干细胞之家 - 中国干细胞行业门户第一站

标题: Bcl-2–regulated apoptosis and cytochrome c release can occur independe [打印本页]

作者: 杨柳    时间: 2009-3-6 08:25     标题: Bcl-2–regulated apoptosis and cytochrome c release can occur independe

1 The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
. Q( g! t+ }  {3 Y
# X) n5 z% E# k$ [1 m2 Murdoch Children's Research Institute, Melbourne, Victoria 3052, Australia
1 l' ?" V' s8 ]- ^, ?3 s/ ]0 T+ g! f: J
Address correspondence to Andreas Strasser, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia. Tel.: 61-3-9345-2555. Fax: 61-3-9347-0852. email: strasser@wehi.edu.au
9 l* l9 y1 Q( N6 v7 I( j+ K6 U5 c6 O3 R/ w
Abstract) e. I0 k5 f2 e; e' B/ p

! ]# q7 h7 q1 Z9 Q9 ?Apoptosis in response to developmental cues and stress stimuli is mediated by caspases that are regulated by the Bcl-2 protein family. Although caspases 2 and 9 have each been proposed as the apical caspase in that pathway, neither is indispensable for the apoptosis of leukocytes or fibroblasts. To investigate whether these caspases share a redundant role in apoptosis initiation, we generated caspase-2–/–9–/– mice. Their overt phenotype, embryonic brain malformation and perinatal lethality mirrored that of caspase-9–/– mice but were not exacerbated. Analysis of adult mice reconstituted with caspase-2–/–9–/– hematopoietic cells revealed that the absence of both caspases did not influence hematopoietic development. Furthermore, lymphocytes and fibroblasts lacking both remained sensitive to diverse apoptotic stimuli. Dying caspase-2–/–9–/– lymphocytes displayed multiple hallmarks of caspase-dependent apoptosis, including the release of cytochrome c from mitochondria, and their demise was antagonized by several caspase inhibitors. These findings suggest that caspases other than caspases 2 and 9 can promote cytochrome c release and initiate Bcl-2–regulated apoptosis.7 S0 N2 c6 F& X( M+ l8 ^& z7 V

( k- }; A4 ^- T) r3 S* \: o1 C! ?3 {' AKey Words: apoptosis; caspase-2; caspase-9; Bcl-2; cytochrome c
5 M) }6 a) s5 _) T7 R
% E6 e$ G4 {$ U, c. b1 yAbbreviation used in this paper: PI, propidium iodide.* h3 \! ^- G/ R  L' x7 a

$ D3 h7 C9 ]  i) X6 BIntroduction% ~) r# `2 o- w* l% l( n4 m* r! H
1 H+ n- i" J6 k3 B0 d2 k
Apoptosis, which is critical for development and tissue homeostasis, is executed by caspases (Adams, 2003). The 10 or so mammalian caspases include both "effectors" (3, 6, and 7), which efficiently digest vital proteins, and "initiators" (e.g., 2, 8, and 9), which proteolytically activate the effectors. Many cell "stress" stimuli, e.g., cytokine deprivation and genome damage, and developmental cues, trigger a common pathway of caspase activation regulated by the Bcl-2 protein family (Adams, 2003). Until recently, the sole apical initiator in that pathway was assumed to be caspase-9, which is activated in a complex termed the "apoptosome" by the scaffold protein Apaf-1 and its cofactor cytochrome c. Evidence that the Bcl-2 family regulates permeabilization of mitochondria argued that cytochrome c release and the ensuing caspase-9 activation were central to the "stress" response. For some neuronal cells, this model is supported, as mice lacking Apaf-1 or caspase-9 die perinatally with brain overgrowth caused by a defect in neuronal apoptosis (Adams, 2003). The apoptosome is not, however, universally essential for Bcl-2–regulated apoptosis, because certain neuronal (Honarpour et al., 2001), hematopoietic, and fibroblastoid cells (Marsden et al., 2002) lacking Apaf-1 or caspase-9 readily undergo apoptosis in response to diverse insults and, at least in lymphocytes, that apoptosis requires caspase activity (Marsden et al., 2002). Hence, there must be apoptotic pathways regulated by the Bcl-2 family that require the activation of caspases other than caspase-9 (Adams, 2003).# s  v& @( z5 ^# W+ p3 S
2 B6 M6 F2 e8 f+ k4 a
Evidence is also accumulating that certain caspases can contribute to mitochondrial damage and hence may be activated before apoptosome formation (Guo et al., 2002; Lassus et al., 2002; Marsden et al., 2002; Robertson et al., 2002). In particular, caspase-2 has been implicated in cytochrome c release (Guo et al., 2002; Lassus et al., 2002; Robertson et al., 2002) and seems to be necessary for cellular demise in some transformed cell lines (Lassus et al., 2002). However, because apoptosis is not markedly impaired in caspase-2–deficient mice (Bergeron et al., 1998; O'Reilly et al., 2002), caspase-2 cannot have a major nonredundant role in apoptosis.
4 r2 k# n6 {6 {& w' |
7 u  Z% D( h! i. u, j5 _- d: ]These discordant findings might be reconciled if caspase-2 acts redundantly with caspase-9, each activating distinct but converging pathways. If so, loss of both caspases should markedly attenuate apoptosis. We address that hypothesis here by studies on mice lacking both caspases 2 and 9.
7 n- c+ Q) A3 @% \. }2 m  K8 q- T$ O* v2 X
Results and discussion
: v$ b# V+ c' T/ @
  T, V5 c" \6 V. z: fTo generate mice lacking both caspases 2 and 9, we first intercrossed animals deficient in caspase-2 (O'Reilly et al., 2002) with caspase-9 /– mice (Kuida et al., 1998). As expected from the severe caspase-9–/– phenotype (Hakem et al., 1998; Kuida et al., 1998), intercrosses of the resulting caspase-2 /– 9 /– mice yielded no weaned progeny lacking caspase-9, irrespective of caspase-2 status (67 progeny genotyped). Mice of all other genotypes appeared at the expected Mendelian ratios and were healthy and fertile (unpublished data).+ P. [  x- N; _% t) U

5 M+ h: W3 t- A& `7 UTo investigate whether caspase-2 deficiency exacerbated the neuronal overgrowth characteristic of the caspase-9 deficiency (Hakem et al., 1998; Kuida et al., 1998), embryos from the intercrosses were examined at E14.5, when all genotypes appeared in the expected ratios. Brain over-growth resembling that previously described and observed in caspase-2 / 9–/– littermates (Fig. 1) appeared in 6/11 caspase-2–/–9–/– and 2/5 caspase-2 / 9–/– embryos but never in those expressing caspase-9 (n = 47). All other organs appeared normal. Although the brain abnormalities cannot be quantified, we conclude that caspase-2 loss does not substantially exacerbate the brain phenotype due to caspase-9 deficiency and that other organs develop normally to at least E14.5 without either caspases 2 or 9.  C8 K# l! u& ]7 a; Z1 |; x1 ~0 B
7 m3 X% T7 X2 i/ T; b
Figure 1. Loss of caspase-2 does not aggravate the overt defects caused by caspase-9 deficiency. (A) Similar overt phenotype of E14.5 caspase-2–/–9–/– and caspase-9–/– embryos. (B) Similar histologic presentation of caspase-2–/–9–/– and caspase-9–/– embryos. Sagittal brain sections were stained with hematoxylin and eosin. For comparison, littermate embryos lacking only caspase-2, which are indistinguishable from wild-type embryos, are shown. O, oral cavity; B, basal ganglia; T, dorsal telencephalon; V, lateral ventricle; S, semicircular canals.. |% k2 u4 X1 I! [" ~1 x! @

4 t0 F2 s1 A3 r/ UBcl-2–regulated apoptosis, which is critical for the physiological death of hematopoietic cells (Marsden and Strasser, 2003), can occur independently of caspase-9 (Marsden et al., 2002). To study how caspase-2–/–9–/– hematopoietic cells respond to the physiological death cues in healthy mice, C57BL/6-Ly5.1 mice were reconstituted with fetal liver–derived hematopoietic stem cells from E14.5 offspring of the intercrosses (Ly5.2 ). 10 wk later, the thymocytes were all derived from donor (Ly5.2) cells, irrespective of donor genotype (Fig. 2 A). The absence of caspases 2 and 9 did not augment cell numbers or perturb cell subset composition in the thymus, spleen, lymph nodes, or bone marrow (Fig. 2, B–D; and not depicted). Western blot analysis on reconstituted organs (Fig. S1, available at http://www.jcb.org/cgi/content/full/jcb.200312030/DC1) confirmed the absence of caspase-2 and/or -9 and revealed no compensatory up-regulation of caspases 1, 3, 6, 7, 8, or 9. Thus, whereas overexpression of Bcl-2 in the hematopoietic compartment, or absence of its antagonist Bim, promotes cell accumulation (Bouillet et al., 1999; Marsden et al., 2002), programmed death in that compartment appears unaffected by loss of both caspases 2 and 9.0 q5 ?. t; e- ~5 q

% K: Q3 g) N3 r, O2 o- V+ dFigure 2. Normal hematopoietic development from caspase-2–/– 9–/– hematopoietic stem cells. Ly5.1 mice that had been lethally irradiated (2 x 5.5Gy) were reconstituted with fetal liver cells and analyzed 10–15 wk later. (A) Staining of thymocytes with antibodies to Ly5.1 (recipient) versus Ly5.2 (donor) cells. (B) Normal cellularities of thymus, lymph nodes (pooled inguinal, axillary, brachial and mesenteric), spleen and bone marrow in animals reconstituted with caspase-2–/–9–/–cells. Results represent means ± SD for >3 mice per genotype. (C) Normal composition of the thymus in the reconstituted mice. (D) Normal proportions of B lymphocytes (B220  Thy-1–) and T cells (Thy-1  B220–) in lymph nodes of the reconstituted mice. Results are representative of >3 mice per genotype.
% V4 k- w2 i( [# Y, F7 g1 K! m$ N
# T! }0 x. [) GTo explore further whether caspases 2 and 9 are essential for Bcl-2–regulated cell death, we analyzed the responses to diverse cytotoxic insults of donor-derived B and T lymphocytes and CD4 8  thymocytes purified from reconstituted animals. The death on cytokine withdrawal of mature B or T cells, activated T lymphoblasts or thymocytes was unimpaired by the absence of caspase-2, caspase-9, or both (Fig. 3, A–C and Fig. S2 A, available at http://www.jcb.org/cgi/content/full/jcb.200312030/DC1). Similarly, mature T cells remained sensitive to dexamethasone (Fig. 3 A). In response to  irradiation (Fig. 3 D; Fig. S2 B) or treatment with dexamethasone, PMA, or etoposide (Fig. S2, C–H), thymocytes lacking caspase-9 were slightly more resistant than wild-type cells, but concomitant deficiency for caspase-2 provided no additional protection, and the lack of caspase-2 alone had no significant effect. This held over a range of doses of each stimulus (Fig. S2, B, D, F, H; and not depicted). Thus, in lymphocytes caspase-9 deficiency at most merely slows rather than prevents cell death, and concomitant caspase-2 deficiency does not further reduce the rate.
2 }, H' v  T5 K* u
9 H7 U" r0 s1 F8 i4 Y" \Figure 3. Deficiency of caspases 2 and 9 does not prevent apoptosis in lymphocytes or fibroblasts. To test the sensitivity of lymphocytes to apoptotic stimuli, donor-derived (Ly5.2 ) (A) lymph node T cells (Thy-1 ), (B) lymph node B cells (CD45R-B220 ) and (D) CD4 8  thymocytes were purified from the reconstituted mice, or (C) T lymphoblasts were generated by mitogenic activation of spleen cells. (E) Early passage embryonic fibroblasts from E14.5 embryos. In all cases, viability was measured by staining cells with PI and FACS analysis. Results represent means ± SD of >3 mice per genotype.; v7 r& W6 X) R) {" I
) \0 V" I; l; v
To explore how loss of caspases 2 and 9 affected cells that were not of hematopoietic origin, we studied embryonic fibroblasts lacking caspase-2, caspase-9, or both. When exposed to etoposide, caspase-9–/– fibroblasts died somewhat more slowly than wild-type cells, but the protection was transient and loss of caspase-2 provided no additional survival advantage (Fig. 3 E). Thus, caspase-2 deficiency does not delay the death of caspase-9–deficient fibroblasts.  v2 |7 }. ]: ]3 o6 K& R

; X* x- Y3 v4 h  ODying caspase-9–deficient cells display the hallmarks of apoptosis (Marsden et al., 2002). Concomitant absence of caspase-2 did not prevent apoptosis. Two of its classic features, exposure of phosphatidylserine and DNA fragmentation, appeared in caspase-2–/–9–/– thymocytes subjected to  irradiation (Fig. 4, A and B). It is likely that effector caspases contributed to their death, because the well-characterized caspase substrates ICAD, spectrin, and gelsolin (Fig. 4 C, Fig. S3, A and B, available at http://www.jcb.org/cgi/content/full/jcb.200312030/DC1) were all processed appropriately, albeit to a lower extent than in dying wild-type cells. ICAD is thought to be processed only by caspases 3 or 7 (McIlroy et al., 1999); caspase-3 is required to generate the 41-kD product of gelsolin (Slee et al., 2001), and although either caspases or calpains can generate the 150-kD fragment of spectrin, only caspases give the 120-kD fragment (Methot et al., 2004). In dying caspase-2–/–9–/– cells, all three substrates yielded the expected caspase-dependent products (Fig. 4 C; Fig. S3, A and B). Moreover, the gelsolin processing was ablated in irradiated caspase-2–/–9–/– thymocytes treated with either of two structurally unrelated caspase inhibitors, IDN-1965 (Fig. S3 C) or Q-VD-OPh (not depicted). Thus, caspases are strongly implicated in the death of these cells.
* B1 S% U% R% k$ w; e" J+ k* M* [8 d0 S3 @$ J' ~( E8 u/ o) H9 K
Figure 4. Dying caspase-2–/–9–/– cells display hallmarks of apoptosis and are protected by caspase inhibitors but not calpain/cathepsin inhibitors. (A–C) Ly5.1–CD4 8  thymocytes sorted from reconstituted mice were cultured following 5 Gy  irradiation (ir.) (A) Staining with FITC-conjugated Annexin V plus PI reveals phosphatidylserine exposure before loss of membrane integrity irrespective of genotype. (B) DNA "laddering" indicative of inter-nucleosomal fragmentation demonstrated by gel electrophoresis of genomic DNA. (C) Western blots showing processing of ICAD in dying caspase-2–/–9–/– cells. (D) The death of caspase-2–/–9–/– cells is antagonized by inhibitors of caspases but not of calpains or cathepsins. Ly5.1–Thy1  mature T lymphocytes from the lymph nodes of reconstituted mice were cultured for 24 h in the presence of 100 nM dexamethasone plus the caspase inhibitors zVAD-fmk, IDN-6275 (6275), IDN-1965 (1965), or Q-VD-OPh (Q-VD), the calpain inhibitors z-VF-CHO or PD-150606, a cell permeable peptide of the calpain inhibitor calpastatin, the dual calpain/cathepsin inhibitors ALLM and ALLN or the cathepsin inhibitor z-FG-NHO-Bz-pOMe (zFG-NHO) (each at 50 μM). Cell death was quantified by PI staining and FACS analysis. Results represent mean ± SD of at least three independent experiments for each genotype. Vehicle: 0.4% DMSO.
9 d4 Z2 ^1 b! a0 O; r# L: p- c7 D
7 C4 C# V! o7 rProcessing of synthetic as well as physiological caspase substrates is lower in cell lysates lacking caspase-9 (Marsden et al., 2002). Similarly, with the fluorogenic caspase substrate DEVD-aminomethylcoumarin, dying caspase-2–/–9–/– or caspase-9–/– thymocytes had only 10–20% of the DEVDase activity of dying wild-type or caspase-2–/– lysates, but the activity was completely blocked by the caspase inhibitor zVAD-fmk (Fig. S3 D). It was unaffected by ALLN, a potent inhibitor of calpains and cathepsins, arguing against any contribution of these proteases in processing this caspase substrate.
, h6 F# F- t( s7 R' l" t1 U- m
& r: H5 j# r7 u* _1 j4 w- LTo further explore whether the death of caspase-2–/–9–/– cells requires caspases, we examined the ability of four chemically distinct caspase inhibitors to impair their death (Fig. 4 F). Three of them, Q-VD-OPh (Caserta et al., 2003), IDN-1965, and IDN-6275 (Wu and Fritz, 1999), delayed apoptosis substantially up to 24 h after dexamethasone treatment of T cells (Fig. 4 D). zVAD-fmk had a smaller inhibitory effect, probably due to its reportedly inferior stability, membrane permeability, and performance in culture (Nicholson, 1999).
. d/ b7 Z( j4 r% P6 b: F& o4 [, z* i* x. O/ ?' p7 e! \3 |
Non-caspase proteases, in particular calpains and cathepsins, have been proposed to contribute to apoptosis in certain circumstances (Jaattela and Tschopp, 2003). To determine whether either participated in the apoptosis of caspase-2–/–9–/– cells, we tested six inhibitors reported to impair apoptosis under certain conditions: the calpain inhibitors z-VF-CHO and PD150606 (Squier and Cohen, 1997), a cell-permeable peptide of the natural calpain inhibitor calpastatin (Altznauer et al., 2004), the dual calpain and cathepsin inhibitors ALLM and ALLN (Ding et al., 2002), and the selective cathepsin inhibitor z-FG-NHO-Bz-pOMe. In contrast to the caspase inhibitors, none of these inhibitors had any anti-apoptotic activity at doses in the range where others have reported efficacy (Fig. 4 D), and none cooperated with IDN-1965 to enhance its antagonism of apoptosis (not depicted). Hence, it appears unlikely that either calpains or cathepsins act in tandem with the caspase cascade to cause apoptosis in these cells.
+ d  A, S5 P7 L" ?
: x7 E! F6 v+ _3 D" D8 ^- t" wCytochrome c release in thymocytes seems to depend on caspase activity (Marsden et al., 2002), and caspase-2 has been implicated in mitochondrial disruption in certain cells (Guo et al., 2002; Lassus et al., 2002; Robertson et al., 2002). Hence, we examined whether caspase-2 was the sole caspase responsible for mitochondrial damage in thymocytes. Western blotting of fractionated cell lysates revealed that cytochrome c release from mitochondria did not require caspase-2 (Fig. 5 A). Furthermore, mitochondrial transmembrane potential in dying thymocytes was lost normally in the absence of caspase-2, or both caspases 2 and 9, although its loss in wild-type thymocytes was attenuated by a caspase inhibitor (Fig. 5 B), as shown previously (Bossy-Wetzel et al., 1998). Hence, both the release of pro-apoptotic molecules from mitochondria and the loss of mitochondrial transmembrane potential can occur independently of caspases 2 and 9.( w/ H0 Y- e- |: {2 {# P

/ p& I6 Z7 S7 Y+ R" D. IFigure 5. Cytochrome c release and mitochondrial depolarization do not require caspases 2 and 9. Ly5.1–CD4 8  thymocytes from the reconstituted mice were cultured following 5 Gy  irradiation (ir.) (A) Subcellular localization of cytochrome c was determined by Western blotting soluble cytosolic (s) and pelleted organelle (p) cell fractions (B). Mitochondrial trans-membrane potential was determined by FACS analysis of cells stained with 40 nM DiOC6(3). The percentages of cells retaining high DiOC6(3) fluorescence are shown. Where indicated, cells were cultured in the presence of IDN-1965 (100 μM).$ G! N- C* X6 ^
4 R1 A& G6 `2 m8 s% A$ c
Our results strongly implicate caspases in the apoptosis of caspase-2–/–9–/– cells and thus imply that there is a Bcl-2–regulated and caspase-mediated pathway that does not require either caspase-2 or -9. Which other caspases might be regulated by Bcl-2? As discussed elsewhere (Adams, 2003), caspases 1, 11, and 12 in mice (or caspases 1, 4, and 5 in humans) are attractive candidates, because, like caspases 2 and 9, their NH2-terminal CARD domain could interact with a cognate scaffold to form an apoptosome-like complex. For example, caspase-12, which is implicated in apoptosis induced by ER stress (Nakagawa et al., 2000) and in cytochrome c–independent apoptosis (Morishima et al., 2002; Rao et al., 2002), forms a large complex on serum starvation (Kilic et al., 2002). In other systems, caspase-11 (Hisahara et al., 2001; Kang et al., 2002) or caspase-1 (Hilbi et al., 1998; Marsden et al., 2002; Rowe et al., 2002) have been implicated in apoptosis. Hence, in different circumstances, various combinations of caspases 1, 11, and 12, and perhaps also caspase-8, might act redundantly with caspases 2 and 9 to initiate apoptosis.
8 Z6 |6 n  c3 c8 j: \7 Q% E* `; Q% h  G; V6 H. f/ a. g
Whereas our results with primary lymphocytes and fibroblasts implicate caspases in addition to caspases 2 and 9 in the initiation of apoptosis, the accompanying paper, Ekert et al. (2004) shows that the hallmarks of apoptosis failed to appear when myeloid progenitor cell lines lacking both caspases 2 and 9 were deprived of growth factor, but that programmed cell death still prevented their clonogenic survival. These findings and those with transformed human cell lines (Lassus et al., 2002) can be reconciled with our conclusion that caspases 2 and 9 are not essential for loss of viability per se, if some cell types but not others use these caspases to accelerate apoptotic cell demolition.$ U7 S4 }" y, K9 V
* [- Q) M2 p4 P
Materials and methods3 K+ ^% Y+ O4 Q: x8 F: ~. p4 W

8 ~' R* W7 U) T% H7 IMice  k/ Z+ v" B( ^2 y' u6 a
9 c" k& E! v2 j( b
Caspase-2 /–9 /– mice were generated by intercrosses of mice deficient in caspase-2 (129/sv) (O'Reilly et al., 2002) with caspase-9 /– (C57BL/6) mice (Kuida et al., 1998). Embryos and 3-wk-old mice were genotyped by PCR. Hematopoietic reconstitution was performed as described previously (Marsden et al., 2002) from fetal liver cells of embryos with a caspase-2–/–, caspase-9–/–, or caspase-2–/–9–/– genotype (all mixed C57/BL6-129Sv, Ly5.2 ) or wild-type (C57/BL6 Ly5.2 ) embryos.
% g# a/ a8 k+ t; W. g
9 U2 x2 G8 T; }/ X  NMicroscopic imaging
) }& s9 v, K1 y2 w/ N6 f
2 Q% w! l/ ]5 @, nAll microscopy used either a Stemi SV11 or an Axioplan 2 microscope (Carl Zeiss MicroImaging, Inc.). The latter used objective lenses (magnification/numerical aperture: 5x/0.15 and 10x/0.30; Carl Zeiss MicroImaging, Inc.). Images were recorded with a Axiocam and Axiovision software (Carl Zeiss MicroImaging, Inc.).
2 r  ~! {9 x! e) x8 t* Q! `+ {) q" |; H) z. Q( N7 m
Flow cytometry* d; T$ I; m, v* b5 F& m
! \' ]0 k0 V0 J2 N
Cells stained with fluorochrome- or biotin-conjugated surface marker-specific antibodies (Marsden et al., 2002) were analyzed using a FACScan (Becton Dickinson). Live and dead cells were discriminated by staining with 2 μg/ml propidium iodide (PI; Sigma-Aldrich). In cell sorting, host-derived (Ly5.1) cells were excluded.0 z0 y: E1 o2 y5 q9 H( b/ E9 A
- J2 F* F0 X- \/ q' c
Cell culture
8 _' A- ~3 ]4 }7 P5 G& Z6 D8 ~5 u% F4 _/ e- m/ R( E7 Y
Cells were cultured and T lymphoblasts generated as described previously (Marsden et al., 2002). Before death assays, the viable cells in stimulated spleen cultures were enriched by centrifugation over Ficoll-Paque Plus (Amersham Biosciences). Embryonic fibroblasts, cultured from E14.5 embryos, were used at early passage (n
0 ~0 U* E; ~4 p. ~5 J; C+ \
0 ^! e9 V  A3 rCell death assays# t; o8 O- y6 S! }( S/ s+ a% \. ~% Q
. E, @8 U& e* `8 m
For cell death assays, cells were cultured at 0.2–1 x 106 cells/ml and treated with dexamethasone (Sigma-Aldrich) at 10–8–10–6 M,  radiation (5 Gy from a 60Co source), PMA (Sigma-Aldrich) at 0.1–10 ng/ml, or etoposide (VP-16, David Bull Laboratories) at 0.1–100 μM. Cell viability was determined by staining with 2 μg/ml PI and analysis on a FACScan (Becton Dickinson). Alternatively, flow cytometry was performed on cells stained cells with FITC-conjugated Annexin-V. To measure mitochondrial transmembrane potential, cultured cells stained for 15 min with 40 nM 3,3'dihexyloxacarbocyanine iodide (DiOC6(3); Molecular Probes) were subjected to flow cytometry. The caspase inhibitors IDN-1965, IDN-6275 (gifts of K. Tomaselli and T. Oltersdorf, IDUN Pharmaceuticals, San Diego, CA), Q-VD-OPh (ICN Biomedicals), and zVAD-fmk (Bachem), as well as the inhibitors zVF-CHO, PD150606, ALLN, ALLM, and z-FG-NHO-Bz-pOMe (all from Calbiochem), were all solubilized in DMSO. Calpastatin peptide (Calbiochem) was solubilized in water.
7 O3 B# N) D. {) d- v$ ?! u) V+ g# k( L- v$ s
Subcellular fractionation and Western blotting- x" d1 S/ t, R1 o% K

9 u' q9 ~$ O$ cSubcellular fractionation and Western blotting were performed as described previously (Marsden et al., 2002).# P: n' h$ L, N. e8 \8 S
5 a7 L! H# I2 v% s
Online supplemental material
2 G, E$ u" H6 o" p! W/ M* s4 w! t8 H4 J6 k: d9 j0 t
Western blot analysis of thymocytes (Fig. S1 A) and splenocytes (Fig. S1 B) from reconstituted animals demonstrates that no compensatory increase in expression of other caspases was evident in cells lacking caspase-2 and/or caspase-9.9 P$ S) m$ x% m
$ g9 i9 c. x% V0 W
Combined deficiency of caspases 2 and 9 in thymocytes does not prevent apoptosis in response to a variety of death stimuli. Thymocytes were subjected to cytokine withdrawal (Fig. S2 A), cultured after graded doses of  irradation (Fig. S2 B), or treated with dexamethasone, PMA, or etoposide (Fig. S2, C–H). Caspase-2 deficiency did not influence the sensitivity to these stimuli of cells lacking or expressing caspase-9.* F( W, r$ V/ Y1 |' F& V- e/ C
+ w; Z$ [( j2 f# d' ?
Western blotting of thymocytes sorted from reconstituted mice demonstrates that in dying cells the caspase substrates spectrin (Fig. S3 A) and gelsolin (Fig. S3 B) are processed to the expected caspase-generated products. Cell extracts were also made from cells of the indicated genotypes cultured with or without the caspase inhibitor IDN-1965. Western blotting of these extracts shows the caspase dependence of gelsolin processing in dying cells (Fig. S3 C). Caspase-like DEVDase activity was measured by fluorogenic assay (Fig. S3 D). Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.200312030/DC1.
% r( S# B8 X/ S4 \: U
6 k  X) C- T0 `- K) L! `Acknowledgments2 G& @. D0 v8 A  b: u

- I1 t9 f, e/ c8 T/ d/ rWe thank Dr. K. Kuida for caspase-9 /– mice; Drs. K. Tomaselli and T. Oltersdorf for caspase inhibitors; Drs. L. O'Reilly (antibodies to caspase-2; The Walter and Eliza Hall Institute), R. Anderson (antibodies to HSP70; Peter MacCallum Cancer Centre, Melbourne, Australia), Y. Lazebnik (antibodies to caspases-3, -7, and -9; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY), P. Vandenabeele and M. Kalai (antibodies to caspase-1; University of Ghent, Ghent, Belgium), and D. Kwiatkowski (antibody to gelsolin; Harvard Medical School, Boston, NY); M. Pakusch for technical assistance; J. Morrow, C. Tilbrook, and A. Naughton for animal care; and Dr. F. Battye, D. Kaminaris, V. Lapatis, and C. Tarlinton for cell sorting. We are grateful to Drs. L. Coultas, S. Cory, R. Kluck, T. Thomas, and A. Voss for discussions.
9 S: V& S7 Q* \5 H/ @9 ~+ x* D5 _" C# e6 O( g& |/ ?0 c5 @
This work was supported by the National Health and Medical Research Council, the Leukemia and Lymphoma Society (SCOR Center), the Cancer Council Victoria, the National Institutes of Health, the Cancer Research Institute, the Commonwealth Dept. of Education, Science and Training and the University of Melbourne.( c- S+ S; u4 m2 [1 i( R

% H! W% |" h& U( }References
, d7 {7 y+ v# `% R5 A
. X  \% R* x# s' T6 S3 M* K0 cAdams, J.M. 2003. Ways of dying: multiple pathways to apoptosis. Genes Dev. 17:2481–2495.% E; g: L- x" `# b  f3 U

8 W) n/ N: a' t: z; t/ p9 h) qAltznauer, F., S. Conus, A. Cavalli, G. Folkers, and H.U. Simon. 2004. Calpain-1 regulates Bax and subsequent Smac-dependent caspase-3 activation in neutrophil apoptosis. J. Biol. Chem. 279:5947–5957.) D; U4 X# V) ?" ]) i7 O) P

. g: x+ i  O# H$ A- r8 WBergeron, L., G.I. Perez, G. Macdonald, L. Shi, Y. Sun, A. Jurisicova, S. Varmuza, K.E. Latham, J.A. Flaws, J.C. Salter, et al. 1998. Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev. 12:1304–1314.+ l! ~0 E; v) x2 ~, C) N, W6 s

7 f5 ]9 F/ A5 J4 OBossy-Wetzel, E., D.D. Newmeyer, and D.R. Green. 1998. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17:37–49.
& w# e+ r) p! }$ ?; ]; b
7 ]9 N2 F) O: _6 xBouillet, P., D. Metcalf, D.C.S. Huang, D.M. Tarlinton, T.W.H. Kay, F. K?ntgen, J.M. Adams, and A. Strasser. 1999. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science. 286:1735–1738.. v5 x1 C$ P7 Y( i
2 G* H0 K) @8 b. e" Q
Caserta, T.M., A.N. Smith, A.D. Gultice, M.A. Reedy, and T.L. Brown. 2003. Q-VDOPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis. 8:345–352.
! g" H) m! C1 s2 }7 u  J$ |1 i: F& r$ b% a
Ding, W.X., H.M. Shen, and C.N. Ong. 2002. Calpain activation after mitochondrial permeability transition in microcystin-induced cell death in rat hepatocytes. Biochem. Biophys. Res. Commun. 291:321–331.1 q* c: ^$ V& j7 D
# t  D/ [. d! Q; [* M3 x
Ekert, P.G., S.H. Read, J. Silke, V.S. Marsden, H. Kaufmann, C.J. Hawkins, R. Gerl, S. Kumar, and D.L. Vaux. 2004. Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. J. Cell Biol. 165:835–842.
0 F) k1 j; y; @+ z3 H$ i
. J$ Z: k1 ^* O: D$ ]Guo, Y., S.M. Srinivasula, A. Druilhe, T. Fernandes-Alnemri, and E.S. Alnemri. 2002. Caspase-2 induces apoptosis by releasing proapoptotic proteins from mitochondria. J. Biol. Chem. 277:13430–13437.
0 L0 Z* H9 A, F2 P! ~5 w  ^# e) }0 I0 R/ i
Hakem, R., A. Hakem, G.S. Duncan, J.T. Henderson, M. Woo, M.S. Soengas, A. Elia, J.L. de la Pompa, D. Kagi, W. Khoo, et al. 1998. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell. 94:339–352.! D: T2 x6 L, ?5 z% d- @8 I& |
3 P/ n7 _0 u( o" u, H$ R/ q
Hilbi, H., J.E. Moss, D. Hersh, Y. Chen, J. Arondel, S. Banerjee, R.A. Flavell, J. Yuan, P.J. Sansonetti, and A. Zychlinsky. 1998. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273:32895–32900.
' \% a3 }0 N" W/ U
0 B! R: W: b4 f0 G* ?Hisahara, S., J. Yuan, T. Momoi, H. Okano, and M. Miura. 2001. Caspase-11 mediates oligodendrocyte cell death and pathogenesis of autoimmune-mediated demyelination. J. Exp. Med. 193:111–122.( ^% ]7 u! m! n* C7 J
2 q1 O; F, N1 S$ c7 m6 X
Honarpour, N., K. Tabuchi, J.M. Stark, R.E. Hammer, T.C. Sudhof, L.F. Parada, X. Wang, J.A. Richardson, and J. Herz. 2001. Embryonic neuronal death due to neurotrophin and neurotransmitter deprivation occurs independent of Apaf-1. Neuroscience. 106:263–274.! ^6 b+ m# y: {. b5 X, {4 k8 M

6 P( [, p8 D" u4 gJaattela, M., and J. Tschopp. 2003. Caspase-independent cell death in T lymphocytes. Nat. Immunol. 4:416–423.- S( R) s% y9 U- s& N7 j" x4 b: Z

% m  v8 L: }& S% s' GKang, S.J., S. Wang, K. Kuida, and J. Yuan. 2002. Distinct downstream pathways of caspase-11 in regulating apoptosis and cytokine maturation during septic shock response. Cell Death Differ. 9:1115–1125.
- d- L$ y/ e3 N# a8 X1 I
- e8 ~0 F: L0 \4 B5 ]' E) xKilic, M., R. Schafer, J. Hoppe, and U. Kagerhuber. 2002. Formation of noncanonical high molecular weight caspase-3 and -6 complexes and activation of caspase-12 during serum starvation induced apoptosis in AKR-2B mouse fibroblasts. Cell Death Differ. 9:125–137.
+ B( i5 D9 N9 D( h4 @0 O0 q3 {5 I/ v4 F  _
Kuida, K., T.F. Haydar, C.-Y. Kuan, Y. Gu, C. Taya, H. Karasuyama, M.S.-S. Su, P. Rakic, and R.A. Flavell. 1998. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell. 94:325–337.
8 E8 u8 |% h( _7 D
" i1 T$ T4 M) W1 F4 s; ^- p6 GLassus, P., X. Opitz-Araya, and Y. Lazebnik. 2002. Requirement for caspase-2 in stress induced apoptosis before mitochondrial permeabilization. Science. 297:1352–1354.
- Q1 Y8 Q+ R1 Q, y) P+ n
/ L4 E6 f( |( _+ g# i6 w0 Z* DMarsden, V., and A. Strasser. 2003. Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu. Rev. Immunol. 21:71–105.
5 T1 V3 W: v1 l: C, H/ v/ i. q) a- Y/ i' s9 L3 X) _8 t
Marsden, V., L. O'Connor, L.A. O'Reilly, J. Silke, D. Metcalf, P. Ekert, D.C.S. Huang, F. Cecconi, K. Kuida, K.J. Tomaselli, et al. 2002. Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature. 419:634–637.
6 g, ?) J' j- p$ l7 F1 x' J) ~& n3 ]: @) N% g+ n' J0 s
McIlroy, D., H. Sakahira, R.V. Talanian, and S. Nagata. 1999. Involvement of caspase 3-activated DNase in internucleosomal DNA cleavage induced by diverse apoptotic stimuli. Oncogene. 18:4401–4408.
. e- Z8 I3 Q4 |1 I8 h8 D( {; H5 ]2 R# u
Methot, N., J. Huang, N. Coulombe, J.P. Vaillancourt, D. Rasper, J. Tam, Y. Han, J. Colucci, R. Zamboni, S. Xanthoudakis, et al. 2004. Differential efficacy of caspase inhibitors on apoptosis markers during sepsis in rats and implication for fractional inhibition requirements for therapeutics. J. Exp. Med. 199:199–207.' K4 R4 x  y& A5 s8 D$ y$ F

( k5 X0 M2 J- F* R% Q0 h$ F9 c( KMorishima, N., K. Nakanishi, H. Takenouchi, T. Shibata, and Y. Yasuhiko. 2002. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277:34287–34294.
0 v8 U; r1 Y" {# j. J4 ]
0 }3 [" s" D$ F7 i2 X$ b) e! SNakagawa, T., H. Zhu, N. Morishima, E. Li, J. Xu, B.A. Yankner, and J. Yuan. 2000. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature. 403:98–103.$ f  u7 |/ g' p$ ?

7 P' C, R# ]: e/ g( P5 S# @Nicholson, D.W. 1999. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6:1028–1042.
$ R* }: K' u2 b  R" q' K2 ?! m
7 e, A' c2 Y3 v3 N! SO'Reilly, L.A., P. Ekert, N. Harvey, V. Marsden, L. Cullen, D.L. Vaux, G. Hacker, C. Magnusson, M. Pakusch, F. Cecconi, et al. 2002. Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death Differ. 9:832–841.+ @. x) q2 w* F$ y
& r* l2 [: H' z6 }( w! f+ C
Rao, R.V., S. Castro-Obregon, H. Frankowski, M. Schuler, V. Stoka, G. del Rio, D.E. Bredesen, and H.M. Ellerby. 2002. Coupling endoplasmic reticulum stress to the cell death program: an Apaf-1-independent intrinsic pathway. J. Biol. Chem. 277:21836–21842.
* D% S! W5 q8 S0 o8 ?8 @6 M: V4 u% T, P# e% G4 k
Robertson, J.D., M. Enoksson, M. Suomela, B. Zhivotovsky, and S. Orrenius. 2002. Caspase-2 acts upstream of mitochondria to promote cytochrome c release during etoposide-induced apoptosis. J. Biol. Chem. 277:29803–29809.  t. l; U. @, t) q+ W7 V
1 P' B" M( n) C, |1 z0 R
Rowe, S.J., L. Allen, V.C. Ridger, P.G. Hellewell, and M.K.B. Whyte. 2002. Caspase-1 deficient mice have delayed neutrophil apoptosis and a prolonged inflammatory response to lipopolysaccharide-induced acute lung injury. J. Immunol. 169:6401–6407., o; W2 L1 m. H
4 X' @! ~# a& F9 P! H
Slee, E.A., C. Adrain, and S.J. Martin. 2001. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 276:7320–7326.9 s" A& w. `6 q5 C

3 \( ~3 V% i6 z+ }0 eSquier, M.K.T., and J.J. Cohen. 1997. Calpain, an upstream regulator of thymocyte apoptosis. J. Immunol. 158:3690–3697.
4 u. V; D( r5 d
" D+ e( }! H' g# o% C6 {Wu, J.C., and L.C. Fritz. 1999. Irreversible caspase inhibitors: tools for studying apoptosis. Methods. 17:320–328.(Vanessa S. Marsden1, Paul G. Ekert1,2, M)
作者: laoli1999    时间: 2015-5-25 09:33

干细胞研究重在基础
作者: beautylive    时间: 2015-6-5 14:40

我也来顶一下..  
作者: 剑啸寒    时间: 2015-6-22 08:53

真是天底下好事多多  
作者: 陈晴    时间: 2015-6-25 17:29

干细胞与基因技术
作者: 橙味绿茶    时间: 2015-7-4 08:53

我来看看!谢谢  
作者: yukun    时间: 2015-7-24 22:55

我等你哟!  
作者: awen    时间: 2015-7-31 18:33

这贴子你会收藏吗  
作者: 罗马星空    时间: 2015-8-2 15:18

造血干细胞
作者: tempo    时间: 2015-8-7 18:18

今天再看下  
作者: foxok    时间: 2015-8-23 20:09

支持~~顶顶~~~  
作者: 杏花    时间: 2015-10-5 09:57

干细胞研究人员的天堂
作者: sky蓝    时间: 2015-10-23 16:35

顶的就是你  
作者: aakkaa    时间: 2015-11-16 21:55

站个位在说  
作者: immail    时间: 2015-12-14 18:18

设置阅读啊  
作者: 兔兔    时间: 2015-12-21 20:53

每天早上起床都要看一遍“福布斯”富翁排行榜,如果上面没有我的名字,我就去上班……  
作者: 大小年    时间: 2015-12-24 22:32

都是那么过来的  
作者: tempo    时间: 2015-12-28 10:35

做一个,做好了,请看  
作者: tempo    时间: 2015-12-29 23:16

好人一个  
作者: nauticus    时间: 2016-1-4 21:43

这个贴不错!!!!!  
作者: bluesuns    时间: 2016-1-7 16:54

希望大家帮我把这个帖发给你身边的人,谢谢!  
作者: 榴榴莲    时间: 2016-1-11 10:28

你加油吧  
作者: marysyq    时间: 2016-2-13 11:17

我回不回呢 考虑再三 还是不回了吧 ^_^  
作者: chongchong    时间: 2016-3-4 15:10

努力,努力,再努力!!!!!!!!!!!  
作者: xiao2014    时间: 2016-3-5 14:43

经过你的指点 我还是没找到在哪 ~~~  
作者: tempo    时间: 2016-3-24 09:43

支持一下吧  
作者: 追风    时间: 2016-3-27 15:41

很有吸引力  
作者: 多来咪    时间: 2016-4-4 18:00

初来乍到,请多多关照。。。  
作者: 咖啡功夫猫    时间: 2016-6-5 22:51

我来了~~~~~~~~~ 闪人~~~~~~~~~~~~~~~~  
作者: 榴榴莲    时间: 2016-6-11 12:10

彪悍的人生不需要解释。  
作者: www1202000    时间: 2016-7-1 20:43

干细胞研究重在基础
作者: dmof    时间: 2016-7-21 13:18

努力,努力,再努力!!!!!!!!!!!  
作者: ladybird    时间: 2016-7-27 16:01

每天都会来干细胞之家看看
作者: leeking    时间: 2016-8-17 12:04

留个脚印```````  
作者: 多来咪    时间: 2016-8-17 13:27

回复一下  
作者: txxxtyq    时间: 2016-8-21 11:01

说的不错  
作者: 123456zsz    时间: 2016-9-4 12:01

一楼的位置好啊..  
作者: qibaobao    时间: 2016-9-9 15:18

这个贴不错!!!!!  
作者: leeking    时间: 2016-10-12 08:16

干细胞之家是不错的网站
作者: 小小C    时间: 2016-11-3 13:35

加油啊!偶一定会追随你左右,偶坚定此贴必然会起到抛砖引玉的作用~  
作者: 未必温暖    时间: 2016-11-13 15:53

继续查找干细胞研究资料
作者: heart10    时间: 2017-1-11 08:35

支持~~  
作者: Greatjob    时间: 2017-1-15 05:57

努力~~各位。。。  
作者: 我学故我思    时间: 2017-2-4 14:27

祝干细胞之家 越办越好~~~~~~~~~`  
作者: tuting    时间: 2017-2-5 09:35

呵呵 哪天得看看 `~~~~  
作者: ladybird    时间: 2017-2-28 04:42

支持你一下下。。  
作者: MIYAGI    时间: 2017-2-28 20:30

很有吸引力  
作者: 小倔驴    时间: 2017-3-1 01:54

谢谢分享了!   
作者: qibaobao    时间: 2017-3-12 22:54

不错!  
作者: s06806    时间: 2017-4-9 02:45

呵呵,支持一下哈  
作者: frogsays    时间: 2017-4-9 23:04

我在顶贴~!~  
作者: doors    时间: 2017-4-20 15:07

帮你项项吧  
作者: 狂奔的蜗牛    时间: 2017-5-5 06:52

哈哈,这么多的人都回了,我敢不回吗?赶快回一个,很好的,我喜欢  
作者: 快乐小郎    时间: 2017-5-16 01:58

看完了这么强的文章,我想说点什么,但是又不知道说什么好,想来想去只想  
作者: 生物小菜鸟    时间: 2017-5-17 14:54

好啊,谢楼主
作者: dada    时间: 2017-5-19 03:57

呵呵 都没人想我~~  
作者: 老农爱科学    时间: 2017-7-16 16:34

我的啦嘿嘿  
作者: 墨玉    时间: 2017-7-16 19:54

孜孜不倦, 吾等楷模 …………  
作者: Whole    时间: 2017-7-24 16:35

好人一生平安  
作者: 榴榴莲    时间: 2017-9-13 14:35

dddddddddddddd  
作者: 三星    时间: 2017-9-20 12:35

想都不想,就支持一下  
作者: happyboy    时间: 2017-9-26 07:01

免疫细胞治疗  
作者: 123456zsz    时间: 2017-10-12 07:00

这年头,分不好赚啊  
作者: 咕咚123    时间: 2017-10-12 14:00

干细胞行业  
作者: 安安    时间: 2017-10-15 15:54

来上茶~~~~  
作者: mk990    时间: 2017-10-23 08:35

一楼的位置好啊..  
作者: awen    时间: 2017-10-24 01:57

牛牛牛牛  
作者: HongHong    时间: 2017-10-27 19:53

慢慢来,呵呵  
作者: tian2006    时间: 2017-10-29 08:27

我等你哟!  
作者: 昕昕    时间: 2017-12-26 02:51

谢谢分享  
作者: 求索迷茫    时间: 2017-12-28 19:12

不错不错.,..我喜欢  
作者: 黄山    时间: 2018-1-9 16:34

呵呵,找个机会...  
作者: IPS干细胞    时间: 2018-1-12 15:00

我起来了 哈哈 刚才迷了会  
作者: 王者之道    时间: 2018-1-17 12:18

一楼的位置好啊..  
作者: bioprotein    时间: 2018-1-20 10:43

不错不错.,..我喜欢  
作者: 风云动    时间: 2018-1-23 14:10

一个有信念者所开发出的力量,大于99个只有兴趣者。  
作者: 泡泡鱼    时间: 2018-1-25 18:13

肌源性干细胞
作者: keanuc    时间: 2018-1-25 23:03

来上茶~~~~  
作者: 碧湖冷月    时间: 2018-2-12 10:00

强人,佩服死了。呵呵,不错啊  
作者: biodj    时间: 2018-3-10 08:27

我喜欢这个贴子  
作者: doc2005    时间: 2018-4-3 23:33

帮顶  
作者: aakkaa    时间: 2018-4-19 15:34

我在努力中  
作者: 命运的宠儿    时间: 2018-4-28 20:50

一楼的位置好啊..  
作者: dongmei    时间: 2018-5-25 06:54

要不我崇拜你?行吗?  
作者: pengzy    时间: 2018-5-26 21:22

呵呵,等着就等着....  
作者: MIYAGI    时间: 2018-5-27 17:35

干细胞研究还要面向临床
作者: 陈晴    时间: 2018-5-29 22:43

哈哈,看的人少,回一下  
作者: 糊涂小蜗牛    时间: 2018-6-25 19:15

细胞治疗行业  
作者: highlight    时间: 2018-6-26 06:11

呵呵 高高实在是高~~~~~  
作者: dd赤焰    时间: 2018-7-14 19:12

风物长宜放眼量  
作者: abc987    时间: 2018-7-26 18:00

回答了那么多,没有加分了,郁闷。。  
作者: dongmei    时间: 2018-8-4 19:32

帮你项项吧  
作者: 黄山    时间: 2018-8-5 12:33

顶下再看  
作者: 墨玉    时间: 2018-8-9 12:10

一个子 没看懂  
作者: 加菲猫    时间: 2018-8-12 18:01

楼上的话等于没说~~~  
作者: 干细胞2014    时间: 2018-8-18 20:08

楼主也是博士后吗  
作者: 旅美学者    时间: 2018-8-20 01:56

人气还要再提高  
作者: mk990    时间: 2018-10-26 05:23

干细胞研究非常有前途
作者: 蚂蚁    时间: 2018-11-12 05:25

我想要`~  
作者: nosoho    时间: 2018-11-26 21:54

不错,支持下  




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5