干细胞之家 - 中国干细胞行业门户第一站

标题: Dynamin and FtsZ: Missing Links in Mitochondrial and Bacterial Divisio [打印本页]

作者: mx988    时间: 2009-3-5 12:02     标题: Dynamin and FtsZ: Missing Links in Mitochondrial and Bacterial Divisio

a Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
* ]  S5 ~$ v3 B
/ b( p7 F5 p; R$ X2 f/ s: H* z7 J  `Correspondence to: Harold P. Erickson, Department of Cell Biology, Duke University Medical Center, Durham, NC 27710. Tel:(919) 684-6385 Fax:(919) 681-7978 E-mail:h.erickson@cellbio.duke.edu.
+ U, d3 v2 e0 a5 k3 X! ~( n3 Q' Q( k& p5 W' x
FtsZ forms the cytoskeletal framework of the cytokinetic ring in bacteria, and appears to play the major role in constriction of the furrow at septation. Until recently, FtsZ had been found in every eubacterium and archaebacterium, and was thought to be the major and essential component of the division machine (Erickson 1997 ). FtsZ has also been found in chloroplasts (Osteryoung et al. 1998 ), which was expected since these plastids originated from bacterial ancestors. An apparent missing link was that FtsZ was absent from mitochondria, which are also of prokaryotic origin. There is no FtsZ in the completed genomes of Saccharomyces cerevisiae and Caenorhabditis elegans, and none in the extensive EST databases from human and animals. Now the mystery of mitochondrial cell division seems well on its way to resolution: most mitochondria have replaced FtsZ with dynamin for division. An important missing link is the recent discovery by Beech et al. 2000 , of a mitochondrion that still uses FtsZ. But even as the division of mitochondria is being resolved, a new paradox has appeared, as several prokaryotes have now been discovered to have no FtsZ." ~6 d$ S7 A2 F# w4 f
2 |" _* Y1 x3 B* l& r9 |
Chloroplasts Use FtsZ for Division
" T$ ]2 @% |' y5 A# l
! `2 I1 H( e; @5 C% e! BChloroplasts appear to have conserved the bacterial division machine, with an interesting new twist (described below). Two ftsZ genes have been discovered in Arabidopsis, both encoded at genomic loci. One of these, ftsz1, has a signal peptide that transports it into the chloroplast. The other, ftsz2, does not, remaining on the cytoplasmic side of the chloroplast (Osteryoung et al. 1998 ). Antisense experiments showed that both ftsZ genes are essential for chloroplast division in Arabidopsis (Osteryoung et al. 1998 ). A homologue of ftsz2 was discovered in the moss Physcomitrella, and chloroplast division was completely blocked when the gene was knocked out (Strepp et al. 1998 ). There are now several chloroplast ftsZ genes, which all show closest similarity to those of cyanobacteria, from which chloroplasts were derived (Osteryoung et al. 1998 ; Beech et al. 2000 ). Chloroplasts have also retained other bacterial division genes, including ftsI, ftsW, minC, and minD (Turmel et al. 1999 ).3 C% O/ }5 |  c4 L& Y4 ]
2 V+ k) k& k4 d$ T
Most Mitochondria Use Dynamin for Division) ]7 a* e7 `4 s) T+ C

7 y+ D. `; j8 W# S( U; bThe apparent absence of FtsZ in mitochondria raises two questions: where in the evolution of eukaryotes did mitochondria lose their FtsZ, and how do they now divide? The second question has seen great progress in the past year. Two laboratories, working from different directions, have found that S. cerevisiae Dnm1, a dynamin-related protein, is responsible for division of mitochondria (Bleazard et al. 1999 ; Sesaki and Jensen 1999 ). In dnm1 mutant cells, the mitochondria coalesce to form a net of interconnected tubules. The Dnm1 protein has no mitochondrial import sequence, and was localized to the outside surface of the mitochondria, primarily at sites of constriction or at the tips of mitochondria that may have recently divided. A comprehensive study in C. elegans showed similar mitochondrial disruptions for mutations in DRP-1 (Labrousse et al. 1999 ). A gene knockout of dynA in Dictyostelium blocked division of mitochondria, and also had pleiotropic effects on cytokinesis and nuclear and endosomal morphology (Wienke et al. 1999 ). The human dynamin-related protein, Drp1/DLP1, seems to be essential for mitochondrial division, and may affect other membrane processes (Smirnova et al. 1998 ; Pitts et al. 1999 ). There are multiple dynamins in most species. The dynamins identified above may be orthologs, but they have some important differences in phenotype. Some of them appear to operate primarily on mitochondria, while others affect additional membrane systems. In addition, other dynamin-like proteins are known that affect mitochondrial morphology. Regardless of this complexity, the function of dynamin in mitochondrial division appears to be widespread in eukaryotes.
5 z! J: j3 r' |+ r. x' S* ~
$ A) \( N( C, }. ]/ uThe two laboratories working on yeast both made the fascinating discovery that another gene, fzo1 (not a dynamin homologue), works antagonistically to dnm1, by causing the fusion of mitochondria (Bleazard et al. 1999 ; Sesaki and Jensen 1999 ). Thus, in the absence of dnm1, fusion dominates and mitochondria coalesce into a network. In the absence of fzo1, there is no fusion and mitochondria divide into small fragments. Remarkably, a double mutant of both dnm1 and fzo1 has largely normal mitochondrial morphology. These two genes operating together generate a balance of division and fusion, creating a dynamic mitochondrial network (Bleazard et al. 1999 ; Sesaki and Jensen 1999 ; Yaffe 1999 ).
3 M% V) o- v! a0 Q: w6 y
/ G, Z: W/ t( {3 R& {1 f/ JPulling from the Inside, Squeezing from the Outside, v) {0 J4 E5 M  e  B% o* K
# J- h9 f% M5 i5 X9 _4 X# B$ e  ?
In bacteria, the ring of FtsZ on the inner membrane is thought to constrict and pull the membrane inward. In chloroplasts, FtsZ1 seems to play the same role, constricting the chloroplast membrane from within. However, there is a new twist, as FtsZ2 is on the outside of the mitochondrion. In this position it would appear to be squeezing or pinching the division furrow from the outside. Dnm1 appears to function like the FtsZ2, squeezing or pinching from the outside. This is similar to how dynamin works in endocytosis, where it forms rings or helices around membrane protrusions and pinches off vesicles. A remarkable observation in C. elegans was that division of the inner mitochondrial compartment continued when DRP-1 mutants blocked division of the outer membrane (Labrousse et al. 1999 ). This suggests that a dual division mechanism, squeezing from the outside and constricting from the inside, may operate in both mitochondria and chloroplasts.' Q' [7 r& l' V  z8 \/ a; `3 a

1 W+ i, G$ E( M4 |3 ZThe Missing Link: A Mitochondrion that Uses FtsZ
3 R' A$ s* A" L+ f! }
/ a$ o  O# Y' J" o: q# F& xThe bacterial ancestor of mitochondria must have used FtsZ for division, but animal cells and yeast appear to have replaced FtsZ with dynamin. Are their any eukaryotes that still use FtsZ for mitochondrial division? The answer is yes, and Beech and colleagues 2000  have now discovered this missing link. The golden-brown alga Mallomonas splendens has a genomic ftsZ most closely related to ftsZ of -proteobacteria, the ancestors of the mitochondrion. The FtsZ protein is located in patches on the mitochondrial membrane, near the center or at the ends of mitochondria, similar to the location of Dnm1. This FtsZ is translocated into the mitochondria, and therefore appears to operate by constriction from within. It was even able to modulate the structure of yeast mitochondria when expressed transgenically in S. cerevisiae, a remarkable observation since yeast doesn't use or express FtsZ.
% J- X* }7 x+ x9 q* c
( R' u" l! n/ Q! fThis discovery should spur a search for FtsZ in other mitochondria. A spectrum of eukaryotes may be found, some using FtsZ, some using dynamin, and perhaps some using both, for mitochondrial division. Beyond the question of mitochondrial division, the spectrum of FtsZ- and dynamin-based mechanisms should provide a new tool for looking at the evolution of eukaryotes (Martin 2000 ).
9 p2 {; i2 C8 j+ d! \* F6 t6 j2 ]* H0 }" V  t, q
The mechanism by which FtsZ and dynamin operate in division is not known, but an intriguing observation is that both form rings or spirals (Fig 1). Dynamin spirals form at the neck of endocytic vesicles, and the vesicles may be pinched off by constriction (Sweitzer and Hinshaw 1998 ) or by a change in the helical pitch (Stowell et al. 1999 ). An alternative proposal is that dynamin may be a signaling molecule, recruiting another, force-generating molecule to the complex (Sever et al. 1999 ). FtsZ may power constriction by switching from a mostly straight protofilament to a curved conformation (Lu et al. 2000 ).
# q( K# E  }* w. O+ w9 A; `2 M! e, l; s& u: A; @
Figure 1. Rings and spirals assembled by dynamin on the left (Stowell et al. 1999 ), and FtsZ on the right (Lu et al. 2000 ; Erickson et al. 1996 ). The dynamin spirals are ~50-nm diameter, and FtsZ is ~23-nm diam.
+ u' |/ u* M( E6 k! O& ~2 s( w0 x4 P  L" M
The New Paradox: Prokaryotes with No FtsZ
, J0 X& U# M: T- b; Q3 s4 L
. t4 x0 ]! W& z+ Y2 c0 yJust as the missing link of mitochondrial FtsZ is falling into place, a new paradox has appeared. Until recently it seemed a simple story that all eubacteria and archaea used FtsZ for cell division. Last year the genomic sequences of two Chlamydia species showed a surprising absence of FtsZ (Stephens et al. 1998 ; Kalman et al. 1999 ). However, these bacteria are obligate parasites that live in membrane-bound inclusions in their host cells. One possibility is that they may use the host cell's machinery for vesicle trafficking for their own division. Consistent with this possibility, Boleti et al. 1999  found that a dominant negative dynamin transfection inhibited the proliferation of Chlamydia. But an intriguing study by Brown and Rockey 2000  demonstrated sharp localization of an antigen, perhaps a peptidoglycan, at the cleavage furrows of Chlamydia. This implies that the bacteria play some active role in the division process, and may divide independently of the host.1 L- H- e. B5 ~

/ X' V  t' e9 e' FEven more puzzling is the recent discovery of two free-living prokaryotes with no FtsZ. Aeropyrum pernix is an archeon that lives at 90~C in ocean thermal vents. The cells from laboratory culture are irregular cocci with some sharp edges, ~1 μm in diameter (Sako et al. 1996 ). Clearly, they must have some efficient system for division to maintain this size and shape. Yet the genomic sequence shows no ftsZ, nor any other known cell division protein (Kawarabayasi et al. 1999 ). Just as surprising, the genome of Ureaplasma urealyticum has no ftsZ (Glass and Lefkowitz, http://genome.microbio.uab.edu). This is a mycoplasma that lives primarily in its host, but can be cultured in defined medium, so it must have a mechanism for cell division. These two examples, and perhaps Chlamydia, suggest the possibility of a completely novel mechanism for bacterial cell division, still to be discovered.Accepted: 18 February 2000
: y' ~3 R1 y* {/ u+ Q2 F# W9 N% g% k" a4 x, h
References
# S& ?2 T$ F. a
5 W2 o9 ]  Z* `' f( D' |2 G& W. ~. DBeech, P.L., Nheu, T., Schultz, T., Herbert, S., Lithgow, T., Gilson, P.R., McFadden, G.I. 2000. Mitochondrial FtsZ in a chromophyte alga. Science. 287:1276-1279.
5 E; C- |' J* e; Y; g  ^* c! V3 Y
Bleazard, W., McCaffery, J.M., King, E.J., Bale, S., Mozdy, A., Tieu, Q., Nunnari, J., Shaw, J.M. 1999. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1:298-304.% ~& r. v2 k9 |: p/ ]3 ^
# g; V7 T1 E$ d# f7 D
Boleti, H., Benmerah, A., Ojcius, D.M., Cerf-Bensussan, N., Dautry-Varsat, A. 1999. Chlamydia infection of epithelial cells expressing dynamin and Eps15 mutants: clathrin-independent entry into cells and dynamin-dependent productive growth. J. Cell Sci. 112:1487-1496.& O7 {  K0 [5 A5 \+ G5 d6 Q

! A$ t- R# Z$ P( O, jBrown, W.J., Rockey, D.D. 2000. Identification of an antigen localized to an apparent septum within dividing chlamydiae. Infect. Immun. 68:708-715.* s7 u5 }- M& d& H+ }5 j* G6 @, c
$ a/ [( _# D* [5 N3 U- W3 l! q
Erickson, H.P. 1997. FtsZ, a tubulin homolog, in prokaryote cell division. Trends Cell Biol. 7:362-367.
7 H& O7 i1 B1 G1 n# y* s# O5 k$ R% U( {3 ?- H
Erickson, H.P., Taylor, D.W., Taylor, K.A., Bramhill, D. 1996. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl. Acad. Sci. USA. 93:519-523.7 b5 ^7 u7 B0 q" M  V8 q! y

. Y* U4 P& F  }/ e& v- S  _Glass, J., and E. Lefkowitz. Ureaplasma urealyticum: The Complete Genomic Sequence. http://genome.microbio.uab.edu/uu/uugen.htm7 O# H% S6 Z1 u2 _+ m% u
0 v  P" F2 C  b' \
Kalman, S., Mitchell, W., Marathe, R., Lammel, C., Fan, J., Hyman, R.W., Olinger, L., Grimwood, J., Davis, R.W., Stephens, R.S. 1999. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat. Genet. 21:385-389.
- @% V4 A7 \& R3 q+ T% U' {
5 l, R( i8 u7 u9 b( uKawarabayasi, Y., Hino, Y., Horikawa, H., Yamazaki, S., Haikawa, Y., Jin-no, K., Takahashi, M., Sekine, M., Baba, S., Ankai, A. et al. 1999. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6:83-101. 145–52.8 T, @" E, D1 Y8 h& {' H5 ^
% u& A- h% F: l) ?! P1 b3 {9 x. M# I5 B
Labrousse, A.M., Zappaterra, M.D., Rube, D.A., van der Bliek, A.M. 1999. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4:815-826., B( C( D, K! l' h4 n( G

3 }8 O% Q, q/ g: {, l  bLu, C.L., Reedy, M., Erickson, H.P. 2000. Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J. Bacteriol. 182:164-170.
0 J1 E) r# J; u  G$ T; b5 Y5 W8 z" R* Q' {) W
Martin, W. 2000. A powerhouse divided. Science. 287:1167-1168.
# ?  C/ k, O4 t5 U3 R# M1 u9 P+ A: |
Osteryoung, K.W., Stokes, K.D., Rutherford, S.M., Percival, A.L., Lee, W.Y. 1998. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell. 10:1991-2004.5 H( s, A& `. A7 B! O. `( c7 O

* I0 g4 y: ~/ @+ p! p0 @: SPitts, K.R., Yoon, Y., Krueger, E.W., McNiven, M.A. 1999. The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Molec. Biol. Cell 10:4403-4417.
! V- q; t& u" F( k* _7 V( L6 \) \# D( e) t7 W
Sako, Y., Nomura, N., Uchida, A., Ishida, Y., Morii, H., Koga, Y., Hoaki, T., Maruyama, T. 1996. Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 degrees C. Int. J. Syst. Bacteriol. 46:1070-1077.
- b) }9 Y; K6 J. n5 s" v) n, T& s! c) N% W% ^& Z" d; j
Sesaki, H., Jensen, R.E. 1999. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell Biol. 147:699-706.4 h/ c! @2 _: Z$ ~7 C/ {! a

6 t- u: p: o' {8 rSever, S., Muhlberg, A.B., Schmid, S.L. 1999. Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398:481-486.
% r0 S( N0 y9 ?" m- C" Z) n7 V9 j- u( N
Smirnova, E., Shurland, D.L., Ryazantsev, S.N., van der Bliek, A.M. 1998. A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143:351-358.  ?5 u. i* U/ I+ F: l
$ E) Q0 {, c5 |% Y* K" T- P2 i
Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R.L., Zhao, Q. et al. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:754-759.4 T/ j; m" F  H

! E. g7 P& Q  t( e3 S+ i2 RStowell, M.H., Marks, B., Wigge, P., McMahon, H.T. 1999. Nucleotide-dependent conformational changes in dynamin: evidence for a mechanochemical molecular spring. Nat. Cell Biol. 1:27-32.
, c3 o' j( n& G3 P7 @8 {$ l' L6 d5 b
Strepp, R., Scholz, S., Kruse, S., Speth, V., Reski, R. 1998. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc. Natl. Acad. Sci. USA. 95:4368-4373.0 ]$ w' e6 O0 z6 u9 z) w
% \% z6 b, S+ z2 n) k$ p( }
Sweitzer, S.M., Hinshaw, J.E. 1998. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell. 93:1021-1029.
8 Q, y+ [, [0 p+ x! v* e, x0 q
  U, B$ b' x; |Turmel, M., Otis, C., Lemieux, C. 1999. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc. Natl. Acad. Sci. USA. 96:10248-10253.
/ `) H, q7 m7 o! `3 z) `, p$ l; K, x8 j) |5 |& i
Wienke, D.C., Knetsch, M.L., Neuhaus, E.M., Reedy, M.C., Manstein, D.J. 1999. Disruption of a dynamin homologue affects endocytosis, organelle morphology, and cytokinesis in Dictyostelium discoideum. Mol. Biol. Cell. 10:225-243.
+ l. T3 M$ q2 T* X" \
/ z9 F. D6 T7 d- ?7 A1 b& i8 PYaffe, M.P. 1999. Dynamic mitochondria. Nat. Cell Biol. 1:149-150.(Harold P. Ericksona)
作者: 橙味绿茶    时间: 2015-5-21 19:53

支持一下  
作者: tempo    时间: 2015-6-6 16:00

我的啦嘿嘿  
作者: foxok    时间: 2015-6-7 18:53

@,@..是什么意思呀?  
作者: s06806    时间: 2015-6-7 21:49

顶你一下,好贴要顶!  
作者: 命运的宠儿    时间: 2015-6-16 15:35

自己知道了  
作者: dypnr    时间: 2015-8-8 13:33

干细胞与基因技术
作者: 依旧随遇而安    时间: 2015-9-1 21:53

有空一起交流一下  
作者: 123456zsz    时间: 2015-9-8 07:33

原来这样也可以  
作者: xuguofeng    时间: 2015-10-15 18:25

今天没事来逛逛,看了一下,感觉相当的不错。  
作者: 昕昕    时间: 2015-10-16 14:27

…没我说话的余地…飘走  
作者: 依旧随遇而安    时间: 2015-11-3 11:27

谢谢哦  
作者: 龙水生    时间: 2015-12-24 15:01

支持~~顶顶~~~  
作者: laoli1999    时间: 2016-1-11 10:36

谢谢分享了!  
作者: 再来一天    时间: 2016-2-26 16:27

顶顶更健康,越顶吃的越香。  
作者: 365wy    时间: 2016-3-6 12:54

厉害!强~~~~没的说了!  
作者: frogsays    时间: 2016-3-15 22:51

嘿...反了反了,,,,  
作者: 加菲猫    时间: 2016-4-13 10:17

勤奋真能造就财富吗?  
作者: tian2006    时间: 2016-5-23 21:18

真是佩服得六体投地啊  
作者: Whole    时间: 2016-5-23 22:54

一个有信念者所开发出的力量,大于99个只有兴趣者。  
作者: 橙味绿茶    时间: 2016-7-10 10:35

呵呵,支持一下哈  
作者: 命运的宠儿    时间: 2016-7-12 21:58

每天都会来干细胞之家看看
作者: qibaobao    时间: 2016-8-10 05:15

真是天底下好事多多  
作者: bluesuns    时间: 2016-8-16 22:18

太棒了!  
作者: s06806    时间: 2016-8-17 22:20

先看看怎么样!  
作者: dogcat    时间: 2016-8-27 21:52

一个子 没看懂  
作者: doors    时间: 2016-9-3 18:43

支持你加分  
作者: 3344555    时间: 2016-9-28 16:41

正好你开咯这样的帖  
作者: 科研人    时间: 2016-10-3 14:24

我等你哟!  
作者: feixue66    时间: 2016-11-17 16:24

顶下再看  
作者: 某某人    时间: 2016-11-25 10:43

我等你哟!  
作者: dada    时间: 2016-12-3 18:10

帮顶  
作者: 陈晴    时间: 2016-12-4 05:36

干细胞分化技术
作者: dogcat    时间: 2016-12-11 23:54

不管你信不信,反正我信  
作者: beautylive    时间: 2016-12-27 14:17

琴棋书画不会,洗衣做饭嫌累。  
作者: 桦子    时间: 2017-1-2 11:43

鉴定完毕.!  
作者: hmhy    时间: 2017-1-12 23:06

越办越好~~~~~~~~~`  
作者: 983abc    时间: 2017-2-14 22:02

又看了一次  
作者: hmhy    时间: 2017-2-19 06:37

写得好啊  
作者: leeking    时间: 2017-2-22 00:08

呵呵 那就好好玩吧~~~~  
作者: netlover    时间: 2017-2-23 03:38

干细胞治疗  
作者: 小敏    时间: 2017-2-26 20:09

几头雾水…  
作者: dreamenjoyer    时间: 2017-3-6 22:11

加油啊!!!!顶哦!!!!!  
作者: aliyun    时间: 2017-3-12 03:26

脂肪干细胞
作者: pspvp    时间: 2017-3-20 23:27

爷爷都是从孙子走过来的。  
作者: 与你同行    时间: 2017-3-22 05:34

青春就像卫生纸。看着挺多的,用着用着就不够了。  
作者: pcr    时间: 2017-4-1 12:42

好帖,有才  
作者: ikiss    时间: 2017-4-9 15:35

不错,看看。  
作者: 安安    时间: 2017-4-10 02:27

似曾相识的感觉  
作者: 坛中酒    时间: 2017-4-15 22:54

说嘛1~~~想说什么就说什么嘛~~  
作者: 求索迷茫    时间: 2017-4-30 20:35

我毫不犹豫地把楼主的这个帖子收藏了  
作者: 加菲猫    时间: 2017-6-15 08:43

回复一下  
作者: biopxl    时间: 2017-6-18 13:18

帮顶  
作者: 昕昕    时间: 2017-7-31 12:18

呵呵 大家好奇嘛 来观看下~~~~  
作者: DAIMAND    时间: 2017-8-8 22:35

楼主,支持!  
作者: 修复者    时间: 2017-8-14 22:43

楼主good  
作者: kaikai    时间: 2017-8-18 06:40

肌源性干细胞
作者: 修复者    时间: 2017-9-15 23:10

干细胞行业门户 干细胞之家
作者: 求索迷茫    时间: 2017-10-3 07:49

就为赚分嘛  
作者: aliyun    时间: 2017-10-9 11:53

干细胞之家是国内最好的干细胞网站了
作者: chinagalaxy    时间: 2017-10-16 00:06

角膜缘上皮干细胞
作者: 一个平凡人    时间: 2017-10-23 08:09

初来乍到,请多多关照。。。  
作者: 一个平凡人    时间: 2017-10-26 11:18

呵呵,等着就等着....  
作者: 与你同行    时间: 2017-10-30 08:27

谁都不容易啊 ~~  
作者: 老农爱科学    时间: 2017-10-30 09:10

世界上那些最容易的事情中,拖延时间最不费力。  
作者: 分子工程师    时间: 2017-11-24 10:17

谢谢干细胞之家提供资料
作者: 若天涯    时间: 2017-12-12 07:17

楼主也是博士后吗  
作者: 生科院    时间: 2017-12-12 10:27

厉害!强~~~~没的说了!  
作者: foxok    时间: 2018-1-19 17:33

@,@..是什么意思呀?  
作者: 一个平凡人    时间: 2018-1-31 09:10

好贴子好多啊  
作者: dmof    时间: 2018-2-4 09:00

不错不错,我喜欢看  
作者: 咖啡功夫猫    时间: 2018-2-8 07:10

干细胞之家
作者: yunshu    时间: 2018-2-9 22:07

我的啦嘿嘿  
作者: haha3245    时间: 2018-2-13 03:22

ding   支持  
作者: xm19    时间: 2018-3-17 06:56

活着,以死的姿态……  
作者: 三好学生    时间: 2018-3-19 13:53

不错啊! 一个字牛啊!  
作者: 983abc    时间: 2018-3-22 09:18

看完了这么强的文章,我想说点什么,但是又不知道说什么好,想来想去只想  
作者: biopxl    时间: 2018-4-5 07:22

干细胞与基因技术
作者: 加菲猫    时间: 2018-4-14 16:53

真是有你的!  
作者: 快乐小郎    时间: 2018-4-23 11:18

都是那么过来的  
作者: 三星    时间: 2018-5-2 16:15

我又回复了  
作者: na602    时间: 2018-5-13 05:47

支持~~顶顶~~~  
作者: nauticus    时间: 2018-5-31 00:29

我帮你 喝喝  
作者: dataeook    时间: 2018-6-6 09:44

病毒转染干细胞
作者: 坛中酒    时间: 2018-6-23 20:32

肌源性干细胞
作者: 初夏洒脱    时间: 2018-7-14 07:12

说的不错  
作者: abc987    时间: 2018-7-14 15:51

偶啥时才能熬出头啊.  
作者: changfeng    时间: 2018-7-20 15:27

文笔流畅,修辞得体,深得魏晋诸朝遗风,更将唐风宋骨发扬得入木三分,能在有生之年看见楼主的这个帖子。实在是我三生之幸啊。  
作者: 未必温暖    时间: 2018-7-26 06:39

我喜欢这个贴子  
作者: IPS干细胞    时间: 2018-8-13 08:10

干细胞研究非常有前途
作者: ringsing    时间: 2018-8-27 20:36

不错的东西  持续关注  
作者: 365wy    时间: 2018-8-30 19:04

今天没事来逛逛  
作者: 蝶澈    时间: 2018-9-3 17:03

干细胞研究人员的天堂
作者: 草长莺飞    时间: 2018-10-5 11:35

一楼的位置好啊..  
作者: pcr    时间: 2018-10-9 03:12

一定要回贴,因为我是文明人哦  
作者: 命运的宠儿    时间: 2018-10-23 05:56

勤奋真能造就财富吗?  
作者: 旅美学者    时间: 2018-11-21 11:01

长时间没来看了 ~~  
作者: 苹果天堂    时间: 2018-11-29 09:43

我毫不犹豫地把楼主的这个帖子收藏了  
作者: DAIMAND    时间: 2018-12-3 09:35

进行溜达一下  
作者: 榴榴莲    时间: 2018-12-14 12:10

真是佩服得六体投地啊  




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5