干细胞之家 - 中国干细胞行业门户第一站

标题: Dendrite development : a surprising origin [打印本页]

作者: kato    时间: 2009-3-6 09:59     标题: Dendrite development : a surprising origin

Department of Neurobiology, Duke University Medical Center, Durham, NC 27710
0 R% r/ S  S* ?, M, z$ b! u* a& K# t; x- u2 j6 }- |0 A% D% d5 b  S' _
AbstractNeurons extend elaborate dendrites studded with spines. Unexpectedly, this cellular sculpting is regulated by the origin recognition complex〞the core machinery for initiating DNA replication.$ I( B" q- I" k# V0 Q
8 c+ H; ^- j  |) r6 O/ z5 a+ J
The circuitry of the brain arises from the complex geometry of neurons. For most neurons, synapses form over an elongated and highly branched dendritic arbor whose precise construction enables highly compartmentalized signaling to be integrated in time and space (Hausser et al., 2000). This Brobdingnagian feat of cellular growth and specialization happens during a short period of development after neurons exit the cell cycle and occurs with amazing stereotypy for given subclasses of neurons (Jan and Jan, 2003). Because of their importance in orchestrating neuronal connectivity and signaling, the mechanisms and molecules controlling dendrite morphology have received considerable attention.& M3 H% ^" Y& y' \

+ t& }; W( b+ s# G4 BQuite understandably, studies to date have focused on the cytoskeletal changes and signaling events that determine how dendrites achieve their shape (Jan and Jan, 2003). As dendrites grow, branches are thought to arise from extended filopodia, which are stabilized by making synaptic contact with nearby axons (Niell et al., 2004). As the dendrites continue their growth, actin-rich membrane protrusions appear over their surface, which contact axons and differentiate into micron-sized mushroom-shaped spines (specialized compartments housing neurotransmitter receptors and other requisite machinery for postsynaptic signaling; Segal, 2005). Emerging from this basic script have been a cast of molecular characters including growth factors, actin regulatory proteins, postsynaptic density proteins, and transcription factors, whose presence onstage seems wholly justified and satisfying. Now, barging from behind the curtain to interrupt this comfortable dialog is a most peculiar Puck of a protein. In the current issue, a paper from the laboratory of Louis Reichardt identifies the origin recognition complex (ORC) as a molecular mischief maker regulating the development of dendrites and spines (see Huang et al. on page 527 of this issue).- g' K$ w) C7 Q  }7 I. u6 `' Y

2 y& U' ~) K$ _8 ]: IHuang et al. (2005) began their unlikely journey by noting the expression of ORC core subunits in adult brain and postmitotic hippocampal neurons (a rather surprising finding given the usual role of the ORC in initiating DNA replication during mitosis; Bell, 2002). More surprising still was the localization of endogenous Orc3 and expressed GFP fusions of Orc2, Orc3, and Orc5 outside the nucleus in the neuronal cytoplasm. Double labeling immunocytochemistry showed that these ORC subunits were restricted to the cell body and dendrites and were absent from axons, pointing to a dendritic function. Fractionation of brain lysates revealed an enrichment of the ORC subunits Orc3–5 in microsome and synaptosome membrane fractions, suggesting a membrane-associated function. To explore this further, Huang et al. (2005) performed loss-of-function experiments in hippocampal neurons using RNA interference against ORC subunits and found that depletion of either Orc3 or Orc5 caused a marked reduction in the number of dendritic branches and overall dendritic length./ Z3 A+ O2 r$ _5 Z
* p& j; ?* \$ k1 {8 x
What is the origin recognition complex (ORC) "Origin" in this case refers to the origins of DNA replication present in all eukaryotic chromosomes (Bell, 2002). The mammalian ORC is a hexameric protein complex composed of four core subunits (Orc2–5) and two peripheral subunits (Orc1 and Orc6) that together participate in initiating DNA replication during G1-S transition (Bell and Stillman, 1992; Bell, 2002; Fig. 1 A). Among these subunits, three (Orc1, Orc4, and Orc5) belong to the AAA family of ATPases. The ORC initiates the assembly of a prereplication complex in part by binding the accessory proteins CDC-6 and CDT-1, which are essential for coating the DNA with MCM proteins, a requisite step in replication. In addition, the ORC prevents replication reinitiation to ensure single copy genome duplication. Importantly, the function of the ORC is tightly regulated during the cell cycle by cyclin-dependent kinase (Cdk) activity and by ATPase-dependent changes in subunit conformation and modification (Bell, 2002)." {, Q! n( I3 X7 A* c& Q
4 x5 k  \6 x* e  |5 T6 I; C4 [& `
One might logically ask how the nuclear function of the ORC in binding DNA and regulating replication initiation could relate to a cytosolic function in dendrite growth and morphogenesis. In fact, recent studies in nonneuronal cells indicate an expanding repertoire of cellular functions for ORC subunits. For example, Orc6 localizes to the spindle midzone during mitosis where it participates in cytokinesis (Prasanth et al., 2002; Chesnokov et al., 2003), whereas Orc2 associates with centrosomes and centromeres and is required for chromosome segregation following replication (Prasanth et al., 2004; Fig. 1 B). Thus, ORC subunits can regulate cell morphological changes in a manner seemingly independent of a role in replication. Consistent with this notion Huang et al. (2005) found that whereas ORC subunits are expressed in adult brain, proteins required for DNA replication downstream of ORC, including CDC-6 and MCM proteins 2, 4, and 6, are either not expressed or expressed at very low levels.
6 H+ }/ k) r& c/ B" d
$ @: l, d2 F- H! f2 y- p) q- jWhat about later events in the development of dendrites such as the formation of synapses Initial studies showed that the Drosophila latheo gene, which encodes the fly Orc3, is required for proper development and transmission at neuromuscular synapses (Pinto et al., 1999; Rohrbough et al., 1999), suggesting a role in synapse development. In the current study, Reichardt and colleagues found that RNAi-mediated knockdown of either Orc3 or Orc5 results in a profound loss of dendritic spines on mammalian hippocampal neurons. This loss of spines was not accompanied by a change in spine morphology or a failure to accumulate the postsynaptic density protein PSD-95, suggesting that ORC loss of function perturbs an early step of spine formation without affecting maturation. Such selectivity is unlike many actin-regulatory and postsynaptic density proteins, which typically influence both spine initiation and maturation (Terry-Lorenzo et al., 2005). Consistent with a role for the ORC in spine initiation, neurons in which Orc3 expression was suppressed by RNAi exhibited fewer dendritic filopodia (structures thought to be the precursors of dendritic spines) as well as a decrease in EGFP–Mena puncta, an early marker for nascent filopodia., y2 ?& B% N9 `% q5 j' I

. ^6 o" R% f3 ]5 x/ F6 T3 iSo what is the mechanism of ORC-mediated dendrite branching and spinogenesis In large part, this remains an open question. One clue provided by Huang et al. (2005) is that expression of point mutants of Orc4 predicted to disrupt ATP binding and hydrolysis (E157Q and K71A in the Walker A and Walker B motifs, respectively) increased the elaboration of dendritic branches in hippocampal neurons. These data suggest that the ATPase activity of Orc4 suppresses ORC-mediated dendritic branching, perhaps by changing ORC subunit conformation or altering the association of ORC subunits with as yet unknown regulatory proteins. Due to the chronic nature of the manipulations used by Huang et al. (2005), it is not yet possible to discern whether Orc subunits engage directly, locally, and acutely with mechanisms of dendrite and spine growth (e.g., association with the cytoskeleton, local signaling molecules, or membrane trafficking mechanisms) or whether the observed effect is far downstream of more general and perhaps global changes in cell gene expression, protein levels, or metabolism.
, J4 {- d0 `) }: d* \. |, e
- w8 N. g4 v. @: p# f$ o# h( uIt is tempting to postulate the existence of a direct link between ORC subunits and the actin cytoskeleton, given the well known role for actin dynamics in spine morphogenesis and dendrite patterning. In this regard, it is interesting to note that Orc6 localizes to the cell membrane and cleavage furrow during mitosis and has thereby been implicated in cytokinesis (Prasanth et al., 2002; Chesnokov et al., 2003), a process requiring the assembly and constriction of a circumferential array of actin filaments and myosin-2 (Glotzer, 2005; Fig. 1 B). On the other hand, Orc2 localizes to centrosomes throughout the cell cycle (Prasanth et al., 2004), suggesting a role in microtubule organization that, if operating in dendrites, could direct for membrane transport to accommodate localized dendrite growth or branching (Horton and Ehlers, 2004; Fig. 1 B). Indeed, Huang et al. (2005) observed an atypical "loose" organization of microtubules in Orc3-depleted neurons. It will be interesting to determine whether mechanisms by which ORC subunits influence cytokinesis and centrosome organization are coopted in neurons to mediate their unique morphological requirements (Fig. 1 C).  C2 _/ v1 v' }0 F; Q$ R6 `# j

' S0 D8 G, _8 S' y/ G! c/ k) @The molecular machinery of mitosis has a long and illustrious history in cell biology. Recent years have seen the surprising emergence of many key cell cycle components in the quintessential postmitotic cell〞the neuron. For example, the anaphase promoting complex (APC), a multisubunit ubiquitin ligase well known for its role in targeting mitotic cyclins and other cell cycle regulatory proteins for proteasomal degradation, has been found to regulate axon outgrowth and synapse development in neurons (Juo and Kaplan, 2004; Konishi et al., 2004; van Roessel et al., 2004), the latter effect through its ubiquitination of the synaptic scaffold protein liprin-–SYD-2 (van Roessel et al., 2004). Polo-like kinases (Plk's) are also best known as key regulators of the cell cycle, yet Plk2–SNK mediates the loss of dendritic spines by phosphorylating spine-associated Rap–GAP activating protein (SPAR), a key regulator of actin dynamics in spines (Pak and Sheng, 2003). The results of Huang et al. (2005) now add the origin recognition complex to the growing list of Janus-faced cell cycle molecules regulating neuronal development and plasticity.
# C7 s6 ?* \9 e& X4 N8 i! r3 o9 V1 p
More study is clearly needed. In particular, we have very little knowledge about where the ORC resides in dendrites and spines at a subcellular level. Further, much remains to be determined about the mechanisms downstream of the ORC, including such basics as the relevant binding partners and whether the effects of the ORC are far removed or proximate to the ultimate effectors of dendrite growth. Do different ORC subunits mediate distinct aspects of dendrite growth and differentiation Do the observed effects of ORC subunits on morphology translate into functional effects on synaptic transmission Do known mechanisms regulating ORC function in replication initiation, such as Cdks, likewise influence dendrite growth via the ORC Are there additional unknown nuclear functions of the ORC in neurons Such mechanistic studies will be requisite for determining how the ORC orchestrates the development of dendrites.& t% v, y/ D# a$ n: h2 b: y

( ^" G. c3 g6 R2 ~. L6 |9 w% _8 [References
& |  [( J. H% w$ m- p1 d+ W  a; _' B$ ^0 u" _4 p
Bell, S.P. 2002. The origin recognition complex: from simple origins to complex functions. Genes Dev. 16:659–672.) V1 ~# J* ]! d1 o2 t0 v' q% s. k
; l8 j: N- V' i9 m8 u
Bell, S.P., and B. Stillman. 1992. ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature. 357:128–134.
5 O- Z9 {; N* a$ y% B9 G* o  ?' Y) ?- H8 C9 ?
Chesnokov, I.N., O.N. Chesnokova, and M. Botchan. 2003. A cytokinetic function of Drosophila ORC6 protein resides in a domain distinct from its replication activity. Proc. Natl. Acad. Sci. USA. 100:9150–155. 10.1073/pnas.1633580100( {' ~+ P4 {- f0 o

5 t" m8 w  V0 ~; s/ x$ xGlotzer, M. 2005. The molecular requirements for cytokinesis. Science. 307:1735–1739.
8 E2 T/ t' C. c4 {' L6 |4 E2 R( z; P1 ^5 R( i7 a4 [
Hausser, M., N. Spruston, and G.J. Stuart. 2000. Diversity and dynamics of dendritic signaling. Science. 290:739–744.$ `. ?4 n2 H8 g* _

, o$ B1 `5 @9 o9 f2 {! R2 a' tHorton, A.C., and M.D. Ehlers. 2004. Secretory trafficking in neuronal dendrites. Nat. Cell Biol. 6:585–591., Z$ K' Z# A- h" _' ?& a: o4 ^% u
/ M) M  B% S# Q3 Q! S1 o  t- a, u
Huang, Z., K. Zang, and L.F. Reichardt. 2005. The origin recognition core complex regulates dendrite and spine development in postmitotic neurons. J. Cell Biol. 170:527–535.
, w' o  O# n; N3 f' ~
& K# k5 ~' D0 M- i0 fJan, Y.N., and L.Y. Jan. 2003. The control of dendrite development. Neuron. 40:229–242.
; v# l& [! i4 Y% K0 A3 `7 _- ^( W  f2 X% J* X5 `0 |
Juo, P., and J.M. Kaplan. 2004. The anaphase-promoting complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Curr. Biol. 14:2057–2062.
' D/ B/ w4 _/ G/ H, ~1 _$ `
, i& m! n" I" y  X& C4 G: M3 fKonishi, Y., J. Stegmuller, T. Matsuda, S. Bonni, and A. Bonni. 2004. Cdh1-APC controls axonal growth and patterning in the mammalian brain. Science. 303:1026–1030. 10.1126/science.1093712: [: p' K* J2 X  Y

3 f% h: ^" _! E0 x- X! }, y  q' KNiell, C.M., M.P. Meyer, and S.J. Smith. 2004. In vivo imaging of synapse formation on a growing dendritic arbor. Nat. Neurosci. 7:254–260. 10.1038/nn1191" f* ^( c% l9 S
9 Y- [/ W; ?+ M! ^0 M
Pak, D.T., and M. Sheng. 2003. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science. 302:1368–1373. 10.1126/science.10824758 }1 ^, G2 A! w% e: e; m, e# A
. d0 L, v+ D& g( }
Pinto, S., D.G. Quintana, P. Smith, R.M. Mihalek, Z.H. Hou, S. Boynton, C.J. Jones, M. Hendricks, K. Velinzon, J.A. Wohlschlegel, et al. 1999. latheo encodes a subunit of the origin recognition complex and disrupts neuronal proliferation and adult olfactory memory when mutant. Neuron. 23:45–54.3 O. ^+ q2 B- N# O/ }

6 D& H& Z* V; J8 @. _/ mPrasanth, S.G., K.V. Prasanth, and B. Stillman. 2002. Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science. 297:1026–1031.3 [* w1 B) Q  a3 b3 G% w$ L- \

. j- \: F: m3 L- _+ C9 \" APrasanth, S.G., K.V. Prasanth, K. Siddiqui, D.L. Spector, and B. Stillman. 2004. Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO J. 23:2651–2663. 10.1038/sj.emboj.7600255
" G* o3 ^; D5 H6 ?' z8 [4 ^2 y4 I* W: R) ?
Rohrbough, J., S. Pinto, R.M. Mihalek, T. Tully, and K. Broadie. 1999. latheo, a Drosophila gene involved in learning, regulates functional synaptic plasticity. Neuron. 23:55–70.0 [; v9 \0 H" @8 g7 n5 o% E6 f
* m( z( Q5 D+ ~0 C
Segal, M. 2005. Dendritic spines and long-term plasticity. Nat. Rev. Neurosci. 6:277–284.0 r) A: v1 c5 y+ Z# [0 m, k3 T" {& J
" ~% y: p: {: k" i2 _, f& a8 r
Terry-Lorenzo, R.T., D.W. Roadcap, T. Otsuka, T.A. Blanpied, P.L. Zamorano, C.C. Garner, S. Shenolikar, and M.D. Ehlers. 2005. Neurabin/protein phosphatase-1 complex regulates dendritic spine morphogenesis and maturation. Mol. Biol. Cell. 16:2349–2362. 10.1091/mbc.E04-12-1054
/ J' R) n$ w' V* e' L, T- e- ]! w
, s. B" a% \7 L' g9 {! Cvan Roessel, P., D.A. Elliott, I.M. Robinson, A. Prokop, and A.H. Brand. 2004. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell. 119:707–718.(Michael D. Ehlers)
作者: awen    时间: 2015-6-11 14:18

支持你加分  
作者: 剑啸寒    时间: 2015-6-28 14:52

呵呵,支持一下哈  
作者: biobio    时间: 2015-7-21 20:07

一楼的位置好啊..  
作者: 张佳    时间: 2015-7-23 21:02

说的不错  
作者: xuguofeng    时间: 2015-7-24 23:10

知道了 不错~~~  
作者: 昕昕    时间: 2015-8-6 12:00

真是汗啊  我的家财好少啊  加油  
作者: aakkaa    时间: 2015-8-23 08:07

不是吧  
作者: 依旧随遇而安    时间: 2015-8-29 10:04

好帖,有才  
作者: 石头111    时间: 2015-8-30 23:23

真的有么  
作者: 张佳    时间: 2015-9-8 14:43

风物长宜放眼量  
作者: sky蓝    时间: 2015-10-2 16:23

顶也~  
作者: laoli1999    时间: 2015-10-26 15:54

干细胞库  
作者: bluesuns    时间: 2015-10-27 15:59

拿把椅子看表演
作者: dypnr    时间: 2015-11-7 19:17

谁都不容易啊 ~~  
作者: 命运的宠儿    时间: 2015-11-7 21:01

脂肪干细胞
作者: tempo    时间: 2015-11-17 22:09

牛牛牛牛  
作者: 橙味绿茶    时间: 2015-11-25 14:54

干细胞产业是朝阳产业
作者: beautylive    时间: 2015-11-29 19:41

楼主也是博士后吗  
作者: marysyq    时间: 2015-12-28 22:27

应该加分  
作者: laoli1999    时间: 2016-1-4 10:27

我的啦嘿嘿  
作者: awen    时间: 2016-1-27 10:27

先看看怎么样!  
作者: 泡泡鱼    时间: 2016-1-27 22:01

好啊,,不错、、、、  
作者: nauticus    时间: 2016-2-15 20:09

强人,佩服死了。呵呵,不错啊  
作者: chinagalaxy    时间: 2016-2-15 22:35

一个人最大的破产是绝望,最大的资产是希望。  
作者: 狂奔的蜗牛    时间: 2016-4-9 12:43

谢谢分享  
作者: www1202000    时间: 2016-4-17 14:00

活着,以死的姿态……  
作者: 杏花    时间: 2016-4-17 23:01

好人一个  
作者: 王者之道    时间: 2016-4-17 23:11

干细胞研究重在基础
作者: nosoho    时间: 2016-4-26 21:18

赚点分不容易啊  
作者: 一个平凡人    时间: 2016-6-15 15:01

一楼的位置好啊..  
作者: yunshu    时间: 2016-7-9 16:10

我十目一行也还是看不懂啊  
作者: tuanzi    时间: 2016-7-25 15:54

既然来了,就留个脚印  
作者: abc987    时间: 2016-7-27 18:31

不看白不看,看也不白看  
作者: 小小C    时间: 2016-8-6 20:17

照你这么说真的有道理哦 呵呵 不进沙子馁~~~  
作者: keanuc    时间: 2016-9-16 09:54

我十目一行也还是看不懂啊  
作者: 陈晴    时间: 2016-10-3 16:01

晕死也不多加点分  
作者: 983abc    时间: 2016-10-12 12:07

好困啊  
作者: heart10    时间: 2016-10-13 12:35

我在努力中  
作者: keanuc    时间: 2016-10-14 14:44

一定要回贴,因为我是文明人哦  
作者: 分子工程师    时间: 2016-10-27 16:54

谢谢分享  
作者: lab2010    时间: 2016-11-19 10:50

我来看看!谢谢  
作者: 泡泡鱼    时间: 2016-12-15 00:01

不错,支持下  
作者: yukun    时间: 2016-12-24 23:23

风物长宜放眼量  
作者: 某某人    时间: 2017-1-30 09:35

看完了这么强的文章,我想说点什么,但是又不知道说什么好,想来想去只想  
作者: 知足常乐    时间: 2017-2-11 07:15

勤奋真能造就财富吗?  
作者: 生物小菜鸟    时间: 2017-3-14 13:26

不错啊! 一个字牛啊!  
作者: 知足常乐    时间: 2017-3-19 07:07

这个贴不错!!!!!看了之后就要回复贴子,呵呵  
作者: haha3245    时间: 2017-3-25 18:43

似曾相识的感觉  
作者: 快乐小郎    时间: 2017-3-27 23:29

我的啦嘿嘿  
作者: s06806    时间: 2017-3-29 02:25

呵呵 高高实在是高~~~~~  
作者: 知足常乐    时间: 2017-4-11 00:26

免疫细胞治疗  
作者: bioprotein    时间: 2017-4-12 23:01

ding   支持  
作者: 小丑的哭泣    时间: 2017-4-15 19:01

宁愿选择放弃,不要放弃选择。  
作者: 科研人    时间: 2017-5-12 13:54

进行溜达一下  
作者: 与你同行    时间: 2017-5-21 20:15

这个贴不错!!!!!  
作者: chinagalaxy    时间: 2017-5-24 18:18

今天没事来逛逛,看了一下,感觉相当的不错。  
作者: alwaysniu    时间: 2017-5-28 06:00

呵呵,找个机会...  
作者: 石头111    时间: 2017-5-31 12:54

鉴定完毕.!  
作者: nosoho    时间: 2017-6-9 11:43

谁能送我几分啊  
作者: MIYAGI    时间: 2017-6-29 09:27

ding   支持  
作者: 考拉    时间: 2017-6-29 19:21

鉴定完毕.!  
作者: awen    时间: 2017-7-7 03:46

楼主good  
作者: DAIMAND    时间: 2017-7-27 16:52

楼主,支持!  
作者: 小敏    时间: 2017-8-4 13:10

谢谢干细胞之家提供资料
作者: 追风    时间: 2017-8-4 14:54

似曾相识的感觉  
作者: 小小C    时间: 2017-8-22 09:34

水至清则无鱼,人至贱则无敌!  
作者: tempo    时间: 2017-8-27 05:29

照你这么说真的有道理哦 呵呵 不进沙子馁~~~  
作者: 狂奔的蜗牛    时间: 2017-10-3 00:01

好贴子好多啊  
作者: 某某人    时间: 2017-11-1 02:41

回贴赚学识,不错了  
作者: Kuo    时间: 2017-11-9 19:00

呵呵 高高实在是高~~~~~  
作者: alwaysniu    时间: 2017-11-9 21:53

天啊. 很好的资源
作者: s06806    时间: 2017-11-17 13:08

呵呵,找个机会...  
作者: 安安    时间: 2017-12-8 16:43

继续查找干细胞研究资料
作者: marysyq    时间: 2017-12-18 05:20

我的啦嘿嘿  
作者: MIYAGI    时间: 2017-12-27 17:39

晕死也不多加点分  
作者: ikiss    时间: 2018-1-15 16:54

好啊,,不错、、、、  
作者: 某某人    时间: 2018-2-8 01:38

我在努力中  
作者: 加菲猫    时间: 2018-3-16 14:10

好帖,有才  
作者: 舒思    时间: 2018-4-1 18:46

干细胞分化技术
作者: doc2005    时间: 2018-4-8 10:35

强人,佩服死了。呵呵,不错啊  
作者: 初夏洒脱    时间: 2018-5-16 02:38

不错啊! 一个字牛啊!  
作者: keanuc    时间: 2018-5-20 09:43

这个贴好像之前没见过  
作者: MIYAGI    时间: 2018-5-23 23:15

祝干细胞之家 越办越好~~~~~~~~~`  
作者: 安安    时间: 2018-5-26 14:50

好 好帖 很好帖 确实好帖 少见的好帖  
作者: 墨玉    时间: 2018-6-10 05:54

谢谢哦  
作者: foxok    时间: 2018-6-16 11:09

回复一下  
作者: 生科院    时间: 2018-6-20 02:54

既然来了,就留个脚印  
作者: SCISCI    时间: 2018-7-11 01:41

顶你一下,好贴要顶!  
作者: pcr    时间: 2018-7-20 21:41

顶你一下.  
作者: wq90    时间: 2018-7-25 15:16

这贴子你会收藏吗  
作者: yukun    时间: 2018-7-28 19:35

支持~~  
作者: popobird    时间: 2018-8-1 10:34

看或者不看,贴子就在这里,不急不忙  
作者: dreamenjoyer    时间: 2018-8-6 18:18

我毫不犹豫地把楼主的这个帖子收藏了  
作者: 糊涂小蜗牛    时间: 2018-8-12 02:58

呵呵 那就好好玩吧~~~~  
作者: 碧湖冷月    时间: 2018-8-25 01:53

世界上那些最容易的事情中,拖延时间最不费力。  
作者: syt7000    时间: 2018-8-26 14:34

长时间没来看了 ~~  
作者: 老农爱科学    时间: 2018-10-5 13:10

哈哈 我支持你
作者: 生物小菜鸟    时间: 2018-10-30 23:22

一楼的位置好啊..  
作者: 昕昕    时间: 2018-11-4 03:10

不要等到人人都说你丑时才发现自己真的丑。  




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5