是不回了吧 ^_^  
作者: 昕昕    时间: 2016-8-14 15:26

干细胞之家
作者: yukun    时间: 2016-10-23 17:38

我毫不犹豫地把楼主的这个帖子收藏了  
作者: MIYAGI    时间: 2016-11-2 14:53

终于看完了~~~  
作者: youngcell    时间: 2016-11-20 21:11

帮顶  
作者: pengzy    时间: 2016-12-20 20:03

哈哈,看的人少,回一下  
作者: dongmei    时间: 2017-1-10 19:08

希望大家帮我把这个帖发给你身边的人,谢谢!  
作者: biobio    时间: 2017-1-13 08:10

生殖干细胞
作者: ringsing    时间: 2017-1-23 10:43

我是来收集资料滴...  
作者: 与你同行    时间: 2017-2-8 00:41

不知道说些什么  
作者: 草长莺飞    时间: 2017-3-13 09:35

留个脚印```````  
作者: 榴榴莲    时间: 2017-3-18 04:11

ding   支持  
作者: 泡泡鱼    时间: 2017-3-20 00:19

好贴坏贴,一眼就看出去  
作者: popobird    时间: 2017-3-30 10:35

每天都会来干细胞之家看看
作者: 修复者    时间: 2017-4-1 04:53

偶真幸运哦...  
作者: na602    时间: 2017-4-3 21:18

原来是这样  
作者: 初夏洒脱    时间: 2017-4-5 21:00

支持你就顶你  
作者: ines    时间: 2017-4-7 08:01

强人,佩服死了。呵呵,不错啊  
作者: immail    时间: 2017-4-14 21:07

谢谢分享了!  
作者: 风云动    时间: 2017-4-23 00:18

说嘛1~~~想说什么就说什么嘛~~  
作者: mk990    时间: 2017-5-5 09:35

我帮你 喝喝  
作者: 昕昕    时间: 2017-5-14 01:27

世界上那些最容易的事情中,拖延时间最不费力。  
作者: 张佳    时间: 2017-6-10 22:54

楼主good  
作者: sshang    时间: 2017-7-19 04:29

一个子 没看懂  
作者: 杏花    时间: 2017-7-19 05:21

初来乍到,请多多关照。。。嘿嘿,回个贴表明我来过。  
作者: dr_ji    时间: 2017-7-30 07:50

心脏干细胞
作者: 王者之道    时间: 2017-8-10 16:52

顶你一下.  
作者: 三星    时间: 2017-9-9 01:05

我仅代表干细胞之家论坛前来支持,感谢楼主!  
作者: 命运的宠儿    时间: 2017-9-19 18:59

先顶后看  
作者: 泡泡鱼    时间: 2017-9-21 03:42

干细胞行业  
作者: 小丑的哭泣    时间: 2017-9-23 00:04

干细胞我这辈子就是看好你
作者: xm19    时间: 2017-10-17 01:04

顶也~  
作者: 化药所    时间: 2017-10-29 19:01

抢座位来了  
作者: 甘泉    时间: 2017-11-1 08:44

加油站加油  
作者: 泡泡鱼    时间: 2017-11-5 10:35

干细胞治疗糖尿病  
作者: 123456zsz    时间: 2017-11-13 04:50

不错不错.,..我喜欢  
作者: dataeook    时间: 2017-12-4 12:00

支持一下吧  
作者: 生科院    时间: 2017-12-26 06:24

(*^__^*) 嘻嘻……   
作者: 快乐小郎    时间: 2018-1-4 06:50

顶你一下,好贴要顶!  
作者: keanuc    时间: 2018-1-11 03:44

哦...............  
作者: biobio    时间: 2018-1-15 09:01

哈哈,看的人少,回一下  
作者: 老农爱科学    时间: 2018-1-22 04:55

继续查找干细胞研究资料
作者: lalala    时间: 2018-1-30 03:36

做对的事情比把事情做对重要。  
作者: 未必温暖    时间: 2018-1-30 22:42

不错啊! 一个字牛啊!  
作者: dd赤焰    时间: 2018-2-5 07:53

越办越好~~~~~~~~~`  
作者: 杏花    时间: 2018-2-13 19:18

进行溜达一下  
作者: Diary    时间: 2018-3-2 19:46

dddddddddddddd  
作者: MIYAGI    时间: 2018-3-12 22:27

家财万贯还得回很多贴哦  
作者: 王者之道    时间: 2018-3-20 13:35

回个帖子支持一下!
作者: 老农爱科学    时间: 2018-4-1 16:37

设置阅读啊  
作者: 求索迷茫    时间: 2018-4-10 05:11

宁愿选择放弃,不要放弃选择。  
作者: 20130827    时间: 2018-5-1 08:49

角膜缘上皮干细胞
作者: wq90    时间: 2018-5-27 08:27

祝干细胞之家 越办越好~~~~~~~~~`  
作者: 三好学生    时间: 2018-6-3 03:56

我的啦嘿嘿  
作者: haha3245    时间: 2018-6-4 06:39

自己知道了  
作者: 蝶澈    时间: 2018-6-24 19:53

好人一生平安  
作者: 一个平凡人    时间: 2018-7-19 05:08

只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。  
作者: dglove    时间: 2018-8-5 14:08

干细胞疾病模型
作者: leeking    时间: 2018-8-8 00:01

围观来了哦  
作者: 黄山    时间: 2018-8-10 15:31

孜孜不倦, 吾等楷模 …………  
作者: cjms    时间: 2018-8-18 04:14

不错啊! 一个字牛啊!  
作者: abc987    时间: 2018-8-22 07:27

端粒酶研究
作者: 张佳    时间: 2018-8-30 15:43

胚胎干细胞
作者: changfeng    时间: 2018-9-2 09:35

谢谢分享了!  
作者: 初夏洒脱    时间: 2018-9-10 11:35

不早了 各位晚安~~~~  
作者: 甘泉    时间: 2018-9-10 22:26

我喜欢这个贴子  
作者: dr_ji    时间: 2018-9-22 09:35

干细胞行业门户 干细胞之家




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5