干细胞之家 - 中国干细胞行业门户第一站

标题: A standardized kinesin nomenclature [打印本页]

作者: 杨柳    时间: 2009-3-6 08:12     标题: A standardized kinesin nomenclature

1 Department of Plant Biology, The University of Georgia, Athens, GA 30602
$ ^  Z# b# `) |. e
! ]( O6 {3 P+ P  H+ @2 Department of Genetics, The University of Georgia, Athens, GA 30602
7 r$ J2 C$ |( M7 @2 H4 a" H
1 r8 G$ J# c" [6 p  s3 C( q3 These authors contributed equally to this work and are listed alphabetically' X1 \4 A- A" l& t4 z
4 l, T6 \1 L( l' S  z
4 Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305* _0 y' n+ N2 w/ s4 s! W

/ L$ W4 h7 _2 g4 V% i5 Ludwig Institute for Cancer Research, 3080 CMM-East, 9500 Gilman Drive, La Jolla, CA 920930 P6 N7 I1 R; F5 z8 U2 [0 N
. \- O6 ]3 K8 r4 N6 Q
6 Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720
) Y* x; L" g8 O8 q+ H' w
6 b' u- y. ?* b6 Y5 L- t- ]7 Department of Cell Biology, Duke University Medical Center, Durham, NC 27710& u( ?/ d( X  e3 y* {8 m& b
  ~% i7 u9 r2 Z/ |
8 Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, La Jolla, CA 920936 \/ v& `/ a: B) ]5 R* L4 q' y

6 ~, r1 a! y# K# L) U/ a9 Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46628$ v  s# h3 H8 X$ y2 u% p
7 z$ O) a; f) e( d) \3 u
10 Department of Cell Biology and Anatomy, University of Tokyo, Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan/ t- p" m+ ?. S9 z* Z

  }/ T7 q5 K2 S  L5 a- R11 Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany+ Z' h# e& l6 H# V8 t+ r( d: E. b

  C/ e0 }* D1 k" T" g+ M/ [  V12 Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 803096 [, A7 d# I# M# U, }

* A0 y( x  h, D  z; p3 p; K13 Institute for Chemistry and Cell Biology, Harvard Medical School, Boston, MA 02115
) O5 M0 v9 U3 ?4 |& Y) x) f
$ {; |- N5 I0 I14 Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523
' H" j# ~- a; y1 j7 ?  Y7 P, s; r5 f- G+ q# p5 O8 H0 U  a2 C
15 Department of Biology, Indiana University, Bloomington, IN 47405! h; P  l+ H5 o1 w
5 ?. n4 y, O" _' C* `
16 Adolf-Butenandt-Institut, Zellbiologie, University of Munich, Schillerstr. 42, 80336 Munich, Germany# X, M8 |. Y9 q7 V- B
1 ?# A5 o1 f, }0 g: l( \
17 Center for Genetics and Development and Section of Molecular and Cellular Biology, University of California, Davis, CA 95616
1 ~) b& D& m2 E5 x# b; m8 a2 [+ Y- J& F% K9 l
18 Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94143
4 ~/ Y4 T) L, G8 g; u, ], B/ m, w0 S2 ^$ x3 D
19 Department of Biochemistry and Molecular Biology, Indiana University Medical Sciences Program, Bloomington, IN 47405
: Y2 N1 \4 n) s; l# ~
0 p0 N0 Q, x% o2 R* ~- g20 Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195
, Q; e2 N5 t* r2 i% _, F' b9 ~' c7 E" S& e: U8 X! q
Correspondence to Carolyn J. Lawrence: triffid@iastate.edu
$ Z' m/ `! p5 q& \7 p& J& ?
# ^- G' z1 \) p5 P! c6 p, }7 uAbstract5 G  |: S" a) A& b7 P+ `# F" v

% m; H/ i  `" ~. |) {# e; ^$ XIn recent years the kinesin superfamily has become so large that several different naming schemes have emerged, leading to confusion and miscommunication. Here, we set forth a standardized kinesin nomenclature based on 14 family designations. The scheme unifies all previous phylogenies and nomenclature proposals, while allowing individual sequence names to remain the same, and for expansion to occur as new sequences are discovered.. V# x. L/ w. D( W: }
9 h' a& a: N% M- z$ }: S0 b. w$ Q
Carolyn J. Lawrence's present address is Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011.
& ]1 |" X$ X' h* R0 J2 _8 Y8 D6 x
Kinesins constitute a superfamily of microtubule-based motor proteins that perform diverse functions, including the transport of vesicles, organelles, chromosomes, protein complexes, and RNPs; they also help to regulate microtubule dynamics (for review see Hirokawa, 1998). Individually identified kinesins are often named on the basis of their functional characteristics (McDonald et al., 1990). Systematically identified kinesins have different names (Stewart et al., 1991; Aizawa et al., 1992; Vernos et al., 1993). Kinesins also have been named by other criteria, including the position of the motor core within the protein (Vale and Fletterick, 1997), and their evolutionary relatedness to other kinesins (for reviews see Goodson et al., 1994; Sekine et al., 1994; Hirokawa, 1998; Kirchner et al., 1999). Early in the process of kinesin discovery, it was relatively simple to be familiar with the names and potential functional relationships of all known kinesins (Goodson et al., 1994). Today, however, there are literally hundreds of kinesins being named by diverse criteria, and inconsistencies are emerging that cause genuine confusion (for specific examples, see "Problems with Previous Nomenclature" at http://www.proweb.org/kinesin/Nomenclature_Details.html).
1 g9 `# U7 x& {! C  I* j# U! x& D6 B- M
The revised nomenclature: o/ G2 ~& |0 y/ H+ C

* g; p; D( z+ B; F, ITo address this and other confusion that have arisen in recent classifications, a special interest subgroup meeting was held at the 2003 meeting of the American Society for Cell Biology. As a result of this meeting and other feedback from kinesin researchers worldwide (available for review as an "Archived Web Discussion" at http://www.proweb.org/kinesin/Nomenclature_Details.html), we determined that a single nomenclature must be adopted to facilitate communication among researchers. Here, we propose a standardized nomenclature for all kinesin families (Table I). To minimize confusion, the names of individual sequences will remain unchanged. The formal kinesin nomenclature is shown in Table I and was constructed using the following logic and rules:
1 g4 N3 }, Y! o% {, ?
; z; C7 B* u/ j8 \Table I. Standardized names for each kinesin familyabcdefgh% C: @* A( I( k3 j( V5 R% @

! M# Q: G, M3 R* j- x% T1 V(1) Each family bears the name "Kinesin." This was the name given to the first described superfamily member (from the Greek "kinein," to move; Brady, 1985; Vale et al., 1985). Its use will avoid past confusion encountered by having families called "kin" (which can be confused with kinase), "kif" (an acronym for "kinesin superfamily"), and KLP (an acronym for kinesin-like protein).5 G0 S6 {& R8 K+ G4 w
! c. q' L3 z+ j8 @4 g& X4 \/ ]3 r8 w
(2) To designate each family, an Arabic number has been used. This avoids the problems with using Roman numerals for database searches, and helps us to steer clear of the structural and functional misinterpretations that could continue to arise if letters of the alphabet (e.g., C, N, I, and M) were to be used.
4 i8 R9 C# Z. ~
# ]5 E( A5 h- m5 E) ?(3) Large subfamilies will be referred to as individual entities by appending a letter to the family name. For example, the Kinesin-14 family is made up of two large subfamilies, designated Kinesin-14A and Kinesin-14B (previously referred to as C-I and C-II, respectively; Lawrence et al., 2002).6 o$ `2 P1 M0 m8 {$ |8 S

+ M6 g1 e8 v) O; J& o(4) Wherever possible, new number designations are based on past names or known functional characteristics. Examples include Kinesin-1 (the first kinesin discovered was a member of this family), Kinesin-2 (the holoenzyme for these family members has been referred to as "kinesin II" in past publications; Scholey, 1996), and Kinesin-4 (named for mouse KIF4, the family's founding member; Sekine et al., 1994). The numbers associated with Hirokawa's class designations (1998) have been retained for Kinesin-1, -3, -6, -7, and -8.
' F1 t! Q/ P6 L" a6 ]) C9 F
2 G5 h+ ^- N) q, ~+ ~(5) At this time, there are 14 recognized kinesin families. This number was derived by determining the consensus monophyletic groups conserved among past phylogenetic analyses (Moore and Endow, 1996; Hirokawa, 1998; Kim and Endow, 2000; Miki et al., 2001; Lawrence et al., 2002; Dagenbach and Endow, 2004) in conjunction with examining phylogenetic trees generated by S.C.D. using a dataset that includes many protistan kinesin sequences (manuscript in preparation) and a phylogenetic tree generated by H. Miki, Y. Okada, and N. Hirokawa using a dataset made up of 608 publicly available kinesin sequences (which can be viewed as a part of the "Archived Web Discussion" at http://www.proweb.org/kinesin/Nomenclature_Details.html). It is important to note that the naming system outlined here is based primarily on molecular systematic analysis, as are the accepted systems for other cytoskeletal gene families (e.g., the myosin and actin gene families; Cheney et al., 1993; Goodson and Spudich, 1993; Goodson and Hawse, 2002).
, |9 }$ O8 h; v% W+ P
) K% [+ U1 ~: H# o. P& _# k0 b+ B(6) To gain the status of a recognized kinesin family or subfamily, the group in question must be made up of sequences from at least two kingdoms. This criterion prevents classification of small groups of sequences from individual species or closely related groups of organisms as families or subfamilies, and it will help keep the number of recognized families small enough to be manageable. Sequences not grouping consistently within a family (based on measures of phylogenetic consistency such as high bootstrap support) will be called "orphan kinesins" (Goldstein, 1993).# u3 ^7 s4 _- K- p7 L& j4 D$ }
$ C5 m7 i8 T! M' U" V- h  i
It should be noted that in order for new groups of kinesins to become recognized as a new kinesin family, the group of sequences must conform to all rules set forth herein.
4 s- u3 Z+ F' M) }' N& _% Z5 E" T# S& y, o
Referring to kinesin families in publications
9 o1 U( J% G5 d( _+ F* b- h; O- }4 _2 i( m4 u
In practice, there are two acceptable ways to identify the family to which a sequence belongs. The first uses the formal name of the appropriate family followed by one of the family's former names in parentheses (and a reference to an appropriate publication). The second uses only the formal name. Examples of acceptable usage follow.
* e! u% ~  \( `3 z$ T/ y/ ~/ O9 G2 M! ~( R3 A4 E: i
(1) Human Eg5, a member of the Kinesin-5 family (previously referred to as BimC by Dagenbach and Endow, 2004), is involved in establishing the bipolar spindle.+ O& r5 g0 P# P! F$ G* E
+ K0 Q% f: K% `; y+ M1 i
(2) Human Eg5, a member of the Kinesin-5 family, is involved in establishing the bipolar spindle.7 `& z% \  x% |+ j. J
- ?- U) c' h- Q1 v' H
We recommend that such a statement be included within the introduction of any publication. However, it is not necessary to call the sequence itself by the name of the family to which it belongs: individual sequence names will remain unchanged to reduce needless confusion.9 a3 e4 |1 g2 W6 O
  C( |3 f1 N) @$ E, ]  A4 o$ H
Criteria for kinesin classification
. J/ }& a# r6 K  j8 {& B0 F% G# B2 s" \/ Q  ~3 n- X* e' i
Finally, for publication there should be an accepted protocol for identifying the family to which an unclassified kinesin sequence belongs. How this determination was made should be explicitly stated in the manuscript within the methods section. Our suggestion is to first do a BLAST search (Altschul et al., 1990) using the full-length protein sequence for the kinesin of interest as the query. If all top hits are members of a single kinesin family, the kinesin of interest is probably also a member of that family. To confirm the BLAST results and also to classify sequences where BLAST results do not clearly indicate assignment to a particular family, we recommend that the researcher download a published kinesin motor core alignment such as one of the Lawrence et al. (2002) alignments or the alignment available through the kinesin home page (http://www.proweb.org/kinesin/KinesinAlign.html), and add their own kinesin's motor core to that alignment (by hand or using an alignment tool such as Clustal; Higgins et al., 1996). (Lawrence et al., 2002 alignments ALIGN_000356, ALIGN_000357, and ALIGN_000358 are available online from EMBL at ftp://ftp.ebi.ac.uk/pub/databases/embl/align.) Next, use a simple method for building a phylogenetic tree (such as neighbor joining; Saitou and Nei, 1987) to find the family most closely related to the kinesin of interest. We also recommend that bootstrap resampling (easily performed by phylogenetic analysis programs such as Clustal) be used to determine whether a kinesin should be assigned to a particular family or remain an ungrouped "orphan kinesin." These alignment and treebuilding methods are available together on a webserver at http://www.ebi.ac.uk/clustalw. Analysis of nonmotor regions can help to confirm family assignments (Dagenbach and Endow 2004), and as previously noted by Hirokawa (1998) and Vale (2003), specific domains or motifs should be used as secondary criteria for classification. For instance, many Kinesin-3 family members can be identified by the presence of both a fork head homology (FHA) domain COOH-terminal to the motor and a conserved insertion present within the third loop (Vale, 2003). Although the relatedness of families to one another varies among published phylogenies, the members of each family are relatively consistent among published trees, making it possible to use any published phylogeny as a guide to classification.* {6 `" ]+ s4 `* R% K+ Z

& u( `1 b% D/ M  m) M6 _. x7 N0 [: XAcknowledgments
1 B3 p! J8 _4 r. Q. n0 k. L! g/ M# ?
Research groups supporting the use of this system for kinesin nomenclature include the following: Victoria Allan, Linda Amos, Peter Baas, Steven Block, George Bloom, Konrad B?hm, Olaf Bossinger, Scott Brady, W. Zacheus Cande, Karen Christie, Don Cleveland, Douglas Cole, Duane Compton, Roger Cooke, Robert Cross, R. Kelly Dawe, Scott Dawson, Arshad Desai, Sharyn Endow, Anne Ephrussi, Jacek Gaertig, Volodya Gelfand, Joseph Gindhart, Lawrence Goldstein, Holly Goodson, Steven Gross, David Hackney, William Hancock, Scott Hawley, Steven Henikoff, Nobutaka Hirokawa, Keiko Hirose, Andreas Hoenger, Peter Hollenbeck, Jonathon Howard, Kenneth Johnson, Frank Jülicher, F. Jon Kull, Carolyn Lawrence, Bo Liu, Russell Malmberg, Eckhard Mandelkow, Richard McIntosh, Edgar Meyh?fer, Harukata Miki, David Mitchell, Timothy Mitchison, Virgil Muresan, Berl Oakley, Yasushi Okada,Elizabeth Raff, Krishanu Ray, A.S.N. Reddy, Thomas Reese, Mark Rose, Joel Rosenbaum, Douglas Ruden, Ted Salmon, Peter Satir, William Saunders, William Saxton, Manfred Schliwa, Bruce Schnapp, Jonathan Scholey, David Sharp, Hernando Sosa, Ann Sperry, Gero Steinberg, Susan Strome, Kazuo Sutoh, Ronald Vale, Isabelle Vernos, Claire Walczak, Richard Walker, Matthew Welch, Linda Wordeman, and Tim Yen.
- i1 J$ b) Y) P) U/ p7 L/ j: H$ o$ |! w4 X9 R) A
References
! \1 }* D& Y; G( x& {6 [, E# B' d6 D& G/ l: U' R
Aizawa, H., Y. Sekine, R. Takemura, Z. Zhang, M. Nangaku, and N. Hirokawa. 1992. Kinesin family in murine central nervous system. J. Cell Biol. 119:1287–1296.
# ]' @1 w5 N. E. L) D6 b
1 L: V2 s- Z3 f% ?  y2 j' hAltschul, S., W. Gish, W. Miller, E. Myers, and D. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
! \' e/ s: e- o7 `- Y  u# g( e5 h( G
: Q; q  {8 l- u4 `Brady, S.T. 1985. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature. 317:73–75.
4 T' }3 W) i  x
( j5 B8 T: @2 d8 I: T6 ZCheney, R.E., M.A. Riley, and M.S. Mooseker. 1993. Phylogenetic analysis of the myosin superfamily. Cell Motil. Cytoskeleton. 24:215–223.
1 e8 p( [: X* I3 u4 E, e( O) s
2 i7 Z7 C1 t! V2 B/ Q% tDagenbach, E.M., and S.A. Endow. 2004. A new kinesin tree. J. Cell Sci. 1:3–7.
6 w7 s) n1 s4 ~% }' y1 z5 H0 }, _6 }- A! y/ g% c
Goldstein, L.S. 1993. With apologies to scheherazade: tails of 1001 kinesin motors. Annu. Rev. Genet. 27:319–351.
0 q" c0 i! q# ^: j4 `& a) q3 R! H! e+ c6 t- t$ i' t
Goodson, H.V., and W.F. Hawse. 2002. Molecular evolution of the actin family. J. Cell Sci. 115:2619–2622.
! G5 a2 K, G( v4 s: E8 v* ~7 @2 q, q8 c( X& L" P% {+ c! t' f) k8 V! `
Goodson, H.V., S.J. Kang, and S.A. Endow. 1994. Molecular phylogeny of the kinesin family of microtubule motor proteins. J. Cell Sci. 107:1875–1884.
/ `1 K3 ?' T9 A" I
) x9 p$ R9 f+ Y4 T$ BGoodson, H.V., and J.A. Spudich. 1993. Molecular evolution of the myosin family - relationships derived from comparisons of amino-acid-sequences. Proc. Natl. Acad. Sci. USA. 90:659–663.
; \  y" V) U- k' b- j$ A$ R  A0 S3 v, T; Z$ w. U3 A; C" Y, G4 v
Higgins, D., J. Thompson, and T. Gibson. 1996. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 266:383–402.
8 A' D! k& K; K7 Z
' t5 j) K5 C3 K/ }5 n" eHirokawa, N. 1998. Kinesins and dynein superfamily proteins and the mechanism of organelle transport. Science. 279:519–526.  J0 ~6 I2 s4 }

7 n$ P6 y" r" E" a9 V  cKim, A., and S. Endow. 2000. A kinesin family tree. J. Cell Sci. 113:3681–3682.
  E6 F! C. J# ~; e% {
8 A2 ?. @- S  W0 }* D+ W  RKirchner, J., G. Woehlke, and M. Schliwa. 1999. Universal and unique features of kinesin motors: insights from a comparison of fungal and animal conventional kinesins. Biol. Chem. 380:915–921.2 Y2 j2 B. U. G9 y9 v4 b) Q9 S  ?- n
3 \  {9 D# ]0 W. B3 m4 y
Lawrence, C.J., R.L. Malmberg, M.G. Muszynski, and R.K. Dawe. 2002. Maximum likelihood methods reveal conservation of function among closely related kinesin families. J. Mol. Evol. 54:42–53.3 T0 n* M; g- K
5 q4 g; Y- o2 u
McDonald, H., R. Stewart, and L.S.B. Goldstein. 1990. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell. 63:1159–1165.
- y  a- g5 A. N) W1 B
5 o" Y/ }! E( f* m  M) N" tMiki, H., S. Mitsutoshi, K. Kaneshiro, and N. Hirokawa. 2001. All kinesin superfamily protein, KIF, genes in mouse and human. Proc. Natl. Acad. Sci. USA. 98:7004–7011.
. b/ f4 _# Z& D4 }9 y' C! l+ Y# K8 j. e+ a
Moore, J.D., and S.A. Endow. 1996. Kinesin proteins: a phylum of motors for microtubule-based motility. Bioessays. 18:207–219.$ Y, b+ m: j% T$ I1 M

, U1 V4 \% s9 N- p+ f+ v7 d# jSaitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 6:406–425.
% F" }3 P+ ?& j) c7 Y& b
8 k6 |4 {2 m) WScholey, J. 1996. Kinesin-II, a membrane traffic motor in axons, axonemes, and spindles. J. Cell Biol. 133:1–4.
( K6 J& Z8 s/ N  S8 C( ]* [$ i  P
( j: O$ z. r" w7 s& \. o0 V! DSekine, Y., Y. Okada, Y. Noda, S. Kondo, H. Alzawa, R. Takemura, and N. Hirokawa. 1994. A novel microtubule-based motor protein (KIF4) for organelle transport, whose expression is regulated developmentally. J. Cell Biol. 127:187–201.$ c0 u% y9 y/ }

  j$ L5 z2 u4 L' C7 s! \. yStewart, R.G., P.A. Pesavento, D.N. Woerpel, and L.S. Goldstein. 1991. Identification and partial characterization of six members of the kinesin superfamily in Drosophila. Proc. Natl. Acad. Sci. USA. 88:8470-8474.0 Y1 F: V' [- _" w# P
) Q7 i/ C) F. s# u/ G
Vale, R. 2003. The molecular motor toolbox for intracellular transport. Cell. 112:467–480." R1 ~+ s8 |; n& d% J+ b1 J

! L; W5 y4 g3 X+ p8 ?Vale, R., and R. Fletterick. 1997. The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13:745–777.
6 L* [# G# s% ^- Z" T3 n3 N: [9 u/ L) \% k( X
Vale, R., T. Reese, and M. Sheetz. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 42:39–50.
4 l8 v) E! S  y( L) ?- I
% k6 K8 y  J  OVernos, I., J. Heasman, and C. Wylie. 1993. Multiple kinesin-like transcripts in Xenopus oocytes. Dev. Biol. 157:232–239.
7 {% C/ t3 f- Z$ z% L( K
9 z. U2 [* c2 P; O' e2 b5 IThis article has been cited by other articles: (Search Google Scholar for Other Citing Articles); G6 J% b! ?9 {0 o  E: g
( k! b/ @7 S4 T, J4 K/ V9 ~/ N/ q
Hackney, D. D. (2007). Jump-starting kinesin. J. Cell Biol. 176: 7-9
( p& Z1 m: x" f0 L
9 `9 N9 |( H" n0 dEms-McClung, S. C., Hertzer, K. M., Zhang, X., Miller, M. W., Walczak, C. E. (2007). The Interplay of the N- and C-Terminal Domains of MCAK Control Microtubule Depolymerization Activity and Spindle Assembly. Mol. Biol. Cell 18: 282-294
2 J6 y3 l9 z+ t) `
8 j+ C. v5 e) LEfimenko, E., Blacque, O. E., Ou, G., Haycraft, C. J., Yoder, B. K., Scholey, J. M., Leroux, M. R., Swoboda, P. (2006). Caenorhabditis elegans DYF-2, an Orthologue of Human WDR19, Is a Component of the Intraflagellar Transport Machinery in Sensory Cilia. Mol. Biol. Cell 17: 4801-4811
/ q6 T) h- l& N2 W- e1 T- |" m8 d
+ U/ D; }& C* z$ zMoores, C. A., Milligan, R. A. (2006). Lucky 13 - microtubule depolymerisation by kinesin-13 motors.. J. Cell Sci. 119: 3905-3913
# N* q# Y/ l" S3 L8 h
2 t6 w# u- Z; I9 h" NPan, X., Ou, G., Civelekoglu-Scholey, G., Blacque, O. E., Endres, N. F., Tao, L., Mogilner, A., Leroux, M. R., Vale, R. D., Scholey, J. M. (2006). Mechanism of transport of IFT particles in C. elegans cilia by the concerted action of kinesin-II and OSM-3 motors. J. Cell Biol. 174: 1035-1045
0 f5 |1 ?6 ]+ i0 g- s' A5 }9 R' A! ~9 S5 q* |% [# e8 |6 \
Davis, L., Smith, G. R. (2006). The Meiotic Bouquet Promotes Homolog Interactions and Restricts Ectopic Recombination in Schizosaccharomyces pombe.. Genetics 174: 167-177$ L5 e, r4 [( J1 [" }* Z
  d* L/ T1 |3 B5 ^' g7 L7 ?
Horiguchi, K., Hanada, T., Fukui, Y., Chishti, A. H. (2006). Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity. J. Cell Biol. 174: 425-436& {+ H- m) z7 V; y! G7 {$ h; D
6 e4 K5 f  ]6 v' l; z: D, I
Skoufias, D. A., DeBonis, S., Saoudi, Y., Lebeau, L., Crevel, I., Cross, R., Wade, R. H., Hackney, D., Kozielski, F. (2006). S-Trityl-L-cysteine Is a Reversible, Tight Binding Inhibitor of the Human Kinesin Eg5 That Specifically Blocks Mitotic Progression. J. Biol. Chem. 281: 17559-17569
7 K4 k+ [! D) t: g& M" I4 T6 l- R8 h5 V& K5 L! ~5 O9 \
Laycock, J. E., Savoian, M. S., Glover, D. M. (2006). Antagonistic activities of Klp10A and Orbit regulate spindle length, bipolarity and function in vivo. J. Cell Sci. 119: 2354-2361
- b7 y5 I9 ]3 I8 [4 b5 y3 K
& }0 B; n. b& _! cCivelekoglu-Scholey, G., Sharp, D. J., Mogilner, A., Scholey, J. M. (2006). Model of Chromosome Motility in Drosophila Embryos: Adaptation of a General Mechanism for Rapid Mitosis. Biophys. J 90: 3966-39823 ?' g" v: c* G2 N5 L. V

. D& F$ e% x- H# N9 h, pKopp, P., Lammers, R., Aepfelbacher, M., Woehlke, G., Rudel, T., Machuy, N., Steffen, W., Linder, S. (2006). The Kinesin KIF1C and Microtubule Plus Ends Regulate Podosome Dynamics in Macrophages. Mol. Biol. Cell 17: 2811-2823" g# \" a4 E/ R/ U9 x$ C8 i: @6 b" r
2 A+ ~# W7 R1 k4 n0 ^% ]
Carleton, M., Mao, M., Biery, M., Warrener, P., Kim, S., Buser, C., Marshall, C. G., Fernandes, C., Annis, J., Linsley, P. S. (2006). RNA Interference-Mediated Silencing of Mitotic Kinesin KIF14 Disrupts Cell Cycle Progression and Induces Cytokinesis Failure. Mol. Cell. Biol. 26: 3853-3863
% [( |+ ?: [" B# O2 _- O0 E* g2 d2 C" p" {) H5 ]  z
Christodoulou, A., Lederer, C. W., Surrey, T., Vernos, I., Santama, N. (2006). Motor protein KIFC5A interacts with Nubp1 and Nubp2, and is implicated in the regulation of centrosome duplication. J. Cell Sci. 119: 2035-2047
" `9 J9 C, v. e! P5 ]8 Y! \5 G' W4 s# Z2 C+ Z
Masuda, H., Miyamoto, R., Haraguchi, T., Hiraoka, Y. (2006). The carboxy-terminus of Alp4 alters microtubule dynamics to induce oscillatory nuclear movement led by the spindle pole body in Schizosaccharomyces pombe. GENES CELLS 11: 337-3526 ]/ ?8 |8 I; {

; z) k6 |& ]+ RYang, W.-X., Jefferson, H., Sperry, A. O. (2006). The Molecular Motor KIFC1 Associates with a Complex Containing Nucleoporin NUP62 That Is Regulated During Development and by the Small GTPase RAN. Biol. Reprod. 74: 684-690+ J" Y  a0 }9 k4 |

) }/ d7 o2 F' I# E: uSilverman-Gavrila, R. V., Wilde, A. (2006). Ran Is Required before Metaphase for Spindle Assembly and Chromosome Alignment and after Metaphase for Chromosome Segregation and Spindle Midbody Organization. Mol. Biol. Cell 17: 2069-2080
4 \# c# ?$ S( Q4 d4 L  }' ~
9 Q+ Q) i/ z5 ~9 U2 X. ^Wickstead, B., Gull, K. (2006). A "Holistic" Kinesin Phylogeny Reveals New Kinesin Families and Predicts Protein Functions. Mol. Biol. Cell 17: 1734-1743/ p7 Q, i4 ]# }6 h

; n3 s9 i- z$ w, {+ nGoodson, H. V., Dawson, S. C. (2006). Multiplying myosins.. Proc. Natl. Acad. Sci. USA 103: 3498-34997 m! k# Z4 h0 q

! p" T. O, Q5 H3 d1 s2 uCastoldi, M., Vernos, I. (2006). Chromokinesin Xklp1 Contributes to the Regulation of Microtubule Density and Organization during Spindle Assembly. Mol. Biol. Cell 17: 1451-1460
5 g. R* |" y8 n
3 b6 r. l: F+ K: _: {3 v1 ?/ @( YEvans, J. E., Snow, J. J., Gunnarson, A. L., Ou, G., Stahlberg, H., McDonald, K. L., Scholey, J. M. (2006). Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans. J. Cell Biol. 172: 663-669
' [" H# J8 r% O$ G% ?- \
9 K0 j; `) Q4 J, q2 iHertzer, K. M., Ems-McClung, S. C., Kline-Smith, S. L., Lipkin, T. G., Gilbert, S. P., Walczak, C. E. (2006). Full-Length Dimeric MCAK Is a More Efficient Microtubule Depolymerase than Minimal Domain Monomeric MCAK. Mol. Biol. Cell 17: 700-7106 N, P# P2 z5 }2 N& B5 _' [

( z; u: R4 D; y8 W3 B4 `0 vStraube, A., Hause, G., Fink, G., Steinberg, G. (2006). Conventional Kinesin Mediates Microtubule-Microtubule Interactions In Vivo. Mol. Biol. Cell 17: 907-916
  T! k  z: A. F! w$ }$ T1 s
- H, r/ k6 b4 g4 ?Gruneberg, U., Neef, R., Li, X., Chan, E. H.Y., Chalamalasetty, R. B., Nigg, E. A., Barr, F. A. (2006). KIF14 and citron kinase act together to promote efficient cytokinesis. J. Cell Biol. 172: 363-372% c- ^4 y# q" S  [! J1 t. p

* }- d; P: q/ |% K% sHollenbeck, P. J., Saxton, W. M. (2005). The axonal transport of mitochondria. J. Cell Sci. 118: 5411-5419
- |6 b1 F# l$ ]( h# n# {' k( ?  B, w1 m. f7 A
Kawano, Y., Yoshimura, T., Tsuboi, D., Kawabata, S., Kaneko-Kawano, T., Shirataki, H., Takenawa, T., Kaibuchi, K. (2005). CRMP-2 Is Involved in Kinesin-1-Dependent Transport of the Sra-1/WAVE1 Complex and Axon Formation. Mol. Cell. Biol. 25: 9920-9935: k2 |+ H; Y  l/ t2 v' M

" [- Q9 O! m7 y( PSchuchardt, I., Assmann, D., Thines, E., Schuberth, C., Steinberg, G. (2005). Myosin-V, Kinesin-1, and Kinesin-3 Cooperate in Hyphal Growth of the Fungus Ustilago maydis. Mol. Biol. Cell 16: 5191-5201
& y( P' N% L, S+ G. x
0 E6 O, C5 b% C0 z" \& CCytrynbaum, E. N., Sommi, P., Brust-Mascher, I., Scholey, J. M., Mogilner, A. (2005). Early Spindle Assembly in Drosophila Embryos: Role of a Force Balance Involving Cytoskeletal Dynamics and Nuclear Mechanics. Mol. Biol. Cell 16: 4967-4981
  S5 N6 H  z8 j; _. p# m% K" I& r2 X: o/ ~& b, ~) P) O( L! h( ?
Page, S. L., Hawley, R. S. (2005). The Drosophila Meiotic Mutant mei-352 Is an Allele of klp3A and Reveals a Role for a Kinesin-like Protein in Crossover Distribution. Genetics 170: 1797-1807" `. a7 x! Z8 P3 c1 v  h
6 E& Y: h4 N/ j6 m: E1 g% G
Goshima, G., Vale, R. D. (2005). Cell Cycle-dependent Dynamics and Regulation of Mitotic Kinesins in Drosophila S2 Cells. Mol. Biol. Cell 16: 3896-3907  }  b6 z! c/ ?4 {+ r0 X7 P! J

  K& s  R6 t0 |* U9 P# L; A9 zZhu, C., Zhao, J., Bibikova, M., Leverson, J. D., Bossy-Wetzel, E., Fan, J.-B., Abraham, R. T., Jiang, W. (2005). Functional Analysis of Human Microtubule-based Motor Proteins, the Kinesins and Dyneins, in Mitosis/Cytokinesis Using RNA Interference. Mol. Biol. Cell 16: 3187-3199# v3 T" e9 H! v9 L( p
" n, H$ w$ U# S# w! j) K' w. e% A! M
Morales-Mulia, S., Scholey, J. M. (2005). Spindle Pole Organization in Drosophila S2 Cells by Dynein, Abnormal Spindle Protein (Asp), and KLP10A. Mol. Biol. Cell 16: 3176-3186
. y' u+ o8 _# v) N  z
7 A, o$ e8 t  }( F" ?2 rAbdel-Ghany, S. E., Day, I. S., Simmons, M. P., Kugrens, P., Reddy, A. S.N. (2005). Origin and Evolution of Kinesin-Like Calmodulin-Binding Protein. Plant Physiol. 138: 1711-1722) W, I0 l1 @% d9 ?2 X, B" d& v  n
" O9 U% A5 u8 @
Gatt, M. K., Savoian, M. S., Riparbelli, M. G., Massarelli, C., Callaini, G., Glover, D. M. (2005). Klp67A destabilises pre-anaphase microtubules but subsequently is required to stabilise the central spindle. J. Cell Sci. 118: 2671-2682
+ h# @; s$ T: N, n  T
" b' K" y, y" y6 z+ X2 ^Moore, A. T., Rankin, K. E., von Dassow, G., Peris, L., Wagenbach, M., Ovechkina, Y., Andrieux, A., Job, D., Wordeman, L. (2005). MCAK associates with the tips of polymerizing microtubules. J. Cell Biol. 169: 391-397$ b: M% g' e6 e% d$ t

. ]! y) X9 x0 Q: Z. \' C% vSkold, H. N., Komma, D. J., Endow, S. A. (2005). Assembly pathway of the anastral Drosophila oocyte meiosis I spindle. J. Cell Sci. 118: 1745-17551 j2 n* [4 B7 T9 ]( c- v# P
7 w8 a5 U& C) f( R$ g
Muresan, Z., Muresan, V. (2005). c-Jun NH2-Terminal Kinase-Interacting Protein-3 Facilitates Phosphorylation and Controls Localization of Amyloid-{beta} Precursor Protein. J. Neurosci. 25: 3741-3751+ U& ]# m( N( k% V1 R

. n! G, C3 x/ c  V; xAmbrose, J. C., Li, W., Marcus, A., Ma, H., Cyr, R. (2005). A Minus-End-directed Kinesin with Plus-End Tracking Protein Activity Is Involved in Spindle Morphogenesis. Mol. Biol. Cell 16: 1584-1592
' s% W8 u! x% c% m/ }' @' X  X4 P, W' y7 k2 n9 n' M# v
Rogers, G. C., Rogers, S. L., Sharp, D. J. (2005). Spindle microtubules in flux. J. Cell Sci. 118: 1105-11162 \( `  b* G0 Y* a  Z

. j4 [. I) q( P$ P8 U! q0 ]3 o' A  YHo, K. S., Suyama, K., Fish, M., Scott, M. P. (2005). Differential regulation of Hedgehog target gene transcription by Costal2 and Suppressor of Fused. Development 132: 1401-14127 L( F. K: w- h& j9 n

; }" x' x1 a6 K: S6 u  [2 S7 w) VKoshizuka, T., Kawaguchi, Y., Nishiyama, Y. (2005). Herpes simplex virus type 2 membrane protein UL56 associates with the kinesin motor protein KIF1A. J. Gen. Virol. 86: 527-533
; D1 j$ W0 _% q9 O8 e! }$ r
6 e  }7 n! G9 {( b7 b: hMueller, J., Perrone, C. A., Bower, R., Cole, D. G., Porter, M. E. (2005). The FLA3 KAP Subunit Is Required for Localization of Kinesin-2 to the Site of Flagellar Assembly and Processive Anterograde Intraflagellar Transport. Mol. Biol. Cell 16: 1341-1354
2 d5 d. P, P, Z0 u
  [, p7 t% T; u$ V5 ?Lu, L., Lee, Y.-R. J., Pan, R., Maloof, J. N., Liu, B. (2005). An Internal Motor Kinesin Is Associated with the Golgi Apparatus and Plays a Role in Trichome Morphogenesis in Arabidopsis. Mol. Biol. Cell 16: 811-823
5 i! O4 \4 g) s- }: q" V7 Y; y0 B  V
Zhu, C., Jiang, W. (2005). Cell cycle-dependent translocation of PRC1 on the spindle by Kif4 is essential for midzone formation and cytokinesis. Proc. Natl. Acad. Sci. USA 102: 343-3484 I2 [5 e- \! Y, o. O/ w
9 d+ I% y8 k5 E+ V, P0 u9 J# u
Yokoyama, R., O'Toole, E., Ghosh, S., Mitchell, D. R. (2004). Regulation of flagellar dynein activity by a central pair kinesin. Proc. Natl. Acad. Sci. USA 101: 17398-174031 L( D4 ~. o2 t

' S4 f/ v& A) PLee, Y.-R. J., Liu, B. (2004). Cytoskeletal Motors in Arabidopsis. Sixty-One Kinesins and Seventeen Myosins. Plant Physiol. 136: 3877-3883
1 ^1 X3 L2 x  R1 ?% t; B4 _, u7 I  h) v+ I
Brust-Mascher, I., Civelekoglu-Scholey, G., Kwon, M., Mogilner, A., Scholey, J. M. (2004). Model for anaphase B: Role of three mitotic motors in a switch from poleward flux to spindle elongation. Proc. Natl. Acad. Sci. USA 101: 15938-15943(Carolyn J. Lawrence1, R. Kelly Dawe1,2, )
作者: 舒思    时间: 2015-5-21 19:35

站个位在说  
作者: 红旗    时间: 2015-8-8 18:01

胚胎干细胞
作者: 红旗    时间: 2015-9-1 20:33

哈哈 瞧你说的~~~  
作者: haha3245    时间: 2015-9-14 05:34

呵呵,支持一下哈  
作者: MIYAGI    时间: 2015-9-25 16:17

照你这么说真的有道理哦 呵呵 不进沙子馁~~~  
作者: 龙水生    时间: 2015-9-30 04:32

每天到干细胞之家看看成了必做的事情
作者: 陈晴    时间: 2015-9-30 20:10

帮你项项吧  
作者: 榴榴莲    时间: 2015-11-2 12:18

很好!很强大!  
作者: biobio    时间: 2015-11-2 16:43

顶的就是你  
作者: 石头111    时间: 2015-11-17 16:31

回复一下  
作者: aakkaa    时间: 2015-11-26 09:08

希望可以用些时间了~````  
作者: 泡泡鱼    时间: 2015-12-5 16:02

这个贴不错!!!!!看了之后就要回复贴子,呵呵  
作者: yukun    时间: 2016-1-26 21:42

一楼的位置好啊..  
作者: 橙味绿茶    时间: 2016-1-27 20:08

继续查找干细胞研究资料
作者: 风云动    时间: 2016-2-17 10:27

活着,以死的姿态……  
作者: 安生    时间: 2016-3-16 16:02

不错啊! 一个字牛啊!  
作者: txxxtyq    时间: 2016-4-5 16:54

今天临床的资料更新很多呀
作者: frogsays    时间: 2016-4-28 17:25

呵呵,支持一下哈  
作者: 苹果天堂    时间: 2016-5-7 12:10

不错,看看。  
作者: ikiss    时间: 2016-5-21 17:13

干细胞行业  
作者: 多来咪    时间: 2016-6-1 21:56

呵呵,支持一下哈  
作者: 王者之道    时间: 2016-6-4 12:35

真是天底下好事多多  
作者: sshang    时间: 2016-6-5 16:41

呵呵 都没人想我~~  
作者: heart10    时间: 2016-8-6 19:00

哈哈,看的人少,回一下  
作者: keanuc    时间: 2016-8-11 04:35

祝干细胞之家 越办越好~~~~~~~~~`  
作者: xm19    时间: 2016-8-13 10:18

严重支持!
作者: 石头111    时间: 2016-8-23 15:24

皮肤干细胞
作者: 蚂蚁    时间: 2016-9-2 21:13

不错不错.,..我喜欢  
作者: 生科院    时间: 2016-10-8 09:42

貌似我真的很笨????哎  
作者: dogcat    时间: 2016-11-17 14:34

这年头,分不好赚啊  
作者: 求索迷茫    时间: 2016-11-21 19:42

支持一下  
作者: 生科院    时间: 2016-12-28 15:35

哈哈,这么多的人都回了,我敢不回吗?赶快回一个,很好的,我喜欢  
作者: 丸子    时间: 2017-1-10 10:01

看贴回复是好习惯  
作者: 三好学生    时间: 2017-2-1 12:49

希望可以用些时间了~````  
作者: 龙水生    时间: 2017-2-13 12:18

回复一下  
作者: 干细胞2014    时间: 2017-2-16 10:54

希望大家帮我把这个帖发给你身边的人,谢谢!  
作者: 海小鱼    时间: 2017-2-21 11:01

很好!很强大!  
作者: 旅美学者    时间: 2017-3-10 09:10

不错不错.,..我喜欢  
作者: feixue66    时间: 2017-3-11 00:30

好贴坏贴,一眼就看出去  
作者: 石头111    时间: 2017-3-12 14:10

干细胞研究重在基础
作者: 20130827    时间: 2017-3-13 22:54

干细胞治疗  
作者: 安安    时间: 2017-3-14 05:52

拿分走人呵呵,楼下继续!
作者: 剑啸寒    时间: 2017-4-21 19:43

鉴定完毕.!  
作者: bluesuns    时间: 2017-4-25 15:10

爷爷都是从孙子走过来的。  
作者: marysyq    时间: 2017-4-30 17:26

不对,就是碗是铁的,里边没饭你吃啥去?  
作者: na602    时间: 2017-5-16 05:46

观看中  
作者: HongHong    时间: 2017-5-17 06:48

我的妈呀,爱死你了  
作者: 我心飞翔    时间: 2017-5-22 12:27

挺好啊  
作者: 生物小菜鸟    时间: 2017-6-7 17:16

今天没事来逛逛,看了一下,感觉相当的不错。  
作者: foxok    时间: 2017-6-8 10:35

干细胞行业门户 干细胞之家
作者: 榴榴莲    时间: 2017-7-11 07:14

心脏干细胞
作者: 黄山    时间: 2017-7-31 21:07

天啊. 很好的资源
作者: popobird    时间: 2017-8-4 05:34

干细胞库  
作者: 杏花    时间: 2017-8-6 04:56

宁愿选择放弃,不要放弃选择。  
作者: ringsing    时间: 2017-8-13 13:54

又看了一次  
作者: 某某人    时间: 2017-8-26 21:54

我仅代表干细胞之家论坛前来支持,感谢楼主!  
作者: feixue66    时间: 2017-8-27 07:54

呵呵,找个机会...  
作者: tuanzi    时间: 2017-8-30 18:39

似曾相识的感觉  
作者: 心仪    时间: 2017-9-3 02:58

干细胞研究重在基础
作者: 安生    时间: 2017-9-14 18:56

不错,看看。  
作者: SCISCI    时间: 2017-9-25 02:21

谁能送我几分啊  
作者: immail    时间: 2017-10-3 02:07

家财万贯还得回很多贴哦  
作者: pspvp    时间: 2017-10-21 15:53

肌源性干细胞
作者: biodj    时间: 2017-11-4 09:53

哈哈,看的人少,回一下  
作者: tian2006    时间: 2017-12-14 10:01

干细胞之家
作者: 初夏洒脱    时间: 2017-12-19 17:53

转基因动物
作者: sky蓝    时间: 2018-1-15 00:01

好帖,有才  
作者: 再来一天    时间: 2018-1-28 07:02

说的不错  
作者: keanuc    时间: 2018-1-29 13:10

每天早上起床都要看一遍“福布斯”富翁排行榜,如果上面没有我的名字,我就去上班……  
作者: 我学故我思    时间: 2018-2-3 18:10

抢座位来了  
作者: 我心飞翔    时间: 2018-2-26 18:16

今天的干细胞研究资料更新很多呀
作者: 甘泉    时间: 2018-3-23 01:41

每天都会来干细胞之家看看
作者: ringsing    时间: 2018-3-26 13:53

不错,看看。  
作者: 橙味绿茶    时间: 2018-3-27 08:27

感謝樓主 干细胞之家真的不错  
作者: biodj    时间: 2018-4-3 05:17

我帮你 喝喝  
作者: heart10    时间: 2018-4-11 07:54

慢慢来,呵呵  
作者: happyboy    时间: 2018-4-15 08:02

希望大家帮我把这个帖发给你身边的人,谢谢!  
作者: ladybird    时间: 2018-4-15 13:54

皮肤干细胞
作者: xiao2014    时间: 2018-5-2 05:55

我起来了 哈哈 刚才迷了会  
作者: 干细胞2014    时间: 2018-5-24 15:53

呵呵 哪天得看看 `~~~~  
作者: 化药所    时间: 2018-5-31 11:43

生殖干细胞
作者: lalala    时间: 2018-6-5 03:55

说的不错  
作者: 依旧随遇而安    时间: 2018-6-12 08:43

努力,努力,再努力!!!!!!!!!!!  
作者: 咖啡功夫猫    时间: 2018-6-25 23:37

谢谢楼主啊!
作者: sky蓝    时间: 2018-7-2 17:52

干细胞研究还要面向临床
作者: 咖啡功夫猫    时间: 2018-7-3 20:50

天啊. 很好的资源
作者: 龙水生    时间: 2018-7-8 16:26

说的不错  
作者: 剑啸寒    时间: 2018-7-12 07:09

慢慢来,呵呵  
作者: 昕昕    时间: 2018-7-14 06:16

不错不错,我喜欢看  
作者: apple0    时间: 2018-7-15 03:45

做对的事情比把事情做对重要。  
作者: lalala    时间: 2018-7-22 06:35

看或者不看,贴子就在这里,不急不忙  
作者: dypnr    时间: 2018-8-20 06:58

不是吧  
作者: 追风    时间: 2018-9-22 10:35

做对的事情比把事情做对重要。  
作者: qibaobao    时间: 2018-10-12 02:30

我帮你 喝喝  
作者: dogcat    时间: 2018-10-12 23:46

不错不错.,..我喜欢  
作者: 海小鱼    时间: 2018-10-18 06:57

嘿...反了反了,,,,  
作者: dada    时间: 2018-10-20 18:41

一楼的位置好啊..  
作者: doc2005    时间: 2018-10-22 10:55

既然来了,就留个脚印  
作者: Greatjob    时间: 2018-10-28 14:42

应该加分  




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5