干细胞之家 - 中国干细胞行业门户第一站

标题: 求助Development. 2011 Nov;138(21):4801-12.文献 [打印本页]

作者: chleiwu    时间: 2011-11-2 22:30     标题: 求助Development. 2011 Nov;138(21):4801-12.文献

Development. 2011 Nov;138(21):4801-12.3 Z! R. P( D. P9 W: M
ER71 directs mesodermal fate decisions during embryogenesis.
3 M/ e9 j" P; p1 _. VRasmussen TL, Kweon J, Diekmann MA, Belema-Bedada F, Song Q, Bowlin K, Shi X, Ferdous A, Li T, Kyba M, Metzger JM, Koyano-Nakagawa N, Garry DJ.- @! @3 S* x) n' d
SourceLillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA.
' g" p+ a7 u; v6 @
( _  [2 x9 k2 G( b& q( J0 FPMID: 21989919/ i, s3 ^; v: {1 L+ K7 a
http://www.ncbi.nlm.nih.gov/pubmed/21989919
作者: wang1234611    时间: 2011-11-4 09:39

1      ER71 directs mesodermal fate decisions during embryogenesis. 参考中文标题: 点击查看机器翻译 作      者: Rasmussen TL. Kweon J. Diekmann MA. Belema-Bedada F. Song Q. Bowlin K. Shi X. Ferdous A. Li T. Kyba M. Metzger JM. Koyano-Nakagawa N. Garry DJ. 全文及相关链接:HighWire Press     Swets Information Services     摘      要: Er71 mutant embryos are nonviable and lack hematopoietic and endothelial lineages. To further define the functional role for ER71 in cell lineage decisions, we generated genetically modified mouse models. We engineered an Er71-EYFP transgenic mouse model by fusing the 3.9 kb Er71 promoter to the EYFP reporter gene. Using FACS and transcriptional profiling, we examined the EYFP(+) population of cells in Er71 mutant and wild-type littermates. In the absence of ER71, we observed an increase in the number of EYFP-expressing cells, increased expression of the cardiac molecular program and decreased expression of the hemato-endothelial program, as compared with wild-type littermate controls. We also generated a novel Er71-Cre transgenic mouse model using the same 3.9 kb Er71 promoter. Genetic fate-mapping studies revealed that the ER71-expressing cells give rise to the hematopoietic and endothelial lineages in the wild-type background. In the absence of ER71, these cell populations contributed to alternative mesodermal lineages, including the cardiac lineage. To extend these analyses, we used an inducible embryonic stem/embryoid body system and observed that ER71 overexpression repressed cardiogenesis. Together, these studies identify ER71 as a critical regulator of mesodermal fate decisions that acts to specify the hematopoietic and endothelial lineages at the expense of cardiac lineages. This enhances our understanding of the mechanisms that govern mesodermal fate decisions early during embryogenesis. 参考中文摘要:Er71 nonviable突变和缺乏胚胎造血和内皮血统之中。进一步而言,需定义的功能作用在ER71细胞谱系的决定,我们产生转基因小鼠模型。我们策划的转基因小鼠模型Er71-EYFP通过熔断3.9 kb Er71赞助人EYFP记者的基因。使用FACS和转录的评价,我们仔细检查了EYFP(+)人口的细胞突变的、Er71野生littermates。在缺乏ER71,我们观察到一个数量的增长EYFP-expressing细胞,增加表达式的程序并减少心脏分子的表达hemato-endothelial程序,相比而言,野生littermate控制。我们也产生了一个新颖的Er71-Cre转基因小鼠模型使用相同的3.9 kb Er71推销员。研究表明,遗传fate-mapping ER71-expressing产生造血细胞和内皮血统的野生的背景。在缺乏ER71,这些细胞群体选择了mesodermal血统,包括心脏血统。延长这些分析中,我们使用了一个诱导胚胎干细胞/混合而且发现生命的性体系统ER71压抑的cardiogenesis品系。在一起,这些研究确定ER71作为一个至关重要的调节作用mesodermal命运决定说明造血和内皮血统的代价心脏血统之中。这加强我们对mesodermal决策机制控制命运的早期胚胎。出      处: Development (Cambridge, England). 2011年138卷21期4801-12页 相关链接: PubMed Google学术搜索 Google引文 外部引文 相关文献 引文追踪(Google)
作者: tmdabc    时间: 2011-11-6 13:17

回复 chleiwu 的帖子% w$ f9 @2 C- P2 ^( m

# j. ?- I0 O( U2 G4801 RESEARCH ARTICLE4 }: }- Q) d- \  g6 r' M3 z8 L) j* h
INTRODUCTION! v1 [4 O3 ~( Y$ V2 y* \
Transcriptional networks, signaling cascades, microRNAs and
8 t& |( p# t' j* `other factors coordinately regulate stem and progenitor cell' Y/ L. Q: w, K% g$ q2 N6 F! R
populations to give rise to the mesodermal lineages (Davis and Zur& A1 {5 u3 K6 X* H
Nieden, 2008; Ivey et al., 2008; Omelyanchuk et al., 2009; Park et
% |5 U9 Q: ~$ S8 S, l' E0 s- aal., 1998). During embryogenesis, a set of anterior progenitors1 {) D5 U! c; k- A) ]
coalesce to form the heart. These progenitors, along with the blood4 s' L, O0 B: g! p- d
and vasculature, comprise the circulatory system, which is the first
+ M! C5 Y" }6 w2 Z: M3 [0 p$ vorgan system to develop in mouse and human. Disruption or, x. c/ _" J) {* B
elimination of any one of these lineages results in early embryonic5 U  D% E5 a* x5 d
lethality. However, the factors that regulate the co-emergence of
5 u) B& C; |; w- j: b8 Fthese lineages from the mesodermal progenitor pools are/ C' ~9 T6 o. L3 [" I; X$ I1 c
incompletely defined.
. ]$ Y5 _( m1 W" aRecent studies have identified a multipotent progenitor cell' m8 S# u) e% b, k! @
population that is capable of giving rise to the cardiomyocyte and
" s% ]" [3 _* ?$ R' M! f3 Fendothelial lineages during embryogenesis (Kattman et al., 2006;3 a9 E/ S6 f/ U% a! g: a3 c
Moretti et al., 2006; Wu et al., 2006). Although these multipotent
5 S# X  U. H' U/ q# w( \progenitors have been identified based on the expression of Flk1
7 \, f/ [2 p. ~% U6 z  ](also known as Kdr), Nkx2-5 and Isl1, the transcriptional networks9 t9 A5 Q, _+ q- i+ e
that govern the fate of these progenitors are unknown. These and& X$ f0 n) B$ ]9 H
other studies emphasized the plasticity and context dependence of
: P: H1 F+ j/ Sregulatory cascades in the progenitor cell populations. For example,& e* ]0 j. Y' @! v* O4 ]
our previous studies demonstrated that Nkx2-5 has a dual4 d# K* R9 c# \! v5 I
transcriptional regulatory role in the promotion of the cardiac
; x+ E9 ?: R) k* r5 r4 q" v' Wlineage and suppression of the hematopoietic lineage (Caprioli et' O- Y7 p% v* s: e1 ^4 C
al., 2011). In this fashion, we proposed that the stoichiometry of
/ |* N) @0 U2 L- m- |regulatory transcription factors and interacting factors could  q9 |. U* B- F
dynamically regulate the fate of progenitors. Definition of
5 d* j# s/ U5 I! |3 }additional networks and signaling pathways that promote and# f) ^4 `6 V7 q6 V
suppress the fate of distinct lineages that arise from multipotent
, o% h* i1 {' o3 W8 Q5 n2 |6 kprogenitors will enhance our mechanistic understanding of their. H, S+ ]8 ?5 B
developmental potential.
4 d, @. i3 D7 X$ S$ a; HEts-related protein 71 (ER71; Etv2) is a member of the Ets+ G  s; A1 A( v; R- w
transcription factor family that we and others have shown to be
& f# D% k, @& {6 C$ g" Z2 l+ Vessential for formation of the endothelial and hematopoietic
& l- h9 m/ E. @( g6 k1 ilineages (De Val et al., 2008; Ferdous et al., 2009; Lee et al., 2008).
, ?; J$ h: ?% ~+ n, z* I# g& XEr71 can be induced by BMP, Wnt and Notch signals to promote
" V3 @1 `3 m$ A+ ]8 ^, l9 G4 |hematopoiesis (Lee et al., 2008) and synergizes with FoxC2 to. q8 W3 ?* F! c/ u$ Y
regulate the endothelial program by directly targeting Scl (also( N( ~: {2 j" L6 s* B; m
known as Tal1), Notch4, Cdh5 and Tie2 (also known as Tek) (De
3 }5 ]1 ?6 p& b% ?* KVal et al., 2008; Ferdous et al., 2009; Lee et al., 2008). In Er71
# K0 n! w" {+ E; v9 E. K! l6 tmutant mouse embryos, there is a complete lack of hematopoietic4 c6 ?6 X' H2 L2 a
and endothelial lineages and the embryos are nonviable by
& d7 G- y' l3 f( b6 E* K8 Wembryonic day (E) 9.5 (Ferdous et al., 2009; Lee et al., 2008).; n* G( ]; w# |6 |+ k& j; R9 b; O: d
Analysis of the Er71 mutant embryos revealed no differences in
5 l" c, t& _0 K, A# [5 Qcellular proliferation or cellular apoptosis compared with age-
, Q& f- |; X9 e" [4 l8 bmatched wild-type littermates (Ferdous et al., 2009). These results
) ?# T. b$ E9 J" f6 e$ ~' @+ L& `raised the question of whether the hematopoietic and endothelial6 d+ j  G% u& S4 v- L; p
precursors are still present but unable to differentiate to hemato-7 T: u- [% [  i6 z8 f$ \
endothelial lineages, whether they had been redirected towards
3 N" k% e8 }: X; L5 \8 Gother lineages or whether these cells never arose during9 _6 ^8 \  _& R6 B+ l4 W" g" S
development.2 h- s/ c! \4 S6 x2 L: k) G
Development 138, 4801-4812 (2011) doi:10.1242/dev.070912
& f* t; l' `: {8 \) {0 H7 e  `© 2011. Published by The Company of Biologists Ltd/ P  ?5 \! S2 S
1Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA.
% F8 ~9 E: `* i, L; s2Department of Integrative Biology & Physiology, Medical School, University of
$ g' m  ^0 m$ Z% ^0 XMinnesota, Minneapolis, MN 55455, USA. ' m0 A6 D. {& n; I: m+ U
3Biolead.org Research Group, LC
, k0 v) ~6 y, _Sciences, Houston, TX 77054, USA. 9 I7 Z0 f) J3 v+ ?3 R3 ^
4University of Texas Southwestern Medical$ L3 f, {  x. P2 ]8 g4 u* n
Center, Dallas, TX 75244, USA.
, p1 _; y/ D( Z" r# ?( {4 l" R4 y*Author for correspondence (garry@umn.edu)& J- A& t' T: |9 g5 I+ j. ^
Accepted 5 September 2011
5 [0 z  R& \% X* d7 W) sSUMMARY& B+ G2 L. f! _( \+ p: k8 L/ B
Er71 mutant embryos are nonviable and lack hematopoietic and endothelial lineages. To further define the functional role for+ ~6 D# D5 q# \8 P! w
ER71 in cell lineage decisions, we generated genetically modified mouse models. We engineered an Er71-EYFP transgenic mouse6 ?& }/ I' d, P) _  g: H/ w
model by fusing the 3.9 kb Er71 promoter to the EYFP reporter gene. Using FACS and transcriptional profiling, we examined the; c" V2 X8 o6 h
EYFP+ population of cells in Er71 mutant and wild-type littermates. In the absence of ER71, we observed an increase in the+ I, O% H2 B* O
number of EYFP-expressing cells, increased expression of the cardiac molecular program and decreased expression of the hemato-
2 A, J4 a( C0 M, P, Nendothelial program, as compared with wild-type littermate controls. We also generated a novel Er71-Cre transgenic mouse* E7 R* y+ F0 i) h* q5 l* p
model using the same 3.9 kb Er71 promoter. Genetic fate-mapping studies revealed that the ER71-expressing cells give rise to the& _0 L& W, @) q1 J1 ^
hematopoietic and endothelial lineages in the wild-type background. In the absence of ER71, these cell populations contributed
; z- L8 r0 a. T2 h) m7 Z8 ^to alternative mesodermal lineages, including the cardiac lineage. To extend these analyses, we used an inducible embryonic- T& |& ~# `( z0 V; A8 S, X. i
stem/embryoid body system and observed that ER71 overexpression repressed cardiogenesis. Together, these studies identify ER71
' T- q% C7 H# Pas a critical regulator of mesodermal fate decisions that acts to specify the hematopoietic and endothelial lineages at the expense
, X: y3 b& g6 {2 q( A; Dof cardiac lineages. This enhances our understanding of the mechanisms that govern mesodermal fate decisions early during0 b+ B$ q5 T5 f( g1 C- m
embryogenesis.
& z8 D* _( o0 }- Q  R. RKEY WORDS: Transgenesis, Er71 (Etv2) knockout, Mouse! ?& h/ t0 m4 W( b* \# f  n
ER71 directs mesodermal fate decisions during! t$ k3 R- L. }* h: L/ A
embryogenesis
0 m, O+ w" R4 x. f  R5 M! fTara L. Rasmussen1, Junghun Kweon1, Mackenzie A. Diekmann1, Fikru Belema-Bedada1,2, Qingfeng Song3,
5 b& g8 y: \, j5 u5 x2 CKathy Bowlin1, Xiaozhong Shi/ C; ?& V6 p( e
1, Anwarul Ferdous4, Tongbin Li
0 o3 }* Q3 p* @+ f( U& x$ t3, Michael Kyba1, Joseph M. Metzger1,2, : u" Q$ v- a9 Y) V0 q
Naoko Koyano-Nakagawa1 and Daniel J. Garry1,
3 P0 R3 l& J5 R$ z: V. w0 R! V. m' \*
) K% [/ `3 s' G5 W) qDEVELOPMENT4802. a* \* p# }% h' \; @
In the present study, we have dissected ER71-mediated; J. p3 k. P3 ^8 S. O* m
mechanisms that govern fate determination during murine
% q* H3 g+ a  J; b) r( E4 O& S) Yembryogenesis. We have generated a novel transgenic mouse
' z" ]- }2 X8 M7 V. O2 o5 {: Q* N( Mmodel in which the 3.9 kb Er71 promoter drives the EYFP reporter) R- l) {& |' ]. y! Z
(Er71-EYFP), and crossed it into the Er71 wild-type and mutant
8 _/ G3 E( j3 ?) @/ f7 ?3 ^+ ~backgrounds. This strategy facilitates the isolation and) u- x0 D# ^# K, S2 D% P4 r# F# \1 l
characterization of cells that would normally express ER71 from% z' p2 z: v6 N9 [! u! P4 E
Er71 mutant embryos. In the absence of ER71, we observed the
/ n* ^' S. U& w8 ~conversion of cells that would normally give rise to lateral plate% H6 E3 b- \3 g
mesoderm into cells that produce paraxial and cardiac mesoderm.
$ t- A: f/ x' P0 ?* @" oFurthermore, ER71 overexpression in vitro using an inducible
+ M+ L3 p# m3 H6 x& d' tembryonic stem cell/embryoid body system demonstrated
: A! K" m, d# n3 I' adecreased cardiogenic potential. Collectively, these data: C' `, X3 r) u9 }: W/ ?; w( K- l
complement and extend our understanding of the functional role of; e. ^+ k3 G" [4 F  n* t
ER71 to differentially promote mesodermal fate decisions during7 k, V0 r% [& }5 M* q# K
embryogenesis., x8 H" D$ x% @% {# ~
MATERIALS AND METHODS
  o' @! k# \  b( ^# v" ~2 u& j+ NGeneration of transgenic mice# P0 c+ ~1 Y3 K/ v
The 3.9 kb  Er71 promoter (Ferdous et al., 2009), which harbors the0 v) ~+ i, f7 Q( S
modules necessary to direct the temporal and spatial expression of ER71,
/ F, i: x: ?/ mwas cloned into the pEYFP-1 vector (BD Biosciences) and into a
& S9 J4 I- h/ K: f# _/ @promoterless pBS-Cre-pA vector to generate the ER71-EYFP and ER71-8 s5 U; \! \7 P, T8 n- {
Cre constructs, respectively. Transgenic animals were generated at the8 T: e1 }; j& s. R6 s# N8 W
University of Minnesota Mouse Genetics Laboratory using standard
* P8 X2 r/ ~$ b& h/ X* E1 h' O; j& s/ ymethods. Transgenic mice were screened for DNA integration by PCR.
" b$ E% S4 v& F5 E2 q+ z+ HExpression analysis of ER71-EYFP lines was performed by examining' O) C" z0 M4 `
E7.0-9.5 embryos resulting from timed matings to wild-type CD1 mice4 K8 v1 G  g  d0 I* n% e
(Charles River). We also analyzed E11.0 and postnatal day (P) 3 offspring8 ]6 t1 w; i8 s
of timed matings of the ER71-Cre lines and the Rosa-EYFP line (Jackson; S! R+ \$ h4 I9 O6 V! A' }( L
Labs 006148). Founder mouse lines were crossed to the  Er71
, b$ C  Y; t8 T5 r0 eheterozygotes previously described (Ferdous et al., 2009). In all cases, at
1 J" O4 H$ m, W) U' O" E; ?. tleast three transgenic lines were examined to confirm similar temporal and3 ^9 A2 [: g' m! Y5 F6 B
spatial expression patterns. All mice were maintained at the University of
& L1 b- f/ C( t% xMinnesota under protocols approved by the Institutional Animal Care and
* q# ?2 A% i# v; yUse Committee and Research Animal Resources.
! B" A* l% g5 lFACS analysis/ S7 H" |9 F% N$ u7 q
Embryos from timed pregnant females were harvested at specified stages.
. h2 E7 G4 o7 {  N. PEmbryos were separated from yolk sacs, which were used for genotyping,
9 N! @/ p; G" L7 Q2 W7 Yand imaged on a Zeiss Axio Observer Z1 inverted microscope prior to
' j8 u, h. \, |dissociation. Embryos between E7.5 and E9.5 were digested in 30-50 l
" E3 J$ Y( G7 N' R5 Y0.25% trypsin plus EDTA at 37°C. Digestion was arrested with 500 l3 J: V; X5 h# E6 ]4 T  L
DMEM containing 10% fetal bovine serum (FBS). Cells were pelleted at% j3 R6 f( w' b
4°C (1600  g), resuspended in PBS and passed through a 70  m cell+ ?( H0 ?. t% B
strainer. Cells were incubated with antibody cocktails for 30 minutes,+ F" P# A& e7 U7 o  s
washed, and resuspended in PBS. Cells were analyzed or sorted using a/ ?, m1 L$ X/ R6 Y7 _
FACSAria (BD Biosciences). Various combinations of antibodies (1:1000)
- k/ L7 P( C- ]! Uwere used, including Flk1-APC (eBiosciences 17-5821), Pdgfra-PE
+ M& B) ^* y: [+ `(eBiosciences 12-1401), CD31-PECy7 (eBiosciences 25-0311), CD34-PE
$ W$ b. a4 Z) y; D(BD Pharmingen 551387), cKit-APC (eBiosciences 17-1171), CD41-# |7 Z/ S9 _" j! [( e+ J# t
PECy7 (eBiosciences 25-0411), CD45-PE (BD Pharmingen 553081),
7 V, G: e( V0 ]! W/ w( s8 {; nCD45-PECy7 (eBiosciences 25-0451-81), and Ter119-APC (BD
* M! a# O7 ^; GPharmingen 561033) antibodies.
& l  E; d# ^/ {, r. _% jTranscriptome analysis% U& Y7 A, E7 {) k
Total RNA was isolated from 1000-5000 FACS sorted cells in TRIzol
) G4 s* b$ Q# Y7 k% @/ \4 }6 a(Invitrogen) using the PureLink Mini RNA system (Ambion). RNA was6 S2 f; K) n/ K3 T, w; i
subjected to two rounds of amplification using the MessageAmp II aRNA
1 D0 Q( h* P- J" i/ gAmplification Kit (Ambion) and then labeled using the MessageAmp II-
: C0 L5 A5 s' e* R1 I! MBiotin Enhanced Kit (Ambion) according to manufacturer’s protocols.
8 }) a7 ^# S6 c- c7 FAmplified RNAs were hybridized to Affymetrix mouse 430 2.0 full genome& s1 Z% b2 d8 u5 B* L" F
array chips at the BioMedical Genomics Center of the University of8 ^, X: V# ]% P6 N( \
Minnesota. The CEL data files produced from Affymetrix array experiments2 K8 z& j  U% {; W8 _, F
were processed using the affy package included in Bioconductor. The robust  Q; T% a# ~, _. S  d
multi-array (RMA) method (Irizarry et al., 2003) was used to perform data( `1 R/ N* m2 N; ]- @
normalization, background correction and expression quantification. The
6 S4 f, h1 z" \9 glimma package (Smyth, 2005) was used to identify differentially expressed* M/ f9 z) W6 ^8 U
genes by ANOVA analysis, and false discovery rate (FDR) values were
% c  U& |- Z: S. ?2 Vcalculated using the Benjamini-Hochberg method (Benjamini and Hochberg,: f8 Q0 G/ E+ ?: y2 I  j$ E( Y" R9 x
1995). Average linkage hierarchical clustering analysis was performed using
- P) z0 L: m2 b/ G6 O& o% ~the cluster program (de Hoon et al., 2004), with uncentered Pearson’s" g1 n  e0 h# N$ X9 G
correlation coefficient used to define pairwise similarity in gene expression.
, S& h/ d* u4 O2 W6 s; A: JGenes annotated with the gene ontology (GO) term ‘heart development’7 ]/ g( o1 w& E4 [
(GO:0007507) were downloaded with AmiGO tool (Carbon et al., 2009) and) l; N) p7 S/ e- C( T) [
used in producing the heatmaps. Microarray data is accessible in Gene4 |6 G! L7 b/ A& j0 C
Expression Omnibus (series GSE32223)." Y  i, N5 T) H. O" ~5 x; q% ~: D
Quantitative RT-PCR
1 b" ?$ h8 T7 q% R" n# YTotal RNA was isolated from 1000-5000 FACS sorted cells or embryoid3 J* x, E8 E1 k; `2 ~
body cells in TRIzol (Invitrogen) using the PureLink Mini RNA system.
/ G5 t$ h. E# Q% Q! X' N5 gRNA from FACS sorted cells was subjected to two rounds of amplification
, c. t0 q) N- g- t% `) Kas described above, but left unlabeled. cDNA was made using random1 d% }, t" J, i3 X) P. i8 w/ E2 o
hexamers and transcript levels were determined using VIC-labeled (Gapdh,
( p5 ?1 h. s& _' X8 F& L* b4352339E) or FAM-labeled (Er71, mm01176581_g1;  Scl,
( H8 j2 g1 t  y5 t5 K3 g, hmm01187033_m1; Cdh5, mm00486938_m1; Gata4, mm00484689_m1;8 p- L  ?1 f: H% o
Tbx5, mm00803518_m1; Tnnt2, mm00441922_m1) TaqMan probe sets) ?  \; t' Y$ W8 E: o
(Applied Biosystems).$ s* x* o) O- @: g- a$ [8 x: Y) t! |
Embryoid body differentiation and ER71 overexpression
$ Y2 m+ L) O' Z4 T% SDoxycycline-dependent ER71-overexpressing mouse embryonic stem& ?8 _( B- e# D* U
(mES) cells were generated using an inducible cassette exchange strategy
6 G: |$ a$ f( `, n(Iacovino et al., 2009). In this system, ER71 tagged with a C-terminal HA5 [# f' c6 E" F7 t
epitope was overexpressed in response to 0.5 g doxycycline. To mimic
" F2 A0 Z, g4 Learly embryonic development, the mES cells were differentiated into
3 B! X* E( K" a3 P& {& t7 _embryoid bodies (EBs) using mesodermal differentiation media [1.5% FBS2 S; e& a8 `9 s$ ]
(Stem Cell Technology), 1 penicillin/streptomycin, 1 GlutaMAX
# g  I  j; q) _; ](Gibco), 100 g/ml Fe-saturated transferrin, 450 mM monothioglycerol, 50% P% {; O( z& r4 z9 E( Z6 r% u
g/ml ascorbic acid in IMDM (Invitrogen)] (Kennedy et al., 1997). ER71
6 ?( x; W8 E" {+ Z+ V8 }was induced on day 3 after initiating differentiation and maintained through5 R) B4 L# F: r; O4 \
day 10 by supplementing the differentiation media with doxycycline. On
4 R8 d9 s) }1 a! s8 H" x; Wday 10, we fixed the EBs with 4% paraformaldehyde (PFA) and prepared# H8 Y7 v" Z4 D/ f: F
cryosections. We stained adjacent sections with Hematoxylin and Eosin8 k( M- f7 D% [/ J, A0 D, ^! }, v
using a standard protocol and performed immunostaining with mouse anti-  n! |' Z4 H+ F
TnT serum (1:200, DSHB clone CT3). We assayed the TnT-expressing area
5 w! c1 l+ }5 Z! |$ P$ Y& }of each EB using ImageJ software (NIH) and calculated the ratio of the
/ t- p+ c2 G  G( I, i6 X5 @4 v) upositive area to the total area from 33 sections of uninduced EBs and 42
+ c) a5 l/ x  ^3 t: J! Gsections of induced EBs. EBs were placed on laminin-coated coverslips' R3 @( c$ T  E$ O1 p# B
and stimulated at 1 Hz. Edge detection (Ionoptix, Milton, MA, USA) was- c7 m; Z7 f0 p5 l+ R
used to measure contractility of intact EBs.
+ g! X  w" F4 ?- AImmunohistochemical analysis
5 {2 d! h) R; X( }+ Z; v' d2 j  j# ~2 i* aStage-specific embryos were harvested from time-mated pregnant females.. K- {. t5 k" r  k7 }) g% N* t
For paraffin sectioning, embryos were fixed for 4-8 hours at 4°C in 4%
' p& b% l8 E) xPFA and embedded. For cryosectioning, embryos were fixed for 1 hour at
. H: ~- f1 p- V/ M8 B' G; j4 S0 q) X6 T4°C in 4% PFA and embedded in OCT compound (Sakura). Sections were
& p& Z4 ~. Y) s/ Q5 f+ N2 Oblocked with immunohistochemical diluent (2% normal donkey serum, 1%" k: a) {# v  O# t; L4 _
bovine serum albumin, 0.3% Triton X-100, 0.02% sodium azide in PBS,
2 R3 x9 _2 u9 y1 u6 HpH 7.3) at room temperature and incubated overnight at 4°C with primary
5 m: e+ z) v1 p0 D, Xantibodies, including chicken anti-GFP (1:500, Abcam ab13970), rabbit& G1 w  }! E, O# X) F; e
anti-desmin (1:200, Novus Biologicals NB120-15200), rat anti-Tie2 (1:100,! R$ W7 Z3 z5 u
eBiosciences 13-5987-81), rat anti-Pdgfra (1:200, eBiosciences 12-1401-
* h( k8 Z+ J0 ~( n9 S81), goat anti-Nkx2-5 (1:500, Santa Cruz SC-8697) and anti-CD41 (1:100,% l6 J6 }. D1 w9 t9 |
BD Pharmingen 550274), anti-Cdh5 (1:100, BD Pharmingen 55289), anti-
1 @% W4 I1 a% _$ ~CD31 (1:200, BD Pharmingen 550274), anti-Gata1 (1:100, Santa Cruz SC
! y, v# ~+ ]) w2 y7 G  _% i: ~, f! `265X) and anti-troponin T (1:200, DSHB CT3) sera. Slides were washed
" A( i* d$ g, s8 x5 oand incubated with combinations of secondary antibodies (1:200) including
% V  D* K3 M* |9 yanti-chicken Dylight 488, anti-rabbit Cy3, anti-mouse Cy3, anti-rat Cy35 F/ I4 d6 `2 `$ B$ q# U
and anti-goat Dylight 549 (Jackson ImmunoResearch Laboratories).
9 v% Q6 R1 v! D& k5 [  U7 TResults were imaged on a Zeiss Axio Imager M1 upright microscope or a
5 ?; ?3 q5 ^: o: TZeiss LSM 510 Meta confocal microscope.
8 i4 m5 z; I7 IStatistical analysis
1 Y# V" w; l5 UData represent the average of at least three replicates and s.e.m.
6 T2 O' l, Z$ S: N; x! D( gSignificance was tested by the Kruskal-Wallis test with the Dunn multiple
2 I+ k7 f: Y. V7 `. T7 Ecomparison test for more than two groups; for example, when comparing5 g& r& s+ a8 G4 o* C
RESEARCH ARTICLE Development 138 (21)
$ n. T' H. m; P! E3 N# W0 @DEVELOPMENTwild type, heterozygous and homozygous mutants. Significance was tested. u& V( `6 w% n/ g. K) D
by the Mann-Whitney U test for two groups. Analyses were performed
! R3 m2 l0 M) }* H. yusing Prism5 software (GraphPad).* _. [2 ]- H5 V: Y" ~9 F
RESULTS7 o- k# O6 u$ {# k' O$ C
Expression analysis of the ER71-EYFP reporter
! }2 w0 m+ [' u9 T! \Initial analysis of ER71 expression in the developing mouse4 L' e( H0 z" e0 }9 i
embryo was reported previously (Ferdous et al., 2009; Lee et al.,
6 c+ b% z- L4 l1 N( l2008). To further examine its potential role in cardiovascular
+ `( w# r9 u4 ?1 Z  L: }$ E3 ]. ldevelopment, we performed a detailed expression analysis of ER71
' V/ K6 U( a) B3 _) pfrom E7.0 to E9.5, when Er71 mRNA is expressed (Ferdous et al.,
% h# x9 m! o: M/ C) N7 W( ^/ j+ U2009). None of the commercially available ER71 antibodies
: y0 f- a+ t; C6 ?( \detected the endogenous protein, so we utilized an Er71 transgenic
/ X9 d) a: p8 N& e) F0 f+ Mmouse driving an enhanced yellow fluorescent protein (EYFP)" f6 a( e$ @; L* p9 j7 \
reporter. The 3.9 kb region upstream of the Er71 transcription start# {, J4 Z& p0 M, o  W
site was fused to the  EYFP reporter (Fig. 1A). This promoter
* W  L( i, h; e8 Y; c$ c8 N9 @fragment was previously shown to drive reporter expression that
6 a( A. C( B" r  Precapitulated endogenous ER71 expression (Ferdous et al., 2009).9 Y  C1 f; p% S  D1 `/ w
Four founder lines were generated with offspring embryos that
6 R+ o$ K, T: d8 [showed the same expression pattern.
% ]' h2 A) m7 i& l3 J  aTo examine the expression pattern of the EYFP reporter, we. `2 F6 A5 z4 D- \
compared its expression to that of the angiopoietin 1 receptor Tie2,9 P; a1 C4 M+ y5 f+ U6 }& y
which marks endothelial cells in mice and humans (Dumont et al.,: W+ D% @3 h+ u+ s+ Q1 e- Q) \
1992; Sarb et al., 2010; Schlaeger et al., 1997; Schnurch and Risau,& ?9 a1 V& P( {  {$ c
1993). The EYFP reporter (representing ER71 expression) was
; l4 {+ K" [2 N% Nexpressed as early as the early to mid gastrulation stage (E7.0; Fig.$ v. H7 F6 v0 ]$ I% r+ ^
1B, bracket). At this stage, reporter expression was limited to the$ k  u& J9 _3 }( O' r
extra-embryonic mesoderm (Fig. 1C) and showed co-expression
' G3 ?; f2 z0 @. _0 a3 a8 m: b4803 RESEARCH ARTICLE ER71 governs progenitor fates6 y$ h) ^5 K; i2 p, t
Fig. 1. The transgenic ER71-6 v  r" W" h( Y% Q4 n
EYFP reporter is expressed- F; g0 \4 _! g$ a* }! X  V
during embryogenesis.! k; n6 M1 _' i) |' h
(A)The transgenic Er71-EYFP" j8 k1 u1 {% N9 Y0 }; @
construct used in these analysis.
" ?" x* l9 h# s* r(B-Q)Expression analysis of mouse
3 f- W/ m% E6 Q! _embryos between E7.0 and E9.5.
: [- l& A$ ]4 v3 j. _5 G; BEYFP protein fluorescence (green)6 B+ r$ e% D0 A. K
is shown in whole-mount images
' y& W+ c9 B) h* L  U0 U% K(B,D,F,J,K,N). Sections were
( D: r& P) Q  W+ ~. R2 k3 dstained with anti-GFP (green),# a* A8 s3 E( E, P" L1 u" g
anti-Tie2 (red), anti-Nkx2-5 (red)' n; ^% y4 {  ~% w) z
or anti-Pdgfra (red) antibody as
2 W6 s; U7 N+ E" E3 Tindicated. DAPI nuclear staining is
" J: e' ~4 ]/ c% Nshown in blue. Yellow indicates
- v; Q# h; g# |/ v& q, ?6 i2 C. f, ^overlap of green and red
1 j* t. E( O; L) O4 b: pchannels. (B-C) Early to mid
7 t+ H0 O. C- H9 zstreak stage, (D-E) early bud8 A* L+ d% E/ D/ u: n  A
stage, (F-I) early head-fold stage,. a+ W. l3 q3 b1 K: ^) f
(J-M) E8.5, (N-Q) E9.5; embryos/ V: q1 W7 l: g# Z+ H
were staged according to Downs% ], W; U9 f& d; ~# W- m4 T
and Davies (Downs and Davies,
: j$ q, @0 Z8 o1993). Boxed regions are shown3 O$ D6 |; `1 Q/ g" o  m
at higher magnification; planes of+ r0 B  B* d* `# N5 j, _
sections are indicated. See first
0 Y# T5 _+ r: lsection of the Results for a
9 o: `9 s$ H9 Qdescription of arrows, arrowheads" Q" _& [4 s; b* W4 d) d$ K* F
and other labels. al, allantois; ba,
7 S2 Z0 y/ E. I  V+ _branchial arch; bi, blood island;" j5 a8 D) k4 \: C% B! g7 e
cc, cardiac crescent; cv, cardinal! D* ]' D  Z- z, x4 O& }5 j3 c
vein; da, dorsal artery; ec,
9 _& J. }0 D2 Kendocardium; h, heart; hf, head
: ?1 j- r! K1 Z- v8 M: Z" \fold; np, neural plate; nt, neural
2 y* A- V. b& P2 n' Xtube; ph, pharynx; pm, paraxial
- Z. B; m6 w$ r+ Qmesoderm; s, somite; ys, yolk sac.: i1 i$ L/ I+ y) u- e% s2 [
Scale bars: 200m; 50m in
/ d  ^4 Z0 g% q! R# ^5 Eenlargements.4 u0 r& [; @" b3 \9 r
DEVELOPMENT4804
/ h* I  i( h" i8 P( ewith Tie2 in the primitive blood islands (Fig. 1C,C, arrows) (Ema
! K2 t+ b- L3 n) N7 Yet al., 2006b). EYFP was also weakly expressed in the mesothelial
  T6 y6 E0 j8 o. L) \  T1 flayer of the yolk sac, but Tie2 was absent in this non-endothelial) _# F1 M3 E5 Y7 C) E" R
cell population (Fig. 1C,C, arrowheads). At E7.5, continued
9 l( V( n! d; l) \1 K+ aexpression of the EYFP reporter was observed in the extra-
6 z% c# T( ~9 v* yembryonic mesoderm (Fig. 1D, bracket). In addition, scattered  A2 W+ \' A) ^9 L3 O
EYFP+ cells were observed in the lateral plate mesoderm (Fig. 1D,
7 Y9 u+ z; Z; C$ \, y& E. ~$ sarrows). Transverse sections showed that these scattered cells co-8 X1 z# Y, K6 l" S1 c( y. g! A( P
expressed Tie2 and most likely represent endothelial progenitors; @  v9 F$ b- }8 G
(Fig. 1E,E,E), although Tie2 expression has also been identified
8 ?8 M  f, }) m* i( B* Gin a subset of cells committed to the hematopoietic lineage
2 q3 k6 f0 R9 o/ R(Kisanuki et al., 2001; Li et al., 2005).
$ y6 Y* d3 W( @8 v+ _+ ]1 kAt E7.75, the EYFP signal localized to discrete structures
3 N( d3 l  O+ v! S8 @; Aincluding the cardiac crescent and the progenitors of the dorsal aortae& O, d4 u, P2 V( r) l$ e1 ]
(Fig. 1F, cc, arrows). We examined the expression in the cardiac
$ @9 G5 Q4 ]8 J7 ]9 g* \crescent and paraxial mesoderm in detail using Nkx2-5 and Pdgfra
) n5 v* Q4 g# ]- h8 ?, mantibodies (Fig. 1G-I). We observed that the EYFP signal overlapped5 K4 q" Y+ F2 ]9 v# ~8 l- r7 T
extensively with Tie2 within the cardiac crescent (Fig. 1G,G).
" v+ ?0 B* k6 i! ~6 T* \8 Z  ~These EYFP+ cells are presumably endocardial progenitors (Misfeldt
0 ]; o! z& N! p6 _: Y/ oet al., 2009). By contrast, EYFP+ cells either weakly expressed or did! J& |' G0 A, [/ S9 S' F# X
not express Nkx2-5 (Fig. 1H,H, arrows and arrowheads,
, P" U2 J1 l% u# K5 A5 trespectively). We did not observe strong co-expression of Nkx2-5
" Z: `* C+ F' U8 zand EYFP. Pdgfra is strongly expressed in paraxial mesoderm and
4 J8 M/ w/ Z5 t6 r0 Icardiac mesoderm (Fig. 1I, pm and asterisk). Double
0 v- x4 c# Z3 J; Q# mimmunohistochemical labeling of EYFP and Pdgfra demonstrated; x$ A/ n( J* S: @
that most cells either did not co-express these markers or weakly
6 r" t; O+ x& ~: O' }expressed Pdgfra (Fig. 1I,I,I, arrowheads and arrows, respectively),
% t5 M$ K- {" W9 J3 swhich is consistent with previous reports that the hemogenic lineage
/ j% ~2 s% |  ?0 [! T4 \/ kis segregated from the paraxial mesoderm early during gastrulation
8 x0 f; I2 Q0 _2 I# |6 t' m(Kataoka et al., 1997; Takakura et al., 1997).
  n$ a) A/ B' \/ bAt E8.5 and E9.5, we observed localization of the EYFP signal to
. ]0 L9 R. h! }2 bvascular structures throughout the embryo proper (Fig. 1J,N; arrows2 m/ p2 g, c3 R2 c5 w
point to the dorsal aorta and arrowheads indicate intersomitic vessels)
- Y' ^) s  u, m9 I+ j+ \0 Gand yolk sac (Fig. 1K). Transverse sections of the embryos (Fig./ F+ L; q8 C$ Z/ y) k
1L,M,O,P) showed localized expression in the vessel structures
  C1 [7 s- Y/ R* v: p. V% Rincluding dorsal aorta, cardinal vein, intersomitic vessels: O* v6 i5 y' T' R) L5 o+ h% s
(arrowheads in Fig. 1M) and the endocardium (arrowheads in Fig.
: i. p- _9 f! P( r( g! s1L). The expression of EYFP largely overlapped with that of Tie2,9 b( s3 W' K5 S( g  b
indicating that the  Er71 promoter is active in early embryonic8 z" i3 D* d4 v
endothelial and hematopoietic cells (Fig. 1O-P). We also observed
* m1 H0 x5 Y# z$ G: }, n1 c8 F8 K" Nthat EYFP was co-expressed with the hematopoietic transcription) @5 p: Y" X4 F" D3 i3 }: q9 ]
factor Gata1, the cell surface marker of hematopoietic progenitors
3 z- O5 m4 g8 J1 n' R$ Z% ~5 }CD41 (also known as Itga2b), the marker of hematopoietic and
: s" t! M1 ?+ v5 ~) Cendothelial lineages Cdh5, and with the primarily endothelium-. i7 x9 t4 @! D" F( A! @( P7 k$ W+ Y6 E
specific cell surface marker CD31 (also known as Pecam1)
6 S6 L" p2 V) {. c2 O* m(supplementary material Fig. S1). By E9.5, Nkx2-5 was localized to2 a4 x  j+ a0 w6 y
the myocardial layer of the heart and did not overlap with EYFP. [+ u) G4 p8 I8 G( z
expression (Fig. 1Q, arrowheads; compare with 1O).
" s, ^2 b# H4 eReporter expression is mislocalized in the Er71
  u% x( v4 J) D/ \mutant- H( U6 K$ d% S) {( x) e& x! N& E
In the Er71 mutant, the hematopoietic and endothelial lineages are
2 I& J% q3 ~! W5 {2 t& r) v$ ?2 yabsent. However, no changes were observed in cellular
$ j) B. d6 S; d* ?4 z; p# dproliferation or apoptosis in the Er71 mutant embryo (Ferdous et+ S2 ^8 a9 k; a& G7 E( N3 \
al., 2009). Therefore, we crossed the ER71-EYFP reporter line into
! u* V, l( \9 c, ~! m9 ethe Er71 mutant background to define and characterize the cells
5 p( k) l# y8 Nthat should give rise to these lineages (Fig. 2). In the E7.75 wild-* a. P  I3 b4 v, V
type embryo, EYFP expression was observed throughout the2 g" d$ D- k4 W0 J$ L+ y
cardiac crescent, the dorsal aortae and the extra-embryonic
; I  A8 X. W* Emesoderm (Fig. 2A). By contrast, in the E7.75 mutant embryo the
2 _0 @% J6 e6 n* g2 O0 [expression pattern was less definitive. EYFP-positive cells were) p; Q8 z/ i: R* v
found in the extra-embryonic tissue; however, expression of EYFP
/ N" J# F+ |, _0 g$ h: hwithin the embryo proper was mislocalized (Fig. 2B, arrow). EYFP8 a( ]: i+ z& _1 h9 G3 s
expression appeared diffuse throughout the cardiac crescent (Fig.* c- G$ W. J1 \2 T8 w
2B, asterisk). In the wild-type embryo at E8.0, EYFP expression
) U* m; _) X, A( }3 _; swas observed specifically in the dorsal aortae, but not on the
2 r# |' }2 o3 w1 N/ `periphery of the embryo (Fig. 2C, arrowheads). EYFP expression" N9 {* r* J& B7 M5 k
was also observed in the presumptive endocardium within the) d/ ]8 O! |. h2 Y% M
linear heart tube (Fig. 2C). By contrast, the Er71 mutant embryos
% S4 F. V7 C4 Vexpressed EYFP only at the periphery of the embryo, which is
/ c" G( S" ~  T9 l! v; \# Glikely to represent paraxial mesoderm (Fig. 2D).
2 H4 B% u6 a: `Immunohistochemical analysis of ER71-EYFP and Pdgfra, a3 U' z, R6 o1 g5 V
marker of paraxial mesoderm, expression in E8.5 wild-type and  J, f. K+ j2 g" _  c3 K0 `7 a0 i* l
mutant embryos demonstrates that EYFP-positive cells are, a: C5 [/ T3 Q& @$ L. y( {3 B; Y
interspersed within the Pdgfra-positive mesoderm (supplementary
9 t& j' _4 ?# w" Nmaterial Fig. S2). FACS profiling showed that the frequency of# i1 C$ y9 F! S3 h
EYFP+ cells was increased in the Er71 mutant compared with the7 K( _  V( t& I7 x! y+ ?  ^4 s
wild-type control at E8.0 (Fig. 2G-I), but not at E7.75 (Fig. 2E,F,I).
' b: a- K3 U9 Q8 t0 b5 HThe apparent increase in the percentage of EYFP+ cells could be8 K4 r* }& p; Q: n1 k2 u
due to a reduction in the total number of cells without a change in
/ m& F, e: ^" c( l4 Ithe number of EYFP+ cells, as cell viability can be reduced by a/ d, `$ [/ w) E. e: N5 \
lack of vascularization. However, we ruled out this possibility as
4 t1 p4 ~0 [- O0 V' k) rwe also observed a doubling in the absolute number of EYFP+ cells
! }$ k, b1 h; n  M* X& ^: p# B% ~# lin E8.0  Er71 mutant embryos as compared with wild-type
8 `2 f5 p" a) x7 nlittermates (Fig. 2J)." L+ m6 B+ X; ]
These analyses demonstrated that cells that expressed the ER714 X( [: C- ]) U/ C, e
reporter were not only present in the Er71 mutant embryo, but were
  h+ O' Z# \, k. X& I% Ralso expanded in number. Since the Er71 mutant embryo lacks" o7 r& H* h. U! }$ F$ L( C
differentiated endothelial and hematopoietic lineages, we examined
' J: a5 D0 w" D! g% swhether these EYFP+ cells were arrested progenitors or cells
8 o8 V0 ?- U  e) N/ wredirected to other lineages. We used FACS analysis to examine the/ Y& C4 a* E! p! d; v9 Z* h
cell surface markers of the EYFP+ cells in the Er71 mutant and; d1 k, Y/ r( v1 ~. ]
wild-type backgrounds. Previous studies have established that
( l4 a% P( {6 j/ O9 A3 r) VPdgfra is expressed in the primitive streak at E7.0, but is restricted2 S, J) H; ~5 V/ E- A5 D2 i
to the paraxial mesoderm at the early head-fold stages (Takakura% b, I( |) B3 q* P( I
et al., 1997). Flk1 is expressed more broadly in mesodermal. p( n0 T) [8 E# |2 x- P
precursors (Ema et al., 2006a; Motoike et al., 2003), including the8 E5 ^! k! F) @+ S5 x) V
posterior portion of the primitive streak. Flk1+/Pdgfra–5 R0 C- o6 ?* J5 e6 [. g' E
cells mark2 G/ h# L5 m) ?
lateral plate mesoderm that will give rise to the endothelial and/ C0 T% y7 j% c# A* @1 L7 u
hematopoietic lineages and Flk1–
% A2 O2 K% x  v& ]/Pdgfra+ cells mark the paraxial  v9 R" N0 q6 `5 f3 m$ c" k
mesoderm. Flk1 and Pdgfra are known to be co-expressed in the
9 `2 a4 ~* K3 b# x% N, [1 ^cardiac crescent (Kataoka et al., 1997) and in cardiac progenitors4 B0 u4 ~2 W9 \, M% e' ~7 |
of embryoid bodies (EBs) (Bondue et al., 2011; Kattman et al.,  |% r- V) H# M' i
2006). In the present study, the frequency of Flk1+ cells within the0 \; L9 c" w+ `1 ~* c
EYFP+ population was significantly reduced at E7.75 and E8.0
& t# g" Q# D* a0 [) M! a# r(Fig. 3A,B,D,F). CD41 (Fig. 3D,E) and CD34 (Fig. 3E,F)( y% D8 M& @) N+ y( ~" s
expression was essentially absent at E8.0 in the EYFP+ cells of the+ e$ l! Y- y* C$ f
Er71 mutant. These results show that the lateral plate mesoderm6 h6 s2 v4 O7 a4 P5 s$ E0 S
lineage and its derivatives, i.e. the hematopoietic and endothelial
  d# ^  L+ ]6 w/ ^4 K0 ylineages, are reduced in the Er71 mutant.- n% I& M) o+ P* k4 P/ L9 M) r
In order to assess which lineages are expressing ER71-EYFP, we+ g1 ~7 w1 P+ I$ `# I
analyzed the EYFP+ cells using Flk1 and Pdgfra antibodies.: X9 I7 p2 N3 \. G9 q
Concurrent with the decrease of Flk1 expression at E7.75 and E8.0,, R+ T* V/ j" y0 F; M
we observed an increase in the frequency of EYFP+ cells that
; P* f+ `' x  m0 z/ Yexpress Pdgfra (Fig. 3A,B). This correlated with a significant2 i$ U* ~/ N2 V% p. s, J
increase of Pdgfra single-positive cells at E7.75 and a significant
* k1 F- s+ v1 l. ~increase of Flk1+/Pdgfra+ cells at E8.0 (Fig. 3A,C). There was also
$ S; F( @5 C/ Z5 s2 Ca trend toward expansion of Pdgfra single-positive cells within the
1 t" E# c/ N& h3 U) r& Z+ [EYFP+ population at E8.0 (Fig. 3A,C). To support these6 W; b0 O) {. }
observations, we used immunohistochemistry to analyze the EYFP; m' ?. b4 w# m4 H
expression patterns. In wild-type embryos, EYFP expression is* O( w/ T) _8 d/ u
distinct from Pdgfra+ paraxial mesoderm. A select number of
7 f- Z' Y! Z3 t) g' `- GEYFP-positive cells are found within this region; however, these
( ?9 l# C1 R" v# O# K# Pcells are Pdgfra–- t. G& q- E, ?* ^+ Q
(supplementary material Fig. S2A,B). In mutant
/ l: O: a7 u& DRESEARCH ARTICLE Development 138 (21)! m$ d2 J/ \- {+ i9 v7 w
DEVELOPMENTembryos, many EYFP+ cells are found within the Pdgfra+ paraxial2 m0 x! [: R1 M8 R: C, A# F3 O
mesoderm. Some of these cells are double positive for EYFP and
& D! t9 W  J3 k3 uPdgfra (supplementary material Fig. S2C,D). Likewise, in wild-
0 I- b7 Q# S0 ctype embryos, EYFP expression is distinct from troponin T (TnT)6 c: x/ h# u& D! e3 l4 U0 g5 B
+
$ g# t$ Y# k, |; o: z) c/ j& Kcardiomyocytes (supplementary material Fig. S2E). However, in7 A* k1 {" m9 I
mutant embryos double-positive cells are found (supplementary
% Y6 [/ I& E. S' a* B( [& c; `! smaterial Fig. S2F,G, arrows). One interpretation of these data is) E9 }. }, u0 K& r/ Z1 _' z9 R
that, in the absence of ER71, the EYFP+ progenitor cells, L8 j( T# b% d" t
differentiate towards the paraxial (Flk1–
- j# J0 Z9 c! t/ |1 v/Pdgfra+) and cardiac! {& @& i& c, Y7 H  x* i7 v: a
mesodermal (Flk1+/Pdgfra+) lineages at the expense of the lateral
( m* n' P& _3 N8 X$ qplate/hemangiogenic mesodermal (Flk1+/Pdgfra–% h' r/ c  V7 t
) lineage.
3 D1 Y  g' U) Z/ H+ hAn alternative explanation of these results is that EYFP is
% [! A% k+ }% b1 n+ ?% H, g% n. Sexpressed ectopically in cardiac (Flk1+/Pdgfra+) and paraxial# ]& O7 |- C1 N" {, U
(Flk1–
' B4 V; }8 Y2 Q+ v; J7 U! x/Pdgfra+) mesodermal populations in the absence of ER71.
& W! j& F% F1 ~' l; q( KIf this were the case, we would expect the cardiac and paraxial
* P/ T9 }- E/ A) K. C4 gmesodermal populations within the EYFP–/ E+ p8 t  d. ?2 p; }, t( b
gate to decrease in
4 v/ j1 ^$ C4 I/ U8 t2 g8 cthe mutant embryos because these cells expressed EYFP and
( O' T; k) l, k; z6 Z- V7 `would be included in the EYFP+ gate. Furthermore, we would* \5 Z& Y6 O: F0 I: P: `7 N
expect no change in the overall representation of these markers
) P1 j% P2 y# p. p# \! p5 Jin the unfractionated (the sum of EYFP+ and EYFP–1 w; D# {  P+ y
) gate. To3 d3 ]: p( A) q* J' a4 l+ U: m
examine this possibility, we analyzed unfractionated cells from3 ~/ p/ [/ n5 @6 e1 w  R4 Q
the whole embryo as well as EYFP–7 i  N* E% G: l3 l
fractionated cells. In the$ A2 J: Y1 f' S! ]$ N
EYFP–
9 m$ Z/ P' S  ^" \6 H4 F# S$ Pfraction no changes were observed in the mesodermal
" u0 N. P8 W5 w; ~populations at E7.75 (supplementary material Fig. S3C,D) and3 _$ Q+ F' i- o9 F. k( `0 |
E8.0 (supplementary material Fig. S3G,H). Analysis of the& Y$ }* P8 A+ Y, A, f
whole population (the sum of EYFP–
: P; u* L2 h0 h- aand EYFP+ gates) showed
1 R6 ]4 o2 ]3 Uno change in cardiac or paraxial populations at E7.75
, o5 J5 B4 `+ i9 v(supplementary material Fig. S3A,B); but at E8.0, we observed& u' G, m$ d; \- Z
a small, but reproducible, increase in the cardiac mesoderm
6 H. }; P5 J2 {3 T(Flk1+/Pdgfra+) (supplementary material Fig. S3E,F). We predict4 c1 p+ A5 l( J% B' [
that the increase in cardiac mesoderm in the whole embryo is1 v& k8 ^' b( _# S% J
small because the EYFP+ population is a minor fraction of the8 F) z/ o7 p! b% w
entire embryo.% g: I  L! D3 n0 j  ^
Collectively, our results support the model that, in the Er71
* Y3 j* n( D3 h7 w8 _% p- w7 Pmutant background, EYFP+ cells differentiate to the cardiac
4 _/ n  Z) o, A: dmesoderm lineage and contribute to the increase in cardiac5 {; y/ Q; c# F; ?+ b% S
mesoderm (Flk1+/Pdgfra+) markers, rather than cardiomyocytes or% C$ q. k5 S( I* ^- k+ U( _
cardiac progenitors ectopically expressing EYFP.
# i8 B# l. B9 U( E* d  F9 j4 b4805 RESEARCH ARTICLE ER71 governs progenitor fates
  B! L( m* i( }Fig. 2. The ER71 reporter is misexpressed in Er71 mutant embryos. (A-H)EYFP expression in Er71 wild type (A,C,E,G) and mutant (B,D,F,H)' @# l( x0 N$ O
mouse embryos at E7.75 (A,B,E,F) and E8.0 (C,D,G,H). Asterisks indicate the cardiac crescent (A,B) or forming linear heart tube (C,D). Arrowheads- k8 a9 Z! I6 V" {# N$ P
indicate the bilateral dorsal aortae (C,D) or its progenitors (A,B). Arrows point to regions in which EYFP is misexpressed in the mutant (A-D).
: y2 A- B1 v9 H( pRepresentative FACS profiles of individual embryos (E-H) show the percentage of EYFP positive cells per embryo. Scale bars: 200m. (I)The
; ?+ }5 m; q0 _percentage of EYFP+ cells for all experiments. (J)The average number of EYFP+ cells sorted per embryo. WT, wild type; HET, Er71 heterozygote; MT,$ ^& h. Z& \6 T/ \5 ?: `) M
homozygous Er71 mutant. ***, P<0.001. Error bars indicate s.e.m.: y& M" u: g" L2 x. F( k
DEVELOPMENT4806. S% K. m4 w5 J( W: I2 ~% }
Cardiac and skeletal muscle genes are
4 }$ s. K0 ?; A+ S% R* {  s9 Cupregulated in ER71-EYFP+ cells in Er71 mutant
6 P; P; d* H/ ^embryos7 A' N! h5 Z/ X' `: K& _
To further examine whether the EYFP+ cells in the absence of+ x# w6 T! M% R; M
ER71 were redirected to other mesodermal lineages, we performed
5 c: c, w- f6 {2 aa transcriptome analysis. We used an Affymetrix microarray
$ y6 i3 e" F& T3 n4 ^# }; Zplatform and examined the EYFP-positive and EYFP-negative& h. r3 v+ w9 ]
cells from wild-type and Er71 mutant littermate embryos. Genes
/ G- Q4 f; M0 e+ Sthat were significantly dysregulated were filtered based on the false; A/ w2 l& E/ z. j! x( F( @8 a7 s: j- l% S6 E
discovery rate (FDR<0.01 for EYFP+ versus EYFP–
% Y3 U2 h& p* F0 l; FDR<0.35 for& P2 C* K6 r9 b! U* U4 B- e
wild type versus mutant; FDR<0.01 for the interaction between  I( g! q  v! y3 l/ a$ @
these two variables). Clustering analysis was carried out
. w- ~0 S2 V- T+ asubsequently (Fig. 4A). Interestingly, there were no transcripts that
4 R2 r: h1 y7 p% F. Nshowed differential expression between EYFP–
% @7 D! W7 J; a4 j) }. |populations in the$ f' E2 s6 A# q8 Z8 E! Z5 T2 }5 E
Er71 wild-type and mutant backgrounds. Also, the cluster analysis
2 z6 s# M: k! X# t8 Jwas unable to resolve differences between the EYFP–
6 z, ~! b  Y: R7 F( z3 Y- opopulations6 z1 t& m6 R0 l. J
RESEARCH ARTICLE Development 138 (21)
9 q4 M4 P* r# W& B7 W$ e, wFig. 3. ER71-EYFP+ cells in Er71 mutant mouse embryos lack markers of hematopoietic progenitors in exchange for those of other, P7 u) {! a; N6 R4 K8 ~
mesodermal lineages. (A)Using fluorophore-conjugated antibodies and FACS analysis, we observed an enrichment of Pdgfra+ cells in ER71-EYFP+
7 R0 j, h, P# e/ l0 tmutant cells at E7.75 and E8.0. (B,C)Summary of multiple experiments comparing individual fluorophores Flk1 and Pdgfra (B), and combinations of
6 m+ q, w( a! j  F( }3 G. SFlk1 and Pdgfra (C). (D,F)Hematopoietic progenitor cell surface markers are not expressed in the embryo proper at E7.75, but there is a significant  |* b: \8 [- ]4 k
reduction in CD41 (D) and CD34 (F) at E8.0. (E)Summary of multiple experiments comparing hemogenic and endothelial markers CD41 and CD34.8 S, s( J5 C+ y
**, P<0.01; *, P<0.05. Error bars indicate s.e.m. LPM, lateral plate mesoderm; CM, cardiac mesoderm; PM, paraxial mesoderm.
" Z6 V/ i" V+ Z8 {4 G. yDEVELOPMENT(Fig. 4A). These transcriptome results for the EYFP–1 R( O. Z$ T. Y
cells support
' T# U+ h# r4 fthe notion that EYFP is not being expressed ectopically.
6 U# g' G. K, Z2 A' JFurthermore, this indicated that there were no significant non-cell-  H- R0 \! D* B8 D; p8 l: q
autonomous effects on gene expression resulting from the lack of
" m+ t. D# C% O  r" J1 a; n6 t5 RER71 at this time point." ~  F; `2 w( ^1 _& A# n5 t
Within the EYFP+ populations, the Er71 mutant and wild-type
) W3 \! I( I( o. T+ ?cells were significantly different (Fig. 4A). A large number of- O$ E- S: P! s1 Y! R- L
hematopoietic and endothelial transcripts were decreased in
! t  J2 t/ B& [8 F. ~6 Dexpression between  Er71 wild-type EYFP+ and  Er71 mutant
! l, g# y4 g, F. z& _EYFP+ cells (Fig. 4C). Importantly, ER71 expression was restricted, k3 b$ E1 y" ?7 `6 ^# o2 [" Y: o
to the EYFP+ cells in the wild-type background (Fig. 4C, arrow),  ]) y- F/ i# s' M+ _
confirming that the  Er71-EYFP transgenic model reflects1 ~" C5 X  Z2 g, P  o  F
endogenous ER71 expression. Other transcripts that were
. K/ u& e$ U  i  J* t/ Cdownregulated in the mutant EYFP+ cells compared with the Er71- b; E  d- l+ G7 D
wild-type EYFP+ cells included endothelial and hematopoietic+ b  }* u' o$ ~1 `  A& Y' O
transcripts such as Hbb-y, Fli1, Erg, Tal1, Cldn5, Cd93, Sox18,0 P% L, O9 |, q7 K
Cdh5, Sox7, Mmrn1, Eng and Nos3 (Fig. 4C). These data indicated
/ J; g: O/ J  d, T' A  Ithat the EYFP reporter-positive cells contributed to the endothelial# [3 S. X* V  m* s  M
and hematopoietic lineages and did not express markers of those  n5 B  r  O6 S  M
lineages in the absence of ER71, consistent with the previously
* w5 S# ]; Y6 s1 v& r! A7 }% `described phenotypes (Ferdous et al., 2009; Lee et al., 2008).+ O0 a" H5 A8 x) W  J5 f
Transcripts that were significantly upregulated in the Er71 mutant. }1 n0 j8 B$ K( f- D8 ]
EYFP+ cells compared with the Er71 wild-type EYFP+ cells were4 l2 g3 N" |* u7 l' v* p
associated with muscle lineages (Fig. 4B). These transcripts1 w+ s8 L+ x1 f- ?6 {. ]' ^1 d
included Smarcd3, Myl3,  Irx4, Tnni1, Myl2 and Tbx5 (cardiac-
9 E" \" }# p# J4 o& Drestricted transcripts); Acta1, Myl1, Svep1, Dpf3 and Cdo1 (skeletal
# i5 U9 V. [# V( amuscle-expressed transcripts); and  Acta2 and  Myl9 (vascular+ B& @9 H: s4 n; w- }$ \
smooth muscle-specific transcripts). These results suggested that# B. R6 |" p# m- {* u  _
the EYFP+ cells gave rise to other mesodermal lineages in the
8 E% f  q* i2 ?5 _absence of ER71.
0 _9 R: r6 e% y! L6 MIn order to determine whether the cardiac lineage was broadly
6 w1 c% l$ i1 _) l+ D5 O- z0 o2 haffected, we analyzed transcripts from the cardiac development8 [0 [  x: b. F! z: }
gene list in gene ontology (GO) terms and performed a hierarchical
- h: }5 y: l  d9 J7 ?clustering analysis. Similar to the results obtained from whole-4 S- f7 L" b3 @) \
genome analysis, wild-type EYFP+ cells segregated from the
# ~: I: a5 t# _) o0 D4 ]mutant EYFP+ cells (and all EYFP–% M9 ^  d9 p" ^" N( w
cells) (supplementary material
# T8 s( r9 `9 wFig. S4A). This result demonstrated that the difference between
. p" I# U- M6 `8 X/ tthese two populations can also be detected based only on cardiac
* x- G% l, |: m% {: ?development criteria. Some transcripts were decreased in EYFP+
4 f% [2 l& I+ ^  B/ e! [9 REr71 mutant populations compared with EYFP+ wild-type cells,
7 u/ M  z$ i/ Y- {( z$ X- I: iincluding a number of transcripts that are important for endocardial
  C7 Z$ C3 \# a" {- ^! j' i# sdevelopment (including  Eng,  Hhex,  Sox18,  Nfatc1,  Sox17)( f" Z7 d- L2 u
(supplementary material Fig. S4B). A number of transcripts were9 V) G+ w4 |/ q/ `
increased in expression in the EYFP+ Er71 mutant population' I1 G) @* ?1 \/ k/ d
compared with the other three groups (EYFP+ wild-type and both! n; g4 L8 \3 o  w/ m. T3 l1 k
EYFP–6 i0 H$ N& N+ Q4 k: w; ~
populations), including a number of cardiac transcription
  F- O' F' y) zfactors (Myocd, Nkx2-5, Irx4, Isl1, Gata6, Tbx20, Tbx5, Gata4,. T  g- ^, `. B, W; |/ K) Q1 a7 d
Smyd1 and Srf) and structure-function transcripts (Myl2, Myh7,
/ U+ }; V" q: I) @' W: W$ b! DMyl3, Tnnc1, Tnnt2, Tnni3) (supplementary material Fig. S4C). We2 f% n: J3 u" o
validated changes in selected transcripts by qPCR on independent$ t/ N9 V: Y* m* e, X1 _
samples and confirmed decreased expression of Er71, Tal1 and
8 M& x! U, m9 ECdh5 and the overexpression of cardiac transcripts including Nkx2-, J/ q7 `- `% h" V7 L2 z! h
5, Gata4 and Tbx5 in Er71 mutant EYFP+ cells (Fig. 5).' D- F3 d" x! p  ?5 @+ B5 g
In summary, our transcriptome analysis indicated that cardiac
% T; p- e4 d6 `& @6 J3 ugenes are over-represented in Er71 mutant EYFP+ cells, whereas
$ ~) J0 u$ g% l, e& e/ fendothelial, endocardial and hematopoietic genes are under-, Y6 A/ }, f% V; _: r- l+ F' L
represented./ [% g' C. p6 U) r
A novel Er71-Cre transgene marks endothelial and& Z3 Y1 W1 j. |- A1 p4 u6 y6 l" D
hematopoietic lineages
! J$ G/ _0 Y3 }( ?+ q. DIn order to determine whether ER71-expressing cells give rise to
3 q) _0 [1 M8 F# b" M1 g! morgans or programs other than the endothelial and hematopoietic7 k& q" a  F5 x" D4 k
lineages, we generated an Er71-Cre transgenic mouse model (Fig.
3 i2 U7 e# I. W  N6A). We obtained a total of six founder lines, with embryos that4 P' I1 V  t+ {% o7 U
showed similar expression patterns after breeding with the Rosa-
5 S: K; D+ L6 M6 J+ a$ l5 A4807 RESEARCH ARTICLE ER71 governs progenitor fates
7 z2 |& l7 j+ A" RFig. 4. Transcriptome analysis reveals that hemato-endothelial) N* s; q* J! l( m' c
and cardiac lineages are dysregulated in the Er71 mutant
! Y! S* k' N4 d# Q/ \& Q+ P7 B% Xembryo. Transcriptome analysis was performed on EYFP+ and EYFP–
6 w  W1 Z  B! F# A' n  A1 k1 ucells sorted from wild-type and Er71 mutant littermate mouse embryos.
/ }8 s6 ~( q7 |; T5 \1 ~(A)Clustering analysis shows that wild-type and mutant EYFP–
' c. Y; \; Z1 W+ r- O* ]0 @' m$ ecells are
- _5 @2 ^' F* S2 q+ \indistinguishable, whereas EYFP+ cells from wild-type and mutant0 [+ Q* E4 I* R) e1 c$ d. ?
embryos show distinct gene expression profiles. (B)Transcripts/ C& M. N0 ]  i
upregulated in the EYFP+ mutant progenitors include cardiac and
# }* C: M0 i) r9 G/ Oskeletal muscle genes. (C)Downregulated transcripts in the Er71
  N7 A5 W- \. B+ d% W( omutant background include hemato-endothelial transcripts, including6 i$ O9 D' _2 ?7 V) h* T6 X
Er71 (Etv2) (arrow).6 Z  J& ^( a4 L% }
DEVELOPMENT4808
! H% c0 e' X$ r2 u! C, c3 a# H9 TlacZ reporter mice (supplementary material Fig. S5). Two
6 n, `) R" s$ ]+ Utransgenic lines were crossed to the Rosa-EYFP reporter mice and+ t. u; o# ^6 I. @
used for immunohistochemical and FACS analyses. Our results5 F0 j" I4 Z' f( v9 Q
revealed that E11.5 embryos were marked by Rosa-EYFP or Rosa-2 X) d* @. f4 H
lacZ in the endocardium, cardiac cushions, vasculature,
$ |6 T7 I+ c6 P' h' mmesenchyme and the fetal liver, which is the stage-appropriate site
3 @; W$ f" F( I: ~# u- s9 Vof hematopoiesis (Fig. 6B; supplementary material Fig. S5G,H;& A4 s" s$ X" u
data not shown). Hearts of P3 neonates were marked by Rosa-6 J; ]% H7 u- m* g- `5 `" U
EYFP in the vascular structures (Fig. 6C). Co-staining for EYFP6 N& k/ K  a4 O; K& }, [3 d
and desmin, an early muscle-specific structural protein, showed
# i3 U" d- A& d. g! ]that the Rosa-EYFP reporter did not overlap with desmin staining: g1 e; A8 g! G# ~
in the heart at either time point (Fig. 6B,C). FACS analysis of
0 x% J1 i& z* j3 @# zwhole E11.5 embryos showed that 7-8% of cells in the E11.5
  h2 i: J) g8 e' q8 W6 V, T* zembryo were derived from ER71-expressing cells (Fig. 6D,E). Of: n# @* s! X) A% D! [. G
these EYFP+ cells, ~12% were endothelial (CD45–! S1 E9 A  G: h- d+ ^
CD41–. f. x3 Z. m" W, Q+ C- K
Tie2+;( k$ P) w% }) G8 g
Fig. 6F), 23% were non-erythroid hematopoietic cells (CD45+, also6 b9 P3 h+ Y/ C. y3 p' u
RESEARCH ARTICLE Development 138 (21), k. `8 ?4 L0 o$ h; [
Fig. 5. Representative transcripts from the cardiac program are overexpressed in the Er71 mutant. (A-F)qPCR analysis was performed on" ^+ J" _: O) ~5 E& B
RNA isolated from EYFP+ cells in the wild-type (embryos 1 and 2) and mutant (embryos 3 and 4) backgrounds. We observed the loss of Er71 (A),
: ?5 Y. r& G6 H# T- i4 ECdh5 (B) and Scl (C) expression and an increase in the expression of representative cardiac program transcripts including Nkx2-5 (D), Tbx5 (E), and. ?7 k( I4 ^# j
Gata4 (F). Error bars indicate s.e.m." t/ @& t1 d) u, P6 f  T9 p
Fig. 6. Genetic fate-mapping studies indicate that ER71-expressing cells give rise to the endothelial and hematopoietic lineages.
: p$ v2 ^2 D  L* t, b5 s- B2 ~/ r(A)The transgenic Er71-Cre mouse model used for these studies. (B,C)Immunohistochemistry for GFP (green) and desmin (red) and DAPI staining
* d, e4 \. G7 N4 d& H(blue) in E11.5 (B) and P3 (C) heart. a, atria; bw, body wall; cu, cardiac cushion; fl, fetal liver; v, ventricle. (D)A representative FACS profile showing7 ?% x4 |* _, r$ u
EYFP+ versus side scatter width (SSW). (E)ercentage of Rosa-EYFP+ cells from all experiments (n9). (F-H)EYFP-positive cells were gated and
( l- t+ c9 e$ P. o3 Ranalyzed for lineage contribution. Representative FACS profiles are shown for (F) endothelial lineage (CD41–
. {  S! F* \. GCD45–
% e' Z- R5 }$ \9 ?8 UTie2+) cells and (G) CD41+. M$ Y4 ?1 q1 c, ]
CD45+, (H) CD45+ Ter119–
4 r1 L+ f, _( h. N" h% Qand Ter119+ CD45–8 g: T; C+ Q" r. D
hematopoietic lineage cells. (I)ercentage of Rosa-EYFP+ cells of each lineage from all experiments
; L2 e7 ^3 {% x% r7 K(n9). Error bars indicate s.e.m. DEVELOPMENTknown as Ptprc; Fig. 6H), and 13% were erythroid (Ter119+; also
* r0 T/ |% d& H6 e2 w6 Z& kknown as Ly76; Fig. 6H). Interestingly, the EYFP+ population
- U8 D. y' S2 }, Csegregated into two populations of varying EYFP expression (Fig.
1 m  i+ s" O- `  V: O* {$ e6D). Ter119 primarily marked the EYFP-low population, whereas+ G+ a" j, d- `& a7 g) `3 j' T1 i
endothelial and other hematopoietic markers primarily marked the& w$ k2 U! _  j, s
EYFP-high population (data not shown). This suggests that the) f! ^6 n  ]' ^  L6 C. R9 o
Rosa reporters are expressed weakly in erythroid cells and might& e) Q( @+ @' A# ]
therefore inefficiently mark this population./ J3 B; z4 ~! a' o6 W2 s  C
ER71-EYFP-expressing cells give rise to0 }* J1 c7 U2 V6 \) i% @8 @) k0 x
myocardium in the Er71 mutant
: V% [8 p* `9 k! fTo determine whether ER71 reporter-positive cells could produce
  q/ T" I7 u9 T$ b3 valternative lineages in the Er71 mutant, we crossed the Er71-Cre
3 Y3 {5 @; O, x' Xand  Rosa-EYFP alleles into the  Er71 mutant background. As, u1 z. ?8 Q: V: ]. g. b
observed with the ER71-EYFP reporter, Er71 mutants carrying the+ O0 [: {' K6 O5 y
Er71-Cre and  Rosa-EYFP alleles displayed altered EYFP. U& p: d8 u; W
expression patterns. Compared with the Er71 wild-type embryos at# G) ~- V* d% n
E8.0, in which Rosa-EYFP is expressed in the yolk sac, vessels and" V% |/ E: T' f; x6 H3 j
heart tube (Fig. 7A), the Er71 mutant embryos had robust EYFP/ z: G4 ?4 h" {
expression localized in the allantois, posterior mesoderm and
' ^; u. [2 p3 d# c, p5 X: W; J9 V5 |paraxial mesoderm (Fig. 7F). We speculate that the increased- ^* w7 ^0 g9 v
expression in the allantois and the posterior mesoderm is due to the4 z' r, H7 @4 E1 J) Z' v
progenitor cells differentiating to alternative mesodermal lineages,5 n  l2 |) v9 A: _  n4 c
perturbed migration patterns, or a combination of the two. Embryos
9 m+ ]) s' f& O" |$ w0 ?" Z0 ?were analyzed using immunohistochemical techniques for co-5 _  x" s4 J6 v& W+ @; ]
expression of EYFP and Nkx2-5, a cardiac transcription factor,- P  E) `2 a9 w. Q  m: t+ A
EYFP and desmin, or EYFP and troponin T, a cardiac sarcomeric
- N: G3 p0 g8 ~; d5 ]: Cprotein. In wild-type hearts at E8.0, EYFP was expressed in the
+ T, ?3 N% I6 Q/ r* }endocardium, the major vessels such as the dorsal aortae and in1 x8 u7 \7 f( i: D
hematopoietic cells within the heart (Fig. 7B-E). There was no
  @# T6 a4 `  q+ f9 Soverlap of EYFP expression with Nkx2-5, desmin or troponin T.+ {0 K# d% v' h
In the Er71 mutant embryo, the vessels and endocardium were
3 J; D" j7 F5 W, f& o/ x; M9 l7 aabsent. However, EYFP expression persisted in the heart. In the7 [8 P' w$ ]# a
heart of the Er71 mutant embryo, all EYFP-expressing cells had an
" o+ q* v: a. y$ ^Nkx2-5-positive nucleus (Fig. 7G,H). Some of the EYFP-
* R( J. ^0 B% q/ O6 Fexpressing cells were also positive for the structural proteins! D7 V2 g" b5 c7 v
desmin and troponin T (Fig. 7I,J, arrows). These results support the$ W/ k+ R) u0 u1 M
notion that the EYFP+ cells are capable of differentiating to the" Y  ?* ?# ?1 M  `4 [
myocardial lineage in the absence of ER71. It is likely that6 `" ]5 G# b: [' }0 m4 j" h
progenitor cell populations are also capable of differentiating# u6 q4 L# N; B
toward other lineages depending on the context of the spatial and
9 j$ f/ O1 M; `& E" |0 o" ?temporal cues that they are exposed to during embryogenesis.
5 X" T6 H3 k) Q" y. bHowever, the heart is one of the few organs present at E8.0 and( U/ T. ~; |! a
Er71 mutant embryos are nonviable by E9.5. Therefore, the
% @+ W1 ^+ }5 ?# klethality of the  Er71 mutant limits our ability to evaluate the- q  }" S. P- r5 }1 |
contribution of EYFP+ progenitors to other lineages that develop5 e! Y5 U2 z) A& Y5 N
later during embryogenesis.
  i" B9 O' g% a2 q' k4 y* z9 zER71 overexpression suppresses development of
3 l0 ?7 y' E+ ?' {8 J7 n# o+ fthe cardiac lineage
1 a1 u6 }$ e4 ]5 Z9 Y. kTo complement our analysis of the  Er71 mutant embryo, we. n4 t) B) }5 W
overexpressed ER71 using a doxycycline-inducible embryonic
4 |& |; O6 D5 b2 m: g: Bstem cell (ES)/EB system. An ES cell line in which expression of
. x7 M/ L! Z5 n& YER71 can be induced by doxycycline treatment was generated by
( P# T% j; v# F  Oa cassette exchange method (Iacovino et al., 2009). ES cells were
& c6 B- X9 e: y* `( G, N1 v) K7 minduced to form EBs in differentiation media and cultured for 10
; h. w, C) {9 Cdays with or without 0.5 mg/ml doxycycline from day 3. In the. f' L- x6 U! B. K
ER71-overexpressing EBs, we observed a decrease in the
8 c. \  L8 V' g" a4 _; ?expression of troponin T, which we quantified by comparing the
' m! i6 s# S+ m; _positively stained area with the total area of the EB (Fig. 8A-E).3 r9 z# B" d1 o& f6 R8 d! l% G
We also observed a decrease in cardiac gene expression (Nkx2-5,( l4 G' j+ e% ]. @
Tbx5 and  Gata4), as quantified by qPCR analyses (Fig. 8F).! O. z. Z2 z% N  d: v. u9 m2 p/ e' B
Finally, we quantitated the ability of the EBs to beat with edge' }! J. }: S8 ]; t0 J/ g
detection. The doxycycline-induced EBs had a dramatic reduction
" X! _2 O7 S" E; [  o& S" C: c8 Vin contractility (Fig. 8G) and in percent shortening (Fig. 8H).
  G1 R( ~5 h, ?* i0 C0 bCollectively, these results further support the notion that ER71
3 _4 r5 `7 R3 fsuppresses the myocardial fate of mesodermal progenitors.3 q' H. ^: w1 G# i2 D
DISCUSSION
0 y, q% A8 @$ ~/ H$ I: N$ o7 WAn array of signaling cascades and networks govern the fate of
5 k! x' H+ f; \0 x2 ]progenitor cell populations and their contribution to mesodermal
; w$ a. m& w* L8 j6 O$ S6 Ulineages during embryogenesis. Recent studies have demonstrated% ~$ D$ H5 Y. t& [6 U8 ]
4809 RESEARCH ARTICLE ER71 governs progenitor fates5 P  q8 N, Q7 c" z* r0 C. n( X, U
Fig. 7. Genetic fate-mapping studies in the Er71 mutant show that the affected lineages give rise to myocardium in vivo. (A,F)Whole-1 F) ~' W& o* `5 q
mount images of Rosa-EYFP expression in Er71 wild-type (A) and mutant (F) mouse embryos. The red line indicates the plane of sectioning for the
* [, B# U" W4 g9 z$ Bcorresponding panels. (B,C,G,H) Immunohistochemical analysis of EYFP and Nkx2-5 shown at low (B,G) and high (C,H) magnification. (D,E,I,J)+ u5 v1 c& p  a
Immunohistochemical analysis of EYFP and desmin (D,I) or troponin T (E,J) expression. ys, yolk sac; h, heart; al, allantois; da, dorsal aortae; ec,
* a5 ]2 z9 V# u3 }endocardium; mc, myocardium. Arrowheads indicate EYFP colocalization with desmin or troponin T. Scale bars: 200m in A,F; 20m in B-E,G-J.6 A0 Z2 i  r( y4 l( |
DEVELOPMENT48109 n* `* H1 z7 _+ t2 ?* j6 _
that various progenitors give rise to multiple mesodermal lineages.
. ^. t( f% ^4 x6 kThis broad developmental capacity is evident from the fact that4 b, U2 W  @2 q% J  M3 G1 Z6 b
multipotent progenitors have been shown to differentiate to diverse+ j* y: ~" T: C
lineages, including hematopoietic, endothelial, cardiomyocyte and
" C3 }9 a/ D+ |3 Tsmooth muscle lineages. We have previously demonstrated that
* b# O4 r. _( [) nER71, a member of the Ets transcription factor family, is essential
& U* C7 k3 y7 Y6 C2 {  ?3 z+ ^9 jfor the development of mesodermal lineages. Er71 mutant embryos
& q! z) o9 U* \2 Olack hematopoietic and vascular lineages and are nonviable. Here,
8 c% F; V# I% Q$ \  dwe have further defined the role of ER71 during mesodermal
  A% v9 |. r) d) `! C' t1 g% Vpatterning and have made three new discoveries that advance our
! J3 L% R0 o7 t2 S# q% @( Gmechanistic understanding of mesodermal fate decisions during1 w! c, L! _4 H& r0 d+ n: q
development.
- P3 F6 I4 c- ^) s# BFirst, we have defined the expression pattern of ER71 during- ?4 f5 G  M$ u/ |. q# O- p
embryogenesis using a newly generated transgenic reporter
" h& V: {0 S# cmouse model. Using immunohistochemical techniques, we6 g& j: K8 O6 w; ?3 O; k1 G8 c: ~
demonstrated that ER71 is largely co-expressed with Tie2 in
" a5 C$ v7 n6 Q" [0 iendothelial and hematopoietic progenitors. In the absence of
6 E- p0 Y( V$ Y0 n5 QER71, we observed that these progenitors are expanded in
( @' W+ P1 W6 p% [4 knumber but do not represent the hematopoietic and endothelial9 E" @: d/ [% R2 q) C2 l6 ^, y
lineages; rather, they are redirected to other mesodermal; ~& S0 I6 |2 m5 a& N+ K' V" y+ x
lineages, including the cardiac lineage. These data also show that
. `1 ?  C1 A0 F* g% QER71 is not required for the initiation or maintenance of its own
5 ^4 a& i7 L0 c0 [- l+ t& Xexpression. In the absence of ER71, this increase in the number' W. e4 Q+ Y# Q1 E3 T
of progenitors (EYFP+ cells) might represent a delay in cell( L  ]# x" @$ d  ]7 J2 {" Y
cycle withdrawal due to the lack of distinct mesodermal lineages
& x* D8 S6 N! b5 h(i.e. hematopoietic and endothelial lineages) or, alternatively,
$ e1 n! V0 i$ |8 R) Qdecreased programmed cell death involving these progenitors.* _# _- q% v) U* W3 l8 U" V% E
We did not observe an increase in apoptosis in the Er71 mutant
/ U' d- K" `, `" G1 P( Dembryo compared with its wild-type littermate control (Ferdous' d0 C- R7 U( D6 [# N" e
et al., 2009). Thus, we hypothesize that the progenitor cell
+ a7 u+ K0 l% Q2 y6 q# Texpansion in the absence of ER71 is a result of the lack of
$ b) W" o! C5 @9 gcellular differentiation to hemato-endothelial lineages.
) X2 N, M/ U" v/ p/ GOur second discovery defined the fate of the ER71 progenitors/ C, t: F: O2 [& c% \! U- X
in the presence and absence of ER71. Using genetic fate-mapping8 J% D) C7 ]8 J+ d9 b
strategies, FACS and whole-genome analysis, we demonstrated that1 @9 _+ C) j, P
ER71 progenitors give rise to hematopoietic, endothelial and: }" _8 `' u; n. i  N
mesenchymal lineages. In the  Er71 mutant background, these# d9 u/ I" a. _3 p$ h
progenitors (EYFP+ cells) produced other mesodermal lineages,
8 ]% o" w# H6 C" ^& x* C' D: C8 J/ _including the cardiomyocyte lineage (supplementary material Fig.2 M2 M. r" i: U: G5 g* X0 y9 n, d
S6). Moreover, our FACS and transcriptome data supported the
" n1 n* B; T' j2 i8 ]9 p% m( ~+ `notion that paraxial mesodermal programs (transcripts enriched in
2 a$ e9 f! ?! L2 Nthe skeletal muscle lineage) were increased in the Er71 mutant
2 f# J8 I% w9 }" Q/ Pprogenitors. Accumulating evidence suggests that the cardiac and: U9 v$ B! [) j5 Z* D7 p
hematopoietic lineages develop from a common progenitor and that
# R* U9 B; u' B. \9 K$ [/ l" sthe specification of these lineages is inversely regulated. We
* b0 U* Q. ?; ~+ a' d0 m# ~0 Urecently demonstrated that Nkx2-5 has a dual transcriptional
: O8 C% e8 S/ N/ C: q- Q% fregulatory role during embryogenesis as it represses Gata1-
% q( F* R# _( s  k5 o9 G  {3 Mmediated hematopoiesis and promotes cardiogenesis of the
" D- W* t! r1 amultipotent mesodermal progenitors (Caprioli et al., 2011). The! [: D/ _8 b1 w; E! k! y3 m- l+ }! c
results of the present study further support the plasticity of the$ w- K! I$ g3 Z) b8 B0 R3 d- C
ER71 progenitors and their capacity to respond to cues and
# _& q2 Q/ M" T  b: m$ Gcontribute to other mesodermal lineages.  N% {  d2 E# E4 m$ p
The origin of endocardium relative to the myocardium has: m- J. ?& i& R. M+ @& @
been controversial (Harris and Black, 2010). Studies in zebrafish
0 d* p' R6 a8 u, v# H1 V( Sand chick suggest that endocardial and myocardial lineages are; N8 K* p1 A0 Z/ K* u
distinct from the point of gastrulation, and there are no9 ^; x1 _' S& V( F) s, L1 c; E
multipotent progenitors (Cohen-Gould and Mikawa, 1996; Wei8 l  o1 u4 G. S9 B4 ^5 J
and Mikawa, 2000). By contrast, lineage-tracing studies in
- n" [; c+ q) kmouse embryos and ES cells suggest that endocardial
3 ^/ R; `6 E+ u8 }* Qprogenitors are specified as multipotent progenitors in the7 G9 d2 W7 g' t
cardiac crescent and cell fate is later specified to either$ w3 q, p* ?9 C! h9 z7 S. W
endocardial, myocardial or vascular smooth muscle fates1 _+ U8 Y$ t5 d( i, r
(Kattman et al., 2006; Misfeldt et al., 2009). In our novel ER71-) d; y. i- ^5 Y& E
EYFP reporter mice, we observed weak co-expression of Nkx2-6 n/ C6 j7 M1 J
5 protein and EYFP in the cardiac crescent at E7.75. However,# W0 G' B3 W: {; r$ s2 s
lineage-tracing experiments showed that cells that expressed
3 G2 A9 |2 s  ]" J# }, C6 ~ER71 during any point in their development did not become
* T9 i6 T" g% Tcardiomyocytes. By contrast, Nkx2-5-Cre lineage-tracing' B5 E- s4 N$ f9 [5 \
experiments show that at least some of the endocardial lineage% H+ R" S. R6 M
derives from cells that expressed Nkx2-5 (Stanley et al., 2002).
  ^0 O7 Y* e) dTaken together, these observations favor a model in which
; l/ t/ W# \7 ^4 j8 ecommon progenitors of endocardial and myocardial lineages are
8 y! s2 R4 t; U9 ^  Gspecified as Nkx2-5+ cells in the cardiac crescent, but those that
2 w8 S) v+ g$ P  u1 V; SRESEARCH ARTICLE Development 138 (21)
  T8 `$ o5 Z0 I6 m' k: e% CFig. 8. Overexpression of ER71 in differentiating EBs inhibits  E; z; D" o7 f/ X
cardiac development. (A-D)Sections of representative EBs either
$ O$ E( |. J6 ?untreated (A,C) or induced to overexpress ER71 (B,D) stained with
- w: V& A: A1 MHematoxylin and Eosin (C,D) or anti-TnT (A,B). (E)Quantitative analysis of! \, a6 ]0 B5 U& w2 j
the troponin T-positive area in 33 induced (Dox) and 42 untreated* N# ]% ?* w( ~4 z1 Q3 Q
sections. (F)qRT-PCR confirms that representative cardiac program/ v5 C& O9 s" o2 J" ]" P; e
transcripts (Nkx2-5, Tbx5, Gata4) are downregulated in ER71-
: i2 ?+ ~  h! a$ Y9 G' w" c7 Foverexpressing EBs. (G,H)Extent of contraction and relaxation after 26 r. E* G2 w1 Y7 }, a' k4 m
seconds of stimulation (G) and percent shortening (H) are reduced in9 t0 P9 P6 _1 ^( A5 a
ER71-overexpressing EBs. ****, P<0.001; *, P<0.05. Error bars indicate4 s. P0 M: Z, h/ R
s.e.m.4 A, N8 [6 @& u( y" {
DEVELOPMENTwill become endocardium will downregulate myocardial( o+ ?; w0 }: w# \& Y4 _
potential, including the expression of Nkx2-5. Once ER71 is
' X& m$ E, o# W2 q( j0 N' Yexpressed, the fate is restricted to endocardium, and not0 j2 x' s  m& n; G( b) C& _! L
myocardial lineages. Future studies are warranted to decipher the
4 b: e. s5 l# e! e8 Z2 P6 kmechanism that governs the specification of endocardial cells4 k0 q, m8 o' J0 q, E5 j( Q; l3 a* \
within the cardiac progenitor pool.7 K" O+ u+ ]' T1 H1 I
Our third finding is that ER71 overexpression repressed cardiac
5 y5 t; A$ H4 D- j7 O1 Y5 g4 p4 Spotential. These results support the notion that ER71, like Nkx2-5,
, h2 o, q" V- S5 X$ O% l( f3 chas reciprocal and overlapping dual roles in the specification of  c/ u+ L/ f1 O6 j
mesodermal lineages. Our previous studies demonstrated that* T9 Y, B( v7 P( Q
Nkx2-5 overexpression suppressed hematopoiesis, but not the
2 j& Y* @- x& ~1 j3 eendothelial program (Caprioli et al., 2011). We further defined that0 W/ _  H. s5 c2 m! V
Nkx2-5 could, in a context-dependent fashion, transcriptionally; Q& i6 g9 p# m
activate  Er71 and promote endocardial lineage development
: p; w, \# Z" t9 Q+ u(Ferdous et al., 2009). Collectively, our previous studies and recent
/ B( [; y9 M9 ?( p' Aresults support the notion that distinct transcriptional networks can,
+ l, Y: J5 ]& X6 F9 M$ fin a context-dependent fashion (and dependent on the local
8 M: S' |+ a  q% |# l: uenvironment), activate a hematopoietic or endothelial program and& l& X' q) ~* ?' W
antagonize the cardiac program. These studies further emphasize* A" Y# P& |+ p% u2 h, h
the plasticity of progenitors and their contribution to distinct7 _4 t5 P3 g$ y
lineages.
6 ~5 f/ c+ G7 U5 U. d  {In summary, our data support a dual role for ER71 in the
; X1 N% Z' ?1 l6 Jspecification of the endothelial and hematopoietic lineages and the! I: Z: J! C2 Z( W$ s9 M
suppression of other lineages (i.e. myocardial and paraxial
2 c' j! z- Z5 Z# `mesodermal cell fates) (supplementary material Fig. S6). Our
! x7 L" q' l0 j0 _) zstudies further support the notion of multipotent mesodermal; B' M8 \5 n, D0 D
progenitors that are dependent on transcriptional cascades and other3 J" ~+ X: f8 M+ \
cues to direct them to populate one or more lineages. Moreover,9 Z+ q- p& t1 b" }
our studies reveal that global deletion of a single gene (i.e. Er71): L; k- L: G5 Y6 \: ~$ g+ n
aborts one or more lineages and redirects the cells to other lineages
% b5 |' R4 j$ P; Mthat would not typically arise from those progenitors. These studies- Y7 z$ Z( G7 i9 D% ^" k6 r- a, `
further our understanding of the regulatory mechanisms that govern# C% t7 v' W% Y  t. W9 e, V3 h
mesodermal cell fate decisions and embryogenesis." d/ @9 P, ]" P8 O
Acknowledgements
1 n, H+ Z# o7 C+ W# \We thank Jennifer L. Springsteen and Alicia M. Wallis for assistance with- m, {7 `) R1 |' N; ~
histological analyses and animal care.3 H1 ]8 c) }7 s0 [. G2 m6 I3 h
Funding
# ^8 ?( W; a8 t; Z9 DFunding support was obtained from the National Institutes of Health [U01
2 z, J7 Z3 q! [2 @% EHL100407 and R01 HL085729 to D.J.G.]; and the American Heart Association
2 c  }4 T8 @# V) `/ K[Jon Holden DeHaan Foundation 0970499 to D.J.G.]. Deposited in PMC for6 z" F8 U' ~: g! N7 }" m
release after 12 months.. h. {5 f- S3 e- s# @
Competing interests statement
) g2 k9 ?" g. M9 Q  w* W. ZThe authors declare no competing financial interests.
, U' r6 U+ {1 P! u' `$ s; nSupplementary material$ u% R6 E4 _! u0 O8 r2 r; e
Supplementary material available online at
0 J! N0 D) Y1 q; }8 Chttp://dev.biologists.org/lookup/suppl/doi:10.1242/dev.070912/-/DC1- |1 o! A" a) L* _9 ^% {. F3 y
References" B6 ~- _4 u$ p" [& v" p
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a
8 t# w4 c% m4 b8 Gpractical and powerful approach to multiple testing. J. R. Statist. Soc. B 97, 289-1 l) j4 s# `4 z
300.7 q) o9 f: H; D( W- w( \" Z8 F
Bondue, A., Tannler, S., Chiapparo, G., Chabab, S., Ramialison, M.,( J" K/ A' g8 c" Q3 r% S
Paulissen, C., Beck, B., Harvey, R. and Blanpain, C. (2011). Defining the3 o- ?$ T3 }- D  N) c  h# A, ^
earliest step of cardiovascular progenitor specification during embryonic stem) O  ]0 b$ G  R2 E! |4 h' j5 a( k
cell differentiation. J. Cell Biol. 192, 751-765.
4 G  d8 K+ m" O: }/ y0 ~Caprioli, A., Koyano-Nakagawa, N., Iacovino, M., Shi, X., Ferdous, A.,! ^& @% _" m+ E
Harvey, R. P., Olson, E. N., Kyba, M. and Garry, D. J. (2011). Nkx2-5
# F2 a  I  d* r0 hrepresses Gata1 gene expression and modulates the cellular fate of cardiac
3 F: `9 d7 a1 v7 J# G+ Aprogenitors during embryogenesis. Circulation 123, 1633-1641.
4 z. w5 O2 \* ~; qCarbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B. and Lewis, S.
- ~- h2 N  z5 r- |+ _' q5 o(2009). AmiGO: online access to ontology and annotation data. Bioinformatics0 |: a# j2 a3 G
25, 288-289.
% d! S; s4 R/ j9 T: jCohen-Gould, L. and Mikawa, T. (1996). The fate diversity of mesodermal cells
6 Y: H' e5 y. Vwithin the heart field during chicken early embryogenesis. Dev. Biol. 177, 265-: }1 Q4 a; S. w( Q( t# c$ ~
273.$ u0 e2 \. @, k+ d! |
Davis, L. A. and Zur Nieden, N. I. (2008). Mesodermal fate decisions of a stem3 c3 e2 M5 t- t; X0 E5 F1 _
cell: the Wnt switch. Cell Mol. Life Sci. 65, 2658-2674.
" B. U$ N4 O& Jde Hoon, M. J., Imoto, S., Nolan, J. and Miyano, S. (2004). Open source
0 j" `2 I, p4 s  n) Dclustering software. Bioinformatics 20, 1453-1454.4 R7 {5 b4 g) h
De Val, S., Chi, N. C., Meadows, S. M., Minovitsky, S., Anderson, J. P., Harris,7 g8 i$ d$ s+ [6 j% f" C
I. S., Ehlers, M. L., Agarwal, P., Visel, A., Xu, S. M. et al. (2008).
5 @- x  `. N! f) BCombinatorial regulation of endothelial gene expression by ets and forkhead* M1 L3 |% V6 S" a8 o
transcription factors. Cell 135, 1053-1064.
2 F2 h; q. B# N2 F: \3 ODowns, K. M. and Davies, T. (1993). Staging of gastrulating mouse embryos by
7 v& e5 d  ?) ?1 I% S7 X, Pmorphological landmarks in the dissecting microscope. Development 118, 1255-
0 {+ M7 ~0 R" G" L7 K7 A. o& @1266.: \% M6 t; T: V* J) c* `
Dumont, D. J., Yamaguchi, T. P., Conlon, R. A., Rossant, J. and Breitman, M.
+ f& @; e9 K+ N8 UL. (1992). tek, a novel tyrosine kinase gene located on mouse chromosome 4, is# ~1 A0 U  t* g2 B" X5 q% F0 v
expressed in endothelial cells and their presumptive precursors. Oncogene 7,: Y1 d# Y# f; a% b( A3 X( S' A
1471-1480.$ d% T9 s& g6 T7 g1 [% k
Ema, M., Takahashi, S. and Rossant, J. (2006a). Deletion of the selection; i5 p4 g' }* a3 J2 r, {( c
cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1" H, X, K: s$ U9 _4 B
expression in multipotent mesodermal progenitors. Blood 107, 111-117.
( A& w4 w  H+ ~  ]6 Q) t2 ~Ema, M., Yokomizo, T., Wakamatsu, A., Terunuma, T., Yamamoto, M. and
2 T- H2 N1 c1 ^8 K* d+ m: OTakahashi, S. (2006b). Primitive erythropoiesis from mesodermal precursors
# M+ l$ {6 w/ X+ ?expressing VE-cadherin, PECAM-1, Tie2, endoglin and CD34 in the mouse$ z; |. z7 t9 h) C
embryo. Blood 108, 4018-4024.4 L6 {' P3 d& P7 R! K
Ferdous, A., Caprioli, A., Iacovino, M., Martin, C. M., Morris, J., Richardson,
, ~" Y7 v4 d  t8 QJ. A., Latif, S., Hammer, R. E., Harvey, R. P., Olson, E. N. et al. (2009). Nkx2-
# r4 s) s. d, k5 transactivates the Ets-related protein 71 gene and specifies an endothelial/
: C/ }) I; T- K- e0 f' Cendocardial fate in the developing embryo. Proc. Natl. Acad. Sci. USA 106, ; t  K& K* I9 O% a' O- {; j+ k9 @
814-819.; e! P! \9 [0 W+ E- @- c( Y
Harris, I. S. and Black, B. L. (2010). Development of the endocardium. Pediatr.
! F0 Z6 ~9 C  b9 xCardiol. 31, 391-399.' x, K/ j+ y+ P, G8 E1 [
Iacovino, M., Hernandez, C., Xu, Z., Bajwa, G., Prather, M. and Kyba, M.
. I  H" a8 @3 E6 q- n: ^# x(2009). A conserved role for Hox paralog group 4 in regulation of hematopoietic2 h* w. H* ]$ _" D6 ?2 H0 g
progenitors. Stem Cells Dev. 18, 783-792.
9 i: r; g, F1 h9 Z% s( UIrizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J.,
# Q2 Y' m% K& g' k* cScherf, U. and Speed, T. P. (2003). Exploration, normalization and summaries
  ~4 ~# y; m! _: r% Aof high density oligonucleotide array probe level data. Biostatistics 4, 249-264.5 G6 d2 w0 a/ a1 V3 w) |+ ]& T
Ivey, K. N., Muth, A., Arnold, J., King, F. W., Yeh, R. F., Fish, J. E., Hsiao, E. C.,
' {" x  |& q  E# a2 nSchwartz, R. J., Conklin, B. R., Bernstein, H. S. et al. (2008). MicroRNA
/ |4 u3 h/ w# X' T/ F9 iregulation of cell lineages in mouse and human embryonic stem cells. Cell Stem
% Z% R) [* E3 p0 _3 q. N- P/ bCell 2, 219-229.
- c3 }# v) j2 U% J  B$ Q, YKataoka, H., Takakura, N., Nishikawa, S., Tsuchida, K., Kodama, H.,' [& K  v0 }7 ]8 T6 K/ M
Kunisada, T., Risau, W., Kita, T. and Nishikawa, S. I. (1997). Expressions of
7 I: y8 s, y7 n% l7 X! n! pPDGF receptor alpha, c-Kit and Flk1 genes clustering in mouse chromosome 5
. O) e6 z' {3 r+ T2 g3 J. l, vdefine distinct subsets of nascent mesodermal cells. Dev. Growth Differ. 39, 729-
5 d) y+ E- Z0 F- C3 p740.
% C& a# |9 y% w% y+ iKattman, S. J., Huber, T. L. and Keller, G. M. (2006). Multipotent flk-1+
# N; f2 J  J  Z$ g9 [7 zcardiovascular progenitor cells give rise to the cardiomyocyte, endothelial and
' ^6 E) |- Q0 e2 nvascular smooth muscle lineages. Dev. Cell 11, 723-732.# d6 c7 S, B& Y- {4 [: X* T+ E  z
Kaufman, M. H. (1992). The Atlas of Mouse Development. London: Academic
% k6 {8 |6 L* mPress.+ N# F9 g# s! G3 B' S+ |: }
Kennedy, M., Firpo, M., Choi, K., Wall, C., Robertson, S., Kabrun, N. and
; r6 o' X$ d8 T4 G) z9 m( D; nKeller, G. (1997). A common precursor for primitive erythropoiesis and
& a6 y! o3 a3 O6 j9 o; n$ @0 r- ddefinitive haematopoiesis. Nature 386, 488-493.0 T, ~' P+ a; E
Kisanuki, Y. Y., Hammer, R. E., Miyazaki, J., Williams, S. C., Richardson, J. A.* l7 S. \; W- O) r+ v* [* N# D" G  m
and Yanagisawa, M. (2001). Tie2-Cre transgenic mice: a new model for
+ a1 C- N$ i3 m" ?4 V& r5 Nendothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230-242.
( |$ X8 [( \; lLee, D., Park, C., Lee, H., Lugus, J. J., Kim, S. H., Arentson, E., Chung, Y. S.,
& [. d& N9 S2 W8 SGomez, G., Kyba, M., Lin, S. et al. (2008). ER71 acts downstream of BMP,
, Z" j, k0 i1 e0 iNotch and Wnt signaling in blood and vessel progenitor specification. Cell Stem
+ W3 ?9 F. n0 ?Cell 2, 497-507.
: I3 w& z3 N. O6 d6 d# {, xLi, W., Ferkowicz, M. J., Johnson, S. A., Shelley, W. C. and Yoder, M. C.8 D8 r  W+ {$ s; g/ E' N4 f/ ^
(2005). Endothelial cells in the early murine yolk sac give rise to CD41-expressing3 c) E5 h6 J1 [
hematopoietic cells. Stem Cells Dev. 14, 44-54.
3 X/ A+ q2 k5 X1 u; S3 Z* JMisfeldt, A. M., Boyle, S. C., Tompkins, K. L., Bautch, V. L., Labosky, P. A. and5 k! M1 Q( o9 `/ Q! r$ R* K" n- ]3 c
Baldwin, H. S. (2009). Endocardial cells are a distinct endothelial lineage& p7 m* w) L, K9 K# o+ n
derived from Flk1+ multipotent cardiovascular progenitors. Dev. Biol. 333, 78-8 P" s( f" m2 C5 y1 x
89.* Y% i3 V4 X% Y
Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y.,
1 b1 i2 }! P1 F& y; i6 E/ J6 _3 aQyang, Y., Bu, L., Sasaki, M., Martin-Puig, S. et al. (2006). Multipotent
. W9 M8 W  V0 _* J8 x8 Q4 Yembryonic isl1+ progenitor cells lead to cardiac, smooth muscle and endothelial8 p& A) T7 K/ ]# ~% y  {# s
cell diversification. Cell 127, 1151-1165.
) ^6 r  J1 M4 dMotoike, T., Markham, D. W., Rossant, J. and Sato, T. N. (2003). Evidence for# S0 s8 Y; E. @% H( V& Y) D8 l2 l5 _
novel fate of Flk1+ progenitor: contribution to muscle lineage. Genesis 35, 153-( _# Z* T6 f6 \; o; Q9 N$ z' {  n
159.
6 z5 L  M1 I% q( ?Omelyanchuk, N., Orlovskaya, I. A., Schraufstatter, I. U. and Khaldoyanidi,
- h2 \! }3 i$ F/ [S. K. (2009). Key players in the gene networks guiding ESCs toward mesoderm.: ~$ Y% B+ \6 y" w+ j/ v1 b
J. Stem Cells 4, 147-160.
# T) }* G, w% s0 O3 W" j1 E+ D0 t& ]Park, M., Yaich, L. E. and Bodmer, R. (1998). Mesodermal cell fate decisions in
/ F2 Y- m, L/ Y/ d" e3 J# r* PDrosophila are under the control of the lineage genes numb, Notch and# M  N6 r* f# \; B% f
sanpodo. Mech. Dev. 75, 117-126.2 K' S3 a5 j+ e& a) C
4811 RESEARCH ARTICLE ER71 governs progenitor fates
  |2 l% S0 t# L, _3 @* ?1 E8 yDEVELOPMENT4812
: T, L2 m0 A9 gSarb, S., Cimpean, A. M. and Grigoras, D. (2010). Tie2 expression in human
2 f+ A- b  M: ]/ @embryonic tissues. Rom. J. Morphol. Embryol. 51, 81-84.
. C- D: @: r" cSchlaeger, T. M., Bartunkova, S., Lawitts, J. A., Teichmann, G., Risau, W.,  n/ Q8 h0 b* S' x' E6 E5 @) I7 \! q
Deutsch, U. and Sato, T. N. (1997). Uniform vascular-endothelial-cell-specific! {2 R: Y# U3 R$ _* e
gene expression in both embryonic and adult transgenic mice. Proc. Natl. Acad.4 h# R" J9 Q$ r) h
Sci. USA 94, 3058-3063.
3 g! U: Y8 R: `% [! L: M, [Schnurch, H. and Risau, W. (1993). Expression of tie-2, a member of a novel
+ e; \: Z. a; r* Z% f# M! jfamily of receptor tyrosine kinases, in the endothelial cell lineage. Development
! M3 ~, s; g% }4 `5 C119, 957-968.) ?  z$ i0 r- c3 M( t/ E4 U
Smyth, G. (2005). limma: linear models for microarray data. In Bioinformatics and) R6 Y$ R. [" f% F" F2 e2 p/ f" W
Computational Biology Solutions Using R and Bioconductor (ed. V. J. C. Robert  Z! c' e  n4 w, V% P
Gentleman, W. Huber, R. A. Irizarry and S. Dudoit), pp. 397-420. New York:
) o$ h% ?- E6 ^$ cSpringer.
5 @, C7 ]( l  ~" ?+ o) hStanley, E. G., Biben, C., Elefanty, A., Barnett, L., Koentgen, F., Robb, L. and
/ Y8 I* g( d/ c6 e0 y/ C- |4 ~2 ]9 SHarvey, R. P. (2002). Efficient Cre-mediated deletion in cardiac progenitor cells& [7 @8 Y& ?/ X3 K; ]7 S5 l
conferred by a 3UTR-ires-Cre allele of the homeobox gene Nkx2-5. Int. J. Dev.9 G6 g2 l! Q, o# t9 S" S& Q
Biol. 46, 431-439.
& j( j* m! E$ }2 nTakakura, N., Yoshida, H., Ogura, Y., Kataoka, H. and Nishikawa, S. (1997).5 w3 o" ?/ P! Y/ ?) M% |
PDGFR alpha expression during mouse embryogenesis: immunolocalization, g4 ?; _  A* f3 X! ~
analyzed by whole-mount immunohistostaining using the monoclonal anti-3 w* n2 k- W1 J: i+ l
mouse PDGFR alpha antibody APA5. J. Histochem. Cytochem. 45, 883-893.
. Z' H6 a- {7 iWei, Y. and Mikawa, T. (2000). Fate diversity of primitive streak cells during heart5 b* x8 ]' h, A
field formation in ovo. Dev. Dyn. 219, 505-513.3 X/ O; m* Y# _$ E9 j; b
Wu, S. M., Fujiwara, Y., Cibulsky, S. M., Clapham, D. E., Lien, C. L.,3 k: f6 f8 ^7 |
Schultheiss, T. M. and Orkin, S. H. (2006). Developmental origin of a4 P4 B3 G2 r  H+ D% R3 [  n2 _( B3 r
bipotential myocardial and smooth muscle cell precursor in the mammalian5 Y* A, E: _# U$ S
heart. Cell 127, 1137-1150.9 n% K" D6 B  ^/ o
RESEARCH ARTICLE Development 138 (21)
. I3 C! H9 k+ zDEVELOPMENT




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5