干细胞之家 - 中国干细胞行业门户第一站

标题: Skeletons in the Closet: How Do Chloroplasts Stay in Shape [打印本页]

作者: 杨柳    时间: 2009-3-5 22:55     标题: Skeletons in the Closet: How Do Chloroplasts Stay in Shape

a Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville 3010, Australia
! U0 Q- D/ R( c5 D  O6 E
3 y  N. O) G* }Correspondence to: Geoffrey I. McFadden, Plant Cell Biology Research Centre, School of Botany, University of Melbourne, Parkville 3010, Australia.3 Y- p; r& s( T: u7 c1 c

* m( J- J9 U& I5 C2 [3 P1 P1 dBreakthroughs in microscopy technology provide new insights into cell biology. Early microscopes allowed Robert Hooke to see cells. Improved staining techniques enabled Camillo Golgi to see the apparatus that bears his name, and Robert Feulgen to visualize DNA in chromosomes. Similarly, EM allowed Keith Porter to visualize the endomembrane system. More recently, transgenic technology using fluorescent reporter proteins has enabled us to visualize cryptic or ephemeral processes and structures in living cells. The latest revelation with this technology is in chloroplast biology. On page 945 of this issue, Kiessling et al. show that fusion of green fluorescent protein (GFP)1 with the FtsZ (filament temperature sensitive Z) protein targeted to chloroplasts of the moss Physcomitrella reveals a network of fibers within the chloroplast (Fig 1). They dub this network the plastoskeleton, since it is reminiscent of cytoskeletons. Plant biologists have long wondered how chloroplasts (and their nongreen relatives, the plastids) maintain their specific shapes, which range from the more mundane ovoid versions of plants to the spectacular starbursts and spirals of the algae. Kiessling et al. 2000  now suggests that FtsZ could be the answer.2 ~4 j8 k- f' u8 p
9 K% j) q' U! M' f
Figure 1. Confocal image of Physcomitrella patens protoplast expressing PpFtsZ1/GFP fusion protein. GFP fluorescence forms a reticulated fibrillar network (a plastoskeleton) within the plastid (left). Red autofluorescence defines the individual chloroplasts (right). Micrograph courtesy of Justine Kiessling.! b8 |+ K/ G, K( o/ r7 W7 q% e2 d1 l; I
5 U: s8 a) |; j5 F5 U# J; ~: d7 [
FtsZ is a key protein in bacterial cell division. Escherichia coli ftsZ mutants fail to divide at the restrictive temperature and form filaments with multiple nucleoids. In E. coli, FtsZ forms a ring lining the isthmus of the dividing cell (Margolin 1998 ). Exactly how the cell membrane and wall are constricted during fission is not known, but FtsZ is argued to be the motor for this process (Lu et al. 2000 ). Ubiquity of FtsZ in the prokaryotic world attests to its core role.- V! G# J  d  W( g
, h( H0 U) {/ V5 D) E
Chloroplasts are derived from endosymbiotic cyanobacteria and divide by binary fission similar to bacteria (McFadden 1999 ). Recently, chloroplast-targeted, nucleus-encoded versions of FtsZ have been identified in plants and algae (Beech and Gilson 2000 ). Knockouts of chloroplast ftsZ in the moss Physcomitrella prevent chloroplasts from dividing, producing one giant chloroplast per cell. This phenotype is analogous to the ftsZ mutant phenotype in E. coli (Strepp et al. 1998 ). Similarly, antisense gene silencing of chloroplast ftsZ in higher plants (knockouts are not feasible in higher plants) also perturbs chloroplast division (Osteryoung et al. 1998 ). Proteins known to interact with FtsZ in bacteria also have been demonstrated to have roles in chloroplast division, thereby suggesting that plastid division retains major hallmarks of its bacterial ancestry, albeit with modifications imposed by existing within a host cell (Colletti et al. 2000 ). Previously, no one had visualized FtsZ in chloroplasts, so how do the FtsZ/GFP fusion structures observed by Kiessling et al. 2000  fit our notions of FtsZ structures in bacteria?
6 B1 E1 c- S0 d: K7 H3 v
- j& m/ o' e4 Y5 [; EImmunolocalization and FtsZ/GFP fusion analyses reveal a ring (the so-called Z ring) at the site of constriction in dividing bacteria (Margolin 1998 ). However, it has not yet been possible to visualize the Z ring by EM. Nevertheless, some insight into the ultrastructure of the ring is available. Purified bacterial FtsZ can be induced to form several structures in vitro. Depending on conditions, these structures take the form of filaments, sheets, mini-rings, and, perhaps most importantly for chloroplasts, tubules (Trusca et al. 1998 ; Lu et al. 2000 ). FtsZ tubules, which may be higher order versions of the sheets and rings (Lu et al. 2000 ), bear superficial resemblance to cytosolic microtubules of eukaryotes. Microtubules are composed of tubulin protein, which is probably an evolutionary derivative of FtsZ; both tubulin and FtsZ are GTPases and have similar structures (Lowe and Amos 1998 ; Nogales et al. 1998 ). Both FtsZ tubules and eukaryotic microtubules are hollow and are composed of protofilaments arranged in helices. However, in eukaryotic microtubules there are 13 longitudinal protofilaments composed of alternating  and ? subunits, whereas FtsZ tubes are helical. A pair of helical FtsZ protofilaments can form an open helical tube, or two pairs can form a solid tube (Trusca et al. 1998 ; Lu et al. 2000 ).
  p7 y' R" ~" K# H% @0 {
( Y& h$ H; ^! u3 @; q! a5 UTubules are not routinely visualized in bacteria (Bermudes et al. 1994 ), which made it difficult to assess the physiological importance of the in vitro assembled FtsZ tubules (Lu et al. 2000 ). However, a skeleton in the chloroplast cell biology closet might be the answer to this conundrum. Tubules resembling cytoplasmic (eukaryotic) microtubules are common in chloroplasts of plants and green algae, where they are proposed to function in division and maintenance of shape (Lawrence and Possingham 1984 ). Are these chloroplast tubules composed of chloroplast FtsZ?7 D9 _/ ]2 ^! g' T

$ H% c5 {+ c  @8 Q2 v) O+ hThe cytoskeleton-like structures observed in Physcomitrella chloroplasts with FtsZ/GFP fusions (Fig 1) correlate well with the tubules observed in other chloroplasts, which are described as forming anastomosing or reticulated networks ramifying throughout the entire chloroplast (Hoffman 1967 ; Pickett-Heaps 1968 ; Rivera and Arnott 1982 ; Lawrence and Possingham 1984 ). These tubules are relatively long (up to 2.5 μm) and often associate into orderly bundles incorporating between 2 and 30 tubules (Hoffman 1967 ). The different sized bundles of tubules could explain the bramble-like fluorescence images observed in Physcomitrella (Fig 1). But it is the structure of the chloroplast tubules (Fig 2) that provides the most compelling evidence for them being composed of FtsZ. Hoffman (1976) examined chloroplast tubules of the green alga Oedogonium and proposed a detailed model for their substructure. Hoffman's model describes a two helix, hollow tubule with an outer diameter of 25–27 nm and a wall thickness of 5.5 nm (Hoffman 1967 ). The two helical gyres ascend at a pitch of between 17~ and 27~ (Hoffman 1967 ). This model for chloroplast tubules bears an extraordinary resemblance to the models for in vitro polymerized bacterial FtsZ tubules (Trusca et al. 1998 ; Lu et al. 2000 ). FtsZ tubules have an outer diameter of 23 nm, a wall thickness of 5.4 nm, and comprise a twin helix with a pitch of either 18~ or 24~, depending on whether the tubes are four or five start helices (Lu et al. 2000 ). The prominent helical element of the plastid tubules (Fig 2) would be more closely matched by the open, two-protofilament FtsZ helix than the four-protofilament solid tube.
+ c: |# x5 e1 k7 e( c
; u" L5 A- ~1 ^6 ^& f8 [$ K7 ?Figure 2. (a) Transmission electron micrograph of tubules from chloroplast of Volvox sp. showing longitudinal section through three tubules with spiral substructure. Micrograph courtesy of J. Pickett-Heaps. (b) Model for tubules redrawn from Hoffman 1967 . The architecture and dimensions of the model are remarkably similar (see text) to models for in vitro polymerized tubules of bacterial FtsZ (Trusca et al. 1998 ; Lu et al. 2000 ).) {. C. ?! d$ r; L3 [$ C  m

& a) A. W+ a9 i4 @- ?To link the FtsZ/GFP structures observed in moss chloroplasts to the tubule bundles and networks in plant and algal chloroplasts, and then further to the in vitro assembled bacterial FtsZ tubules, is drawing a very long bow, but the models are compellingly similar. Intriguingly, chloroplast tubules were described long before the discovery of FtsZ. At this time, eukaryotic cytosolic microtubules were only beginning to be characterized, and Hoffman 1967  and Pickett-Heaps 1968  related the chloroplast tubules to cytoplasmic microtubules, although at the same time they recognized key differences in the substructure of the two types of tubules. Chloroplast tubules have not yet been observed in Physcomitrella, so there is no validation of the extraordinary structures observed in the FtsZ/GFP fusion transfected moss (Fig 1). It remains possible that they are artefacts similar to those observed in mammalian cells expressing bacterial FtsZ (Yu et al. 1999 ). The key test will be to demonstrate that the structures observed by Kiessling et al. 2000  are comprised of tubules similar to those observed in other chloroplast, and that these are indeed composed of FtsZ.
1 w! `7 P& @3 ^* l& Y  H+ Y: L" X% k+ q# G. @8 p% B
What of chloroplast division and the Z ring? Kiessling et al. 2000  also observed possible plastid division rings at the constriction between two nascent daughter chloroplasts, and these could be plastid division rings or chloroplast Z rings. Interestingly, plants have multiple chloroplast FtsZ genes, so the protein may have multiple functions in chloroplasts and plastids, perhaps being responsible not only for division, but also for maintenance of plastid shape, just as tubulin has roles in mitosis and cell shape in the eukaryotic cytoplasm. Kiessling et al. 2000  propose that the plastoskeleton evolved to compensate for the loss of the peptidoglycan wall during integration of the cyanobacterial endosymbiont. This hypothesis predicts that plastids of the alga Cyanophora, which retain a peptidoglycan wall, will lack a plastoskeleton. It will also be interesting to learn whether FtsZ tubules have skeletal roles in wall-less bacteria, or even mitochondria. FtsZ was recently implicated as having a role in mitochondrial division of certain algae (Beech and Gilson 2000 ; Beech et al. 2000 ), but dynamins appear to have taken over the division function in animal and yeast mitochondria (Erickson 2000 ). There is no evidence of cytoskeletal structures within mitochondria as yet, so how is their shape maintained?
# k* a' K7 s8 A! x2 R8 S: b7 N3 u7 Q) [# y
References* Q& ]3 q0 t: z" F+ }. l
( M- b6 Q3 c3 m- I: L; V
Beech, P.L., and Gilson, P.R. 2000. FtsZ and organelle division in Protists. Protist 151:11-16.
  z2 S8 Y3 X/ \; c, r" A
4 F3 A* q6 c" q1 t) |& fBeech, P.L., Nheu, T., Schultz, T., Herbert, S., Lithgow, T., Gilson, P.R., and McFadden, G.I. 2000. Mitochondrial FtsZ in a chromophyte alga. Science 287:1276-1279., c# n  {% ~5 T; X- M  \
- Z/ @$ T* @6 k0 K+ A' B
Bermudes, D., Hinkle, G., and Margulis, L. 1994. Do prokaryotes contain microtubules. Microbiological Rev 58:387-400.
% ]7 z1 X# B9 A; w% o/ X6 F+ X& T. V7 g& a# L" Q9 }" B: O
Colletti, K.S., Tattersall, E.A., Pyke, K.A., Froelich, J.E., Stokes, K.D., and Osteryoung, K.W. 2000. A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloroplast division apparatus. Curr. Biol 10:507-516.
% n9 M/ H/ V% x" A/ e0 c8 F+ @( d& |/ Z
Erickson, H.P. 2000. Dynamin and FtsZ: missing links in mitochondrial and bacterial division. J. Cell Biol. 148:1103-1105.
1 z' Z  U3 V. Q) k7 M7 ~9 l
( ~6 u7 Z8 |2 j6 R& d" }( \" ?! UHoffman, L. 1967. Observations on the fine structure of Oedogonium. III. Microtubular elements in the chloroplasts of Oe. cardiacum. J. Phycol. 3:212-221.
0 `- V8 s' f' e4 ^9 q2 \4 J6 S1 Q7 }5 n' F
Kiessling, J., Kruse, S., Rensing, S.A., Harter, K., Decker, E.L., and Reski, R. 2000. Visualization of a cytoskeleton-like FtsZ network in chloroplasts. J. Cell Biol. 151:945-950.
( l; W/ k! S' A$ K" G+ L5 S7 N( D- f: Y
Lawrence, M., and Possingham, J. 1984. Observations of microtubule-like structures within spinach plastids. Biol. Cell. 52:77-82.
* ]$ A6 j( F5 l+ C4 ^
/ j2 \5 d3 F: n* k9 VLowe, J., and Amos, L.A. 1998. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203-206.2 g8 M/ {7 j/ q0 ?9 Z
" h) I/ Q, I9 b, `& Y7 s
Lu, C.L., Reedy, M., and Erickson, H.P. 2000. Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J. Bacteriol 182:164-170.  o' V8 [5 t1 [  P- [$ Y& h
- i: P: z" h5 O7 h: Z
Margolin, W. 1998. A green light for the bacterial cytoskeleton. Trends Microbiol. 6:233-238.
- f1 H5 L. m! E+ D2 k' H
# k9 E$ I% j% F( H5 eMcFadden, G.I. 1999. Endosymbiosis and evolution of the plant cell. Curr. Opin. Plant Biol. 2:513-519.  I5 ^+ n, E6 m- m+ [+ ]' q0 T2 S
0 K% S4 w/ K- E. _* h0 x* @
Nogales, E., Downing, K.H., Amos, L.A., and Lowe, J. 1998. Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Biol. 5:451-458.
4 a1 a  o# v8 Z3 |2 C3 y1 x+ ~# R
9 v7 a- E3 W$ |! J8 ^* T" H% o( M! }Osteryoung, K.W., Stokes, K.D., Rutherford, S.M., Percival, A.L., and Lee, W.Y. 1998. Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterial ftsZ. Plant Cell 10:1991-2004.
; G$ }" f& n/ k: |# S
% T% v- o3 f5 }+ N4 a, {Pickett-Heaps, J. 1968. Microtubule-like structures in the growing plastids or chloroplasts of two algae. Planta 81:193-200.
: v* T, u- o5 o  Z7 d  n( O6 |: f7 E9 @$ Z" l
Rivera, E., and Arnott, H. 1982. Tubular structures in the plastids of Echimastus inertextus Brit. & Rose (Cactaceae). New Phytol. 90:551-561.! z' t5 @1 y# j/ {1 j$ u% s

/ X) L5 F8 f9 a2 aStrepp, R., Scholz, S., Kruse, S., Speth, V., and Reski, R. 1998. Plant nuclear gene knockout reveals a role in plastid division for the homolog of the bacterial cell division protein FtsZ, an ancestral tubulin. Proc. Natl. Acad. Sci. USA 95:4368-4373.
% @% ]' ~% l+ z; |8 I- I% q
: m8 H( c# t6 k6 s5 yTrusca, D., Scott, S., Thompson, C., and Bramhill, D. 1998. Bacterial SOS checkpoint protein SulA inhibits polymerization of purified ftsZ cell division protein. J. Bacteriol 180:3946-3953.
  Y+ ]0 I% U/ P1 `) i# [; ~9 b! ~2 r9 f2 a1 X) |/ e* S# h
Yu, X.C., Margolin, W., Gonzalez-Garay, M.L., and Cabral, F. 1999. Vinblastine induces an interaction between FtsZ and tubulin in mammalian cells. J. Cell Sci 112:2301-2311.(Geoffrey I. McFaddena)
作者: 舒思    时间: 2015-5-23 09:44

病毒转染干细胞
作者: tempo    时间: 2015-6-1 15:17

老大,我好崇拜你哟  
作者: tempo    时间: 2015-6-7 20:33

转基因动物
作者: 命运的宠儿    时间: 2015-6-10 15:00

我来了~~~~~~~~~ 闪人~~~~~~~~~~~~~~~~  
作者: tempo    时间: 2015-7-2 13:10

厉害!强~~~~没的说了!  
作者: haha3245    时间: 2015-7-15 17:35

胚胎干细胞
作者: 榴榴莲    时间: 2015-8-7 17:21

希望大家都有好运  
作者: xuguofeng    时间: 2015-8-16 22:48

看完了这么强的文章,我想说点什么,但是又不知道说什么好,想来想去只想  
作者: foxok    时间: 2015-8-18 11:59

不错的东西  持续关注  
作者: s06806    时间: 2015-8-24 13:54

谢谢分享了!   
作者: 科研人    时间: 2015-8-27 13:43

HOHO~~~~~~  
作者: 大小年    时间: 2015-9-15 13:43

正好你开咯这样的帖  
作者: 舒思    时间: 2015-11-8 15:35

干细胞库  
作者: marysyq    时间: 2015-12-7 13:33

琴棋书画不会,洗衣做饭嫌累。  
作者: aakkaa    时间: 2015-12-12 14:20

内皮祖细胞
作者: bluesuns    时间: 2015-12-25 17:10

世界上那些最容易的事情中,拖延时间最不费力。  
作者: beautylive    时间: 2016-1-8 22:27

真是有你的!  
作者: 石头111    时间: 2016-1-13 21:18

一个人最大的破产是绝望,最大的资产是希望。  
作者: nauticus    时间: 2016-1-31 20:18

你还想说什么啊....  
作者: dogcat    时间: 2016-2-20 20:59

干细胞研究非常有前途
作者: dr_ji    时间: 2016-2-22 18:42

先顶后看  
作者: 考拉    时间: 2016-3-17 19:00

呵呵,找个机会...  
作者: 蚂蚁    时间: 2016-4-8 12:01

是楼主原创吗  
作者: hmhy    时间: 2016-5-26 15:01

先顶后看  
作者: SCISCI    时间: 2016-5-28 12:07

原来这样也可以  
作者: 某某人    时间: 2016-5-31 10:27

呵呵 都没人想我~~  
作者: DAIMAND    时间: 2016-6-27 23:25

干细胞之家
作者: HongHong    时间: 2016-7-24 11:10

这贴子你会收藏吗  
作者: 陈晴    时间: 2016-8-21 14:09

又看了一次  
作者: aliyun    时间: 2016-8-22 16:54

哈哈,顶你了哦.  
作者: 昕昕    时间: 2016-8-25 16:27

帮你项项吧  
作者: na602    时间: 2016-8-29 17:54

间充质干细胞
作者: pspvp    时间: 2016-11-17 15:41

很有吸引力  
作者: dglove    时间: 2016-11-27 11:35

不对,就是碗是铁的,里边没饭你吃啥去?  
作者: 温暖暖    时间: 2016-12-1 09:10

很好!很强大!  
作者: 蚂蚁    时间: 2016-12-13 07:23

长时间没来看了 ~~  
作者: 王者之道    时间: 2016-12-26 17:42

不要等到人人都说你丑时才发现自己真的丑。  
作者: 温暖暖    时间: 2016-12-28 11:01

给我一个女人,我可以创造一个民族;给我一瓶酒,我可以带领他们征服全世界 。。。。。。。。。  
作者: SCISCI    时间: 2017-1-12 04:39

围观来了哦  
作者: 快乐小郎    时间: 2017-2-11 16:54

先看看怎么样!  
作者: dataeook    时间: 2017-2-19 00:41

转基因动物
作者: 3344555    时间: 2017-2-20 14:01

干细胞美容
作者: 龙水生    时间: 2017-2-21 13:35

风物长宜放眼量  
作者: 安安    时间: 2017-2-25 12:54

照你这么说真的有道理哦 呵呵 不进沙子馁~~~  
作者: 小倔驴    时间: 2017-3-26 07:02

…没我说话的余地…飘走  
作者: 与你同行    时间: 2017-4-7 19:43

我该不会是最后一个顶的吧  
作者: xiao2014    时间: 2017-4-16 02:13

挺好啊  
作者: 蝶澈    时间: 2017-4-21 11:43

支持一下  
作者: 泡泡鱼    时间: 2017-4-22 04:41

似曾相识的感觉  
作者: 20130827    时间: 2017-5-11 00:43

回复一下  
作者: biobio    时间: 2017-5-28 17:43

我是来收集资料滴...  
作者: whyboy    时间: 2017-6-21 00:05

哈哈,看的人少,回一下  
作者: ikiss    时间: 2017-7-6 23:53

楼主也是博士后吗  
作者: yunshu    时间: 2017-7-27 11:10

赚点分不容易啊  
作者: 生物小菜鸟    时间: 2017-7-29 19:04

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: 化药所    时间: 2017-8-12 16:01

我帮你 喝喝  
作者: cjms    时间: 2017-8-13 03:11

今天没事来逛逛,看了一下,感觉相当的不错。  
作者: 一个平凡人    时间: 2017-10-8 06:43

顶一个先  
作者: 海小鱼    时间: 2017-10-23 23:19

我帮你 喝喝  
作者: 丸子    时间: 2017-10-29 06:30

这贴?不回都不行啊  
作者: myylove    时间: 2017-11-7 02:26

楼主福如东海,万寿无疆!  
作者: Greatjob    时间: 2017-11-7 22:10

神经干细胞
作者: 求索迷茫    时间: 2017-11-21 17:11

支持一下吧  
作者: www1202000    时间: 2017-11-25 04:59

给我一个女人,我可以创造一个民族;给我一瓶酒,我可以带领他们征服全世界 。。。。。。。。。  
作者: qibaobao    时间: 2017-12-8 21:07

嘿...反了反了,,,,  
作者: renee    时间: 2017-12-13 13:42

说的真有道理啊!
作者: 苹果天堂    时间: 2017-12-17 18:40

呵呵 哪天得看看 `~~~~  
作者: 风云动    时间: 2018-1-11 21:39

不错啊! 一个字牛啊!  
作者: 苹果天堂    时间: 2018-1-25 23:21

强人,佩服死了。呵呵,不错啊  
作者: 张佳    时间: 2018-2-19 01:28

好啊,,不错、、、、  
作者: 墨玉    时间: 2018-2-23 20:15

不要等到人人都说你丑时才发现自己真的丑。  
作者: mk990    时间: 2018-3-3 05:34

今天没事来逛逛  
作者: tuanzi    时间: 2018-3-5 23:42

支持~~  
作者: xm19    时间: 2018-3-19 10:10

原来是这样  
作者: dypnr    时间: 2018-3-23 08:54

楼主,支持!  
作者: feixue66    时间: 2018-4-12 19:08

…没我说话的余地…飘走  
作者: laoli1999    时间: 2018-4-15 19:54

回帖是种美德.  
作者: nauticus    时间: 2018-4-23 22:12

也许似乎大概是,然而未必不见得。  
作者: HongHong    时间: 2018-5-7 11:34

呵呵,明白了  
作者: immail    时间: 2018-6-7 19:45

干细胞存储  
作者: netlover    时间: 2018-6-16 17:07

围观来了哦  
作者: bluesuns    时间: 2018-7-8 18:15

不错!  
作者: 剑啸寒    时间: 2018-7-24 16:27

谢谢分享  
作者: heart10    时间: 2018-8-13 00:04

文笔流畅,修辞得体,深得魏晋诸朝遗风,更将唐风宋骨发扬得入木三分,能在有生之年看见楼主的这个帖子。实在是我三生之幸啊。  
作者: youngcell    时间: 2018-8-13 03:12

我的妈呀,爱死你了  
作者: wq90    时间: 2018-8-18 07:45

我毫不犹豫地把楼主的这个帖子收藏了  
作者: vsill    时间: 2018-8-29 03:00

好啊,,不错、、、、  
作者: laoli1999    时间: 2018-9-5 10:43

哈哈,有意思~顶顶 ,继续顶顶。继续顶哦  
作者: 三星    时间: 2018-9-18 21:05

爷爷都是从孙子走过来的。  
作者: 我心飞翔    时间: 2018-10-2 09:54

不错,支持下  
作者: IPS干细胞    时间: 2018-10-15 06:36

每天到干细胞之家看看成了必做的事情
作者: renee    时间: 2018-10-26 05:36

今天没事来逛逛  
作者: yukun    时间: 2018-10-29 12:01

赚点分不容易啊  
作者: 命运的宠儿    时间: 2018-12-6 04:06

太棒了!  
作者: xiao2014    时间: 2019-1-8 14:54

干细胞之家
作者: 多来咪    时间: 2019-1-28 17:43

干细胞美容
作者: netlover    时间: 2019-1-31 00:10

我的妈呀,爱死你了  
作者: haha3245    时间: 2019-2-8 03:56

看或者不看,贴子就在这里,不急不忙  
作者: frogsays    时间: 2019-2-16 23:15

晕死也不多加点分  




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5