干细胞之家 - 中国干细胞行业门户第一站

标题: Amyloid as a natural product [打印本页]

作者: 杨柳    时间: 2009-3-6 00:43     标题: Amyloid as a natural product

1 Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037
9 d) X  Y$ H: Z
3 b/ S: e& a" O6 Y3 e, Q3 n  Z: F2 Department of Cell Biology and the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, CA 92037
. ~8 k* J4 v7 e" ^" H: V( \
8 K" _# X5 {9 Y% w& WAddress correspondence to J.W. Kelly, Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037. Tel.: (858) 784-9601. Fax: (858) 784-9610. E-mail: jkelly@scripps.edu; or W.E. Balch, Department of Cell Biology and the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037. Tel.: (858) 784-2310. Fax: (858) 784-9196. E-mail: webalch@scripps.edu8 f% H- z- g  V* g' u

% ?# U6 H! K8 c5 z1 u9 k: Y( RAbstract
1 E' O! m' G  l
; U; v! r6 k& ?Amyloid fibrils, such as those found in Alzheimer's and the gelsolin amyloid diseases, result from the misassembly of peptides produced by either normal or aberrant intracellular proteolytic processing. A paper in this issue by Marks and colleagues (Berson et al., 2003) demonstrates that intra-melanosome fibrils are formed through normal biological proteolytic processing of an integral membrane protein. The resulting peptide fragment assembles into fibrils promoting the formation of melanin pigment granules. These results, along with the observation that amyloid fibril formation by bacteria is highly orchestrated, suggest that fibril formation is an evolutionary conserved biological pathway used to generate natural product nanostructures.
- \4 ^* n9 N* P, \) e1 K
0 k! K9 a) A' A5 rProtein folding disorders are now recognized to result in a large number of human diseases including those involving amyloid fibril deposition (Aridor and Balch, 1999; Kelly, 1996). Amyloid is generally considered to be a nonnative quaternary structure that forms in response to a defect in the normal folding or clearance pathways. Amyloid fibrils appear in electron micrographs as 100-? diameter twisted rods composed of a cross–?-sheet structure that selectively bind the dye Congo red and the environment-dependent fluorphore thioflavin T. Two publications now provide tantalizing evidence that fibril formation (amyloidogenesis) may be an evolutionary conserved mechanism for creating biologically active quaternary structures. One paper, by Marks and colleagues (Berson et al., 2003, this issue), examines the mechanism of fibril formation in the melanosome, and a second describes the formation of extracellular fibers on the cell surface of E. coli and Salmonella that are involved in the colonization of inert surfaces (Chapman et al., 2002)., G+ a7 `  g4 u, j' Y) z

7 L5 L! {' }7 I7 b5 UMelanosomes are subcellular organelles that specialize in the synthesis of pigment granules (melanin) in melanocytes and retinal epithelial cells (Marks and Seabra, 2001; Raposo and Marks, 2002). Melanin is a detergent-insoluble matrix whose assembly is a consequence of a carefully orchestrated metabolic pathway. Marks and colleagues (Berson et al., 2003) have now extended our understanding of this pathway. They found that mammalian melanocytes produce a glycoprotein called Pmel17, a type I integral membrane protein, that polymerizes into amyloid-like fibrils, on which melanins are sequestered and concentrated during the multi-stage process of melanosome biogenesis. Remarkably, they demonstrate that endoproteolysis is required for the intralumenal assembly of Pmel17 into fibrils. The key protease is the proprotein convertase furin, a Ca2 -dependent membrane-associated protein that recycles between the cell surface, endocytic compartments, and the trans-Golgi network. Furin cleaves Pmel17 during the maturation of stage I premelanosomes to stage II–III melansomes to yield a 28-kD ? fragment associated with the membrane and an 80-kD  cytosolic fragment (M). Only the proteolytically processed M fragment of Pmel17 is able to form fibrils that can be recovered in a detergent-insoluble fraction, a characteristic of most amyloid fibrils.
. e7 l) a. r' {- ]+ `( y$ @% Y0 g: V& h: A3 ], V
In bacteria, electron microscopy has shown that the Curli protein (17.5 kD) forms a tangled fibrous matrix on the outside of the cell wall. Curli has all the hallmarks of typical amyloid (Chapman et al., 2002). Formic acid treatment is required to depolymerize the CsgA protein comprising Curli. Curli CsgA fibers are SDS resistant and adopt a cross–?-sheet amyloid fibril structure as revealed by far-ultraviolet circular dichoism spectroscopy, a red shifted Congo red spectrum and a thioflavin T binding–induced fluorescence identical to that exhibited by pathological amyloid fibrils. Curli amyloidosis, like melanosome biogenesis, is highly orchestrated by two E. coli operons, csgAB and csgDEFG. The CsgB protein, likely in collaboration with CsgF, is thought to nucleate CsgA fiber formation. The CsgG lipoprotein localizes to the inner leaflet of the outer membrane, possibly serving as the Curli assembly platform. CsgD is a FixJ-like transcription factor on the same operon with CsgE, -F, and -G, which may be assembly factors. Purification of CsgA-His6 on a nickel column revealed a metastable fiber-free solution of CsgA. Upon standing, this CsgA-His6 solution formed fibrils indistinguishable from those characterizing membrane-associated Curli. Thus, other genes in the operon may be required to prevent intracellular amyloidosis, consistent with the recent results of Lindquist and colleagues (Ma et al., 2002), demonstrating that intracelullar prion (amyloid) formation in yeast may be very toxic.
- g8 A' O  w& H' p9 N  p# v1 n* a8 V- y
Extracellular Curli formation by bacteria together with the intralumenal formation of pMel17 M fibrous striations by mammalian cells demonstrate that amyloid-like fibrils can be a natural product〞a quaternary protein nanostructure formed by biological systems. The fact that mammalian cells utilize a fibril structure to mediate function emphasizes that tuning of protein structure by proteolysis can be a very powerful determinant for expanding the biological diversity of polypeptides. It is apparent that E. coli and Salmonella go to great lengths to control amyloidogenesis, as evidenced by the dedication of at least two operons to harness the potential of the amyloid quaternary structure to perform a useful biological function, and to prevent misassembly elsewhere in the cell. It is almost certain that numerous mammalian genes are also used to control amyloid-like fibril formation within organelles such as the melanosome to allow to its potential to be recognized. Interestingly, the process of normal mammalian fibril formation in the melanosome pathway demonstrated in this issue (Berson et al., 2003) is similar to the regulated proteolytic processing of precursor proteins leading to the formation of other lysosome-related organelles, including lamellar bodies in lung epithelial cells and Weibel-Palade bodies in endothelial cells. The proposal that biological control of fibril formation is stringently controlled is consistent with the idea that transport from the ER to intracellular and extracellular compartments is likely to require rigid control of the assembly state of the protein (Aridor and Balch, 1999). These examples of biological fibrillogenesis from three different organisms are likely only a prelude to the discovery of other amyloid-like nanostructures that represent intermediates or end products in metabolic folding pathways.
% Q# l; f$ i' A% ?
$ F2 z: G) N/ y+ D# G0 `9 l% dPathways whereby fibril functions as a natural product are strikingly reminiscent of the pathological process of amyloidogenesis, where a subset of "amyloidogenic" precursor proteins are proteolytically processed into amyloidogenic peptide fragments by one or more proteases (Kelly, 1996). Human amyloid pathologies known to require proteolytic processing of a precursor protein include Alzheimer's disease where the A-? peptide is liberated from a large APP precursor protein by ?- and -secretases, secondary systemic amyloidosis where the SAA protein is liberated by a minimum of one proteolytic cleavage, and type II diabetes where the aberrant proteolytic processing of pro-islet amyloid polypeptide leads to amyloid inclusions in the endoplasmic reticulum. Most relevant to mammalian melanosome amyloidogenesis is familial amyloidosis of Finnish type (Chen et al., 2001) and familial British dementia (Kim et al., 2002). The D187N and D187Y variants of gelsolin are aberrantly processed by furin. Normally, wild-type gelsolin is stabilized by Ca2  binding in the trans-Golgi resulting in the burial of the furin consensus site. In the mutants, this stabilization does not occur and furin is allowed access to a protein it does not normally cleave. Furin cleavage liberates an amyloidogenic fragment that then assembles into amyloid fibrils.+ b! {; H, l, P( {  ~" U
* k) {9 J7 K; M
References+ s' o- q* ~# f$ T
# X# U) ]* ], @8 R: e
Aridor, M., and W.E. Balch. 1999. Integration of endoplasmic reticulum signaling in health and disease. Nat. Med. 5:745–751.
& [; S/ \) ~9 X
. T3 z$ b' T% i  M/ n5 Z* X/ eBerson, J.F., A.C. Theos, D.C. Harper, D. Tenza, G. Raposo, and M.S. Marks. 2003. Proprotein convertase cleavage liberates a fibrillogenic fragment of a resident glycoprotein to initiate melanosome biogenesis. J. Cell Biol. 161:521–533." `* ?3 }( v6 H
; k) }6 a. H: U! v
Chapman, M.R., L.S. Robinson, J.S. Pinkner, R. Roth, J. Heuser, M. Hammar, S. Normark, and S.J. Hultgren. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science. 295:851–855.4 M& N" O$ x% h& E

! |+ L2 L& [* q) i5 A- l0 |Chen, C.D., M.E. Huff, J. Matteson, L. Page, R. Phillips, J.W. Kelly, and W.E. Balch. 2001. Furin initiates gelsolin familial amyloidosis in the Golgi through a defect in Ca(2 ) stabilization. EMBO J. 20:6277–6287.( `3 q  A) f6 C- U: [; a, O
; Q- g2 Y; ~* u( V
Kim, S.H., J.W. Creemers, S. Chu, G. Thinakaran, and S.S. Sisodia. 2002. Proteolytic processing of familial British dementia-associated BRI variants: evidence for enhanced intracellular accumulation of amyloidogenic peptides. J. Biol. Chem. 277:1872–1877.
) X5 a0 C5 O1 p1 f" b/ t0 R5 L+ L5 x$ P) ]8 ^. d6 l- C1 K" [* d0 q
Kelly, J.W. 1996. Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6:11–17.- n4 r. G9 A! e  F$ g$ Y% \5 c

" |6 B( i$ J$ j+ `( m  VMa, J., R. Wollman, and S. Lindquist. 2002. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science. 298:1781–1785.1 J: z% t; E* Q5 D% j  i" |& ~: r& y# E

) J3 Y2 A/ _* j! [% gMarks, M.S., and M.C. Seabra. 2001. The melanosome: membrane dynamics in black and white. Nat. Rev. Mol. Cell Biol. 2:738–748.
) `2 z) e6 `- F
' }) p) e$ L" |( i( I0 fRaposo, G., and M.S. Marks. 2002. The dark side of lysosome-related organelles: specialization of the endocytic pathway for melanosome biogenesis. Traffic. 3:237–248.(Jeffery W. Kelly1 and William E. Balch2)
作者: 罗马星空    时间: 2015-5-25 19:10

好困啊  
作者: 张佳    时间: 2015-6-22 16:09

干细胞分化技术
作者: xuguofeng    时间: 2015-7-18 21:28

表观遗传学
作者: aakkaa    时间: 2015-8-2 18:27

彪悍的人生不需要解释。  
作者: aakkaa    时间: 2015-8-17 02:05

我想要`~  
作者: s06806    时间: 2015-9-16 08:01

转基因动物
作者: laoli1999    时间: 2015-10-8 00:01

干细胞行业门户 干细胞之家
作者: 陈晴    时间: 2015-10-14 10:10

鉴定完毕.!  
作者: laoli1999    时间: 2015-11-25 10:10

我仅代表干细胞之家论坛前来支持,感谢楼主!  
作者: 红旗    时间: 2015-12-7 21:10

不错,看看。  
作者: 榴榴莲    时间: 2015-12-18 11:27

小生对楼主之仰慕如滔滔江水连绵不绝,海枯石烂,天崩地裂,永不变心.  
作者: 生物小菜鸟    时间: 2016-2-24 13:18

我的啦嘿嘿  
作者: 初夏洒脱    时间: 2016-5-3 18:33

先看看怎么样!  
作者: 考拉    时间: 2016-5-6 21:27

希望大家帮我把这个帖发给你身边的人,谢谢!  
作者: 舒思    时间: 2016-5-7 19:14

老大,我好崇拜你哟  
作者: 3344555    时间: 2016-5-14 19:08

祝干细胞之家 越办越好~~~~~~~~~`  
作者: 生物小菜鸟    时间: 2016-5-26 22:54

来几句吧  
作者: bioprotein    时间: 2016-6-2 07:35

其实回帖算是一种没德德,所以我快成圣人了  
作者: feixue66    时间: 2016-7-17 17:50

谢谢分享  
作者: leeking    时间: 2016-8-1 20:09

真好。。。。。。。。。  
作者: laoli1999    时间: 2016-8-14 21:18

这样的贴子,不顶说不过去啊  
作者: sky蓝    时间: 2016-9-8 16:26

努力,努力,再努力!!!!!!!!!!!  
作者: 昕昕    时间: 2016-9-17 10:28

呵呵 哪天得看看 `~~~~  
作者: renee    时间: 2016-9-21 13:27

初来乍到,请多多关照。。。  
作者: 刘先生    时间: 2016-9-21 14:11

我想要`~  
作者: 糊涂小蜗牛    时间: 2016-9-23 18:27

21世纪,什么最重要——我!  
作者: 小丑的哭泣    时间: 2016-9-26 22:10

非常感谢楼主,楼主万岁万岁万万岁!  
作者: cjms    时间: 2016-9-28 19:29

哈哈 瞧你说的~~~  
作者: 红旗    时间: 2016-10-2 08:22

加油啊!!!!顶哦!!!!!支持楼主,支持你~  
作者: htc728    时间: 2016-11-13 10:10

设置阅读啊  
作者: ikiss    时间: 2016-11-21 07:43

怎么就没人拜我为偶像那?? ~  
作者: SCISCI    时间: 2016-12-1 11:18

我是来收集资料滴...  
作者: 橙味绿茶    时间: 2016-12-26 09:35

初来乍到,请多多关照。。。  
作者: SCISCI    时间: 2017-1-2 19:41

世界上那些最容易的事情中,拖延时间最不费力。  
作者: 三星    时间: 2017-1-4 13:35

顶你一下,好贴要顶!  
作者: lalala    时间: 2017-1-8 10:27

胚胎干细胞
作者: 干细胞2014    时间: 2017-1-20 09:18

楼主,支持!  
作者: myylove    时间: 2017-1-31 16:44

嘿嘿......哈哈......呵呵.....哟~呼  
作者: 昕昕    时间: 2017-2-10 22:42

今天的干细胞研究资料更新很多呀
作者: dmof    时间: 2017-2-16 05:38

照你这么说真的有道理哦 呵呵 不进沙子馁~~~  
作者: 旅美学者    时间: 2017-4-20 22:19

很好!很强大!  
作者: 张佳    时间: 2017-4-28 18:46

应该加分  
作者: cjms    时间: 2017-5-4 00:09

神经干细胞
作者: leeking    时间: 2017-5-10 01:35

正好你开咯这样的帖  
作者: 一个平凡人    时间: 2017-5-16 17:21

鉴定完毕.!  
作者: 生物小菜鸟    时间: 2017-5-19 14:27

干细胞从业人员  
作者: 初夏洒脱    时间: 2017-5-25 00:53

不错啊! 一个字牛啊!  
作者: beautylive    时间: 2017-5-26 15:34

做对的事情比把事情做对重要。  
作者: aliyun    时间: 2017-6-8 02:27

病毒转染干细胞
作者: 王者之道    时间: 2017-6-25 03:26

不错,看看。  
作者: nosoho    时间: 2017-7-7 07:49

我好想升级  
作者: keanuc    时间: 2017-7-8 14:03

谢谢分享  
作者: dada    时间: 2017-7-13 20:09

帮你项项吧  
作者: 罗马星空    时间: 2017-8-5 05:51

看贴回复是好习惯  
作者: htc728    时间: 2017-8-7 14:10

孜孜不倦, 吾等楷模 …………  
作者: 小倔驴    时间: 2017-8-11 16:52

干细胞之家是国内最好的干细胞网站了
作者: dada    时间: 2017-8-28 06:09

干细胞疾病模型
作者: dr_ji    时间: 2017-10-25 21:47

哈哈,看的人少,回一下  
作者: whyboy    时间: 2017-10-29 15:25

加油啊!偶一定会追随你左右,偶坚定此贴必然会起到抛砖引玉的作用~  
作者: DAIMAND    时间: 2017-11-27 14:30

干细胞之家
作者: 橙味绿茶    时间: 2017-11-30 03:45

我的啦嘿嘿  
作者: 未必温暖    时间: 2017-12-29 21:45

不知道说些什么  
作者: qibaobao    时间: 2018-1-8 12:16

神经干细胞
作者: mk990    时间: 2018-1-30 20:42

努力~~各位。。。  
作者: 8666sea    时间: 2018-3-5 01:22

都是那么过来的  
作者: 365wy    时间: 2018-3-25 08:26

原来这样也可以  
作者: dd赤焰    时间: 2018-3-25 12:35

加油啊!!!!顶哦!!!!!支持楼主,支持你~  
作者: 求索迷茫    时间: 2018-4-7 00:30

希望可以用些时间了~````  
作者: Whole    时间: 2018-4-24 20:01

表观遗传学
作者: happyboy    时间: 2018-5-11 16:08

越办越好~~~~~~~~~`  
作者: 老农爱科学    时间: 2018-5-18 22:00

有才的不在少数啊  
作者: pengzy    时间: 2018-5-26 21:22

皮肤干细胞
作者: yunshu    时间: 2018-5-27 19:53

淋巴细胞
作者: youngcell    时间: 2018-6-5 08:36

干细胞之家是国内最好的干细胞网站了
作者: awen    时间: 2018-6-11 02:46

这个站不错!!  
作者: Diary    时间: 2018-6-13 11:54

先顶后看  
作者: foxok    时间: 2018-6-25 03:41

21世纪,什么最重要——我!  
作者: 追风    时间: 2018-6-30 23:16

干细胞研究非常有前途
作者: 泡泡鱼    时间: 2018-7-6 07:34

自己知道了  
作者: renee    时间: 2018-7-7 09:24

留个脚印```````  
作者: 张佳    时间: 2018-7-10 22:00

嘿...反了反了,,,,  
作者: tian2006    时间: 2018-8-1 05:14

干细胞存储  
作者: 若天涯    时间: 2018-8-6 05:08

慢慢来,呵呵  
作者: 命运的宠儿    时间: 2018-8-13 06:53

干细胞治疗糖尿病  
作者: 生科院    时间: 2018-9-25 11:43

祝干细胞之家 越办越好~~~~~~~~~`  
作者: 快乐小郎    时间: 2018-10-20 14:00

哦...............  
作者: sshang    时间: 2018-10-24 01:20

很好!很强大!  
作者: awen    时间: 2018-11-3 07:09

长时间没来看了 ~~  
作者: tian2006    时间: 2018-11-6 19:54

抢座位来了  
作者: 橙味绿茶    时间: 2018-11-17 09:10

我回不回呢 考虑再三 还是不回了吧 ^_^  
作者: kaikai    时间: 2018-11-22 02:50

干细胞库  
作者: 安生    时间: 2018-12-16 03:06

谢谢分享  
作者: 榴榴莲    时间: 2018-12-22 16:34

ips是诱导多能干细胞induced pluripotent stem cells iPS
作者: 3344555    时间: 2018-12-30 05:34

有才的不在少数啊  
作者: dr_ji    时间: 2019-1-10 17:29

感觉好像在哪里看过了,汗~  
作者: dglove    时间: 2019-2-18 13:27

干细胞与动物克隆
作者: 天蓝色    时间: 2019-2-22 19:14

干细胞分化技术
作者: apple0    时间: 2019-2-28 16:43

厉害!强~~~~没的说了!  
作者: 丸子    时间: 2019-3-1 23:27

皮肤干细胞




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5