干细胞之家 - 中国干细胞行业门户第一站

标题: TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends [打印本页]

作者: kato    时间: 2009-3-6 10:05     标题: TIP maker and TIP marker; EB1 as a master controller of microtubule plus ends

Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 465562 b6 _  s! r8 o! _/ ~8 T- N6 ?

1 p7 f( p0 }+ W2 VAbstractThe EB1 protein is a member of the exciting and enigmatic family of microtubule (MT) tip-tracking proteins. EB1 acts as an exquisite marker of dynamic MT plus ends in some cases, whereas in others EB1 is thought to directly dictate the behavior of the plus ends. How EB1 differentiates between these two roles remains unclear; however, a growing list of interactions between EB1 and other MT binding proteins suggests there may be a single mechanism. Adding another layer of complexity to these interactions, two studies published in this issue implicate EB1 in cross-talk between mitotic MTs and between MTs and actin filaments (Goshima et al., p. 229; Wu et al., p. 201). These results raise the possibility that EB1 is a central player in MT-based transport, and that the activity of MT-binding proteins depends on their ability or inability to interact with EB1.
& N' \* k/ U+ E5 k# e6 e2 \$ M7 K1 H/ E/ I
Abbreviations used in this paper: APC, adenomatous polyposis coli; C-MT, centrosomal MT; K-fibers, kinetochore fibers; MT, microtubule; siRNA, small interfering RNA.$ ~3 z5 S( X4 F4 K# X/ t
1 V8 \; a1 v7 r: v. k* q. c
EB1 is a MT tip-tracking proteinEB1 was first described as an adenomatous polyposis coli (APC)–interacting protein whose binding domain was affected by APC mutations implicated in colon cancer (Su et al., 1995). Subsequent localization revealed that EB1 binds to and labels a subset of the total microtubule (MT) population and that it displays some preference for the very plus end of these MTs (Morrison et al., 1998). Live-cell imaging of transfected GFP fusion proteins further revealed specificity for the tips of MTs undergoing elongation (Mimori-Kiyosue et al., 2000). This tendency to bind elongating MT plus ends and to appear to "track" with these ends as long as they extend is known as "tip tracking," and an impressive number of MT-binding proteins display this tip-tracking activity in live-cell imaging assays (for review see Vaughan, 2004). In most cases, high resolution imaging suggests that these proteins "treadmill" at the elongating plus ends rather than translocate or "surf" with the growing tip. This contrasts, to some extent, the behavior of homologues in yeast and filamentous fungi that appear to translocate toward the plus end via a kinesin motor or other mechanisms (Xiang et al., 2000; Liakopoulos et al., 2003). In mammalian cells, tip tracking is best characterized in transfection assays where fluorescent fusion proteins are overexpressed at some level. Often the degree of tip specificity is influenced by the amount of expressed protein. Although tip specificity is evident at low levels of expression, a transition to decoration along the length of MTs becomes prominent as the level of expression increases. For some tip trackers, this tendency is thought to reflect a regulatory cycle at the MT plus end (Vaughan et al., 2002). However, MTs can tolerate high levels of EB1 better than the other tip trackers, suggesting something unique and intriguing about EB1.- g/ u5 W4 T9 L7 x

% B; m! N" u% ]8 G! f1 p" F& o& rTip tracking and EB1 functionDespite an explosion of recent work on EB1, the precise function and location of endogenous EB1 at native levels remains unclear. The MT-associated population of EB1 represents a small subset of total EB1, but this subset has received the most attention. The remainder is thought to be largely soluble, similar to the form that dominates the GFP-EB1 expression studies. Immunofluorescence microscopy images suggest that native EB1 is punctate, resembling vesicles or large protein complexes (Morrison et al., 1998; Faulkner et al., 2000; Mimori-Kiyosue et al., 2000). This would be consistent with the extensive colocalization with other membrane-associated proteins such as CLIP-170 and dynactin. However, nonmembranous protein complexes including binding partners such at APC are also described, and the function of these is under investigation (Mimori-Kiyosue et al., 2000; Wen et al., 2004). In these settings, direct interactions between EB1 and other proteins (p150Glued, CLIP-170, and CLASPs) have been interpreted as recruitment mechanisms (Fig. 1). The fact that these binding partners can also bind tubulin directly suggests some transition or sequential loading process at plus ends that will require more work to resolve.5 `. {. [, N- K' e

+ _8 l" R5 i7 T7 tRelated to the recruitment function of EB1, another model is focused on the ability of EB1 to regulate MT growth. A series of elegant biochemical, immunodepletion, and small interfering RNA (siRNA)/rescue assays indicate that EB1 can stimulate growth at MT plus ends (Fig. 1) and that this is critical in situations where search-capture requires long and dynamic MTs (Tirnauer and Bierer, 2000; Rogers et al., 2002; Tirnauer et al., 2002b; Ligon et al., 2003). Current limitations make it difficult to define how EB1 arrives at the MT plus end, but the substantial soluble pool and the ability to add soluble EB1 experimentally suggests it either coassembles with the elongating MT tip or is recruited soon after tubulin polymer is exposed.
% g3 ~8 o6 M3 ]* a8 O6 K; {( u5 ?: K8 @0 U
New tip trackers suggest additional roles for EB1In this issue, Wu et al. (p. 201) expand the list of tip trackers to include melanophillin, which is recognized as a linker between the myosin V motor and Rab 27a required for myosin-driven transport of melanosomes in pigmented cells (Wu et al., 2002). MT-based transport is also an essential component of melanosome delivery in pigmented cells (Rogers et al., 1997), and the mechanisms that allow transfer of melanosomes from the MT network to microfilaments have been unclear. Using overexpression of fluorochrome-tagged melanophillin, Wu et al. (2005) report robust tip tracking of the expressed protein and demonstrate that this behavior requires EB1. This association of melanophillin with EB1 does not require either myosin V or rab27a, because tip tracking is evident in melanocytes from ashen and dilute mice, and interaction-disrupting melanophillin mutants tip-track as well. Although melanophillin depends on EB1 for MT binding, EB1 does not appear to require melanophillin for normal function. Only a subset of EB1 comets contains detectable melanophillin in melanocytes, and EB1 is expressed in many cell types that do not express melanophillin.
# B( Y; |) ?9 `, k# Q& [9 H* ^6 }6 v& Z* ]5 x, `
The conceptual challenge of this work is to determine the function of EB1 and MT binding for melanophillin. Is this a nuance of overexpression or an important clue into the role melanophillin plays in melanosome transport Interestingly, the authors point out that melanosomes do not tip-track normally, and that the movements of melanosomes are very different from tip-tracking proteins. Furthermore, expression of the tagged melanophillin constructs reveals both MT- and actin-associated structures in the cell periphery. Perhaps this dichotomy is the crucial finding for melanophillin. The authors propose the enticing possibility that melanophillin uses a combination of MT binding (via EB1) and actin binding (via myosin V) to build a transient transfer station in the cell periphery where melanosomes can be efficiently handed from MTs to microfilaments (Fig. 2). This is consistent with the known behaviors of melanosomes (Rogers and Gelfand, 1998) and uncovers a functional aspect of melanophillin that would be difficult to examine due to the transient nature of these intermediates. In common with other EB1 studies, it remains unclear if EB1 serves a role as a marker for MT plus ends that have reached the cell periphery, or if EB1 actively preserves particular MT plus ends long enough to allow the hand-off. However, this work provides compelling evidence that EB1 plays a larger role than previously anticipated.9 b" ^0 W7 q5 T1 [. q

0 |; k- Z6 I' B! ~+ j% e( OAdding further weight to the possibility that EB1 coordinates transfer between cytoskeletal systems, this issue also includes a study from Goshima et al. (p. 229) that reports a new role for EB1 in mitotic spindle function. Using Drosophila S2 cells as a model together with siRNA-driven depletion, this group dissects the contribution of ncd and cytoplasmic dynein in the formation and motility of kinetochore-linked (K-fibers) and centrosome-linked (C-MTs) MT bundles during spindle pole focusing. Depletion of cytoplasmic dynein primarily impacted the ability of K-fibers to move toward the spindle poles, whereas depletion of ncd affected the focusing of the k-fibers into a tight spindle. Although these motors share some functional redundancy, time-lapse sequences highlight the phenotypic distinction between k-fiber focusing and transport.
  `# b# R5 i) C# w* [- K$ Q6 g& x, E9 ?& |% c
To better understand the specific function of each motor, imaging of ncd-GFP was accomplished through depletion of endogenous ncd by siRNA coupled with expression of ncd-GFP. Focusing on cells with almost normal levels of functional ncd, Goshima et al. (2005) report accumulation of ncd-GFP at spindle poles and along K-fibers. This finding is consistent with the bivalent nature of ncd-MT interactions, potentially playing a role in MT cross-linking in the spindle. However, FRAP analysis revealed that ncd-GFP is highly dynamic on these MTs and displays enrichment at the plus ends of MTs emanating from the spindle poles similar to tip tracking. Expression of ncd-GFP during interphase also revealed tip tracking, adding ncd to the list of plus end–binding proteins. Although it was unclear how ncd (a minus end–directed motor) would target to plus ends, previous work on EB1 (Rogers et al., 2002, 2004) suggested a mechanism. siRNA-mediated depletion of EB1 induced a transition from tip-specific binding to more uniform labeling of MTs. This was coupled with a reduction in MT dynamics that correlated with a loss of K-fiber focusing similar to ncd depletion.
7 O# }2 T) }4 e7 {; ~
( B  `1 F% q. \: ~& Z$ \As a tool to predict how MT plus end binding of ncd could contribute to K-fiber focusing, Goshima et al. (2005) use molecular modeling of a minimal spindle and compare the outcomes of two scenarios. The first scenario assumes that an ncd–EB1 complex targets the motor domain of ncd to K-fibers and the tail of ncd (NH2-terminus) to the plus ends of C-MTs via the EB1 interaction. The second scenario has the opposite orientation with the ncd motor binding C-MTs and the tail binding K-fibers via EB1. Simulations support the second model with the ncd motor associating with the plus ends of C-MTs and moving toward the poles (Fig. 2). In this arrangement, the ncd tail and EB1 attach to K-fibers, allowing ncd to draw the K-fibers toward the poles. Given the proposed role of EB1 in imparting plus end specificity to ncd, this outcome is somewhat counterintuitive. However, EB1 could contribute by ensuring that the K-fiber/ncd/C-MT interaction occurs only at the plus ends of C-MTs. Similar to the melanophillin story above, EB1 could represent a marker for transient interactions between distinct filament systems.! }0 s1 t, l( |: U. C3 Y8 k8 f7 N

' D2 p$ |) `/ m, J, F, ~Insights into EB1 functionAlthough the studies of melanophillin and ncd reported in this issue appear to focus on very different questions, the overlapping contributions of EB1 to both stories suggests a fundamentally new model for EB1 function and the potential role of tip tracking. If one adds the other locations where EB1 is thought to function, a theme emerges that supports a more central role for EB1 in interactions between large multi-subunit complexes. Although not completely understood, in interphase cells MT plus ends contain EB1 and other tip-trackers where they appear to mark locations of search-capture between MTs and membranes (Pierre et al., 1992; Valetti et al., 1999; Vaughan et al., 2002; Wen et al., 2004). An overlapping class of EB1-associated proteins are found at kinetochores during prometaphase where search-capture of chromosomes occurs (Dujardin et al., 1998; Faulkner et al., 2000; Tirnauer et al., 2002a). If we add transfer of melanosomes from MTs to actin filaments (Wu et al., 2005) and linkage of K-fibers and C-MTs (Goshima et al., 2005) to the list, one could propose that EB1 is the master integrator of protein complex assembly on MTs. It remains unclear if this function is related to the impression conveyed by tip-tracking assays, or if tip tracking simply reflects the fact that EB1–MT interactions are tightly regulated (Vaughan, 2004). Future work and the identification of new EB1-binding partners will shed light on this intriguing question.- M' A% M* b9 z) f% O
8 H  p, ]9 ^7 S( t' K
ConclusionThe growing list of EB1-interacting proteins and functions suggests that our understanding of EB1 and MT tip tracking is incomplete. The addition of two new candidates to the plus end–binding protein family implies that EB1 plays a fundamental role in coordinating movement along MTs by defining locations where specific conditions have been met for transport. This model represents a conceptual advance for analysis of tip-tracking proteins and provides the framework for further dissection of their function.
/ m- ?) H4 z4 I7 E( }2 b5 K: u" R. a/ A& S  ?1 ?
AcknowledgmentsThe author thanks Edward Hinchcliffe (University of Notre Dame) for helpful comments. Space limitations prevent the citation of additional EB1 studies that contribute to our understanding of EB1 function.
0 n3 y, Q6 Q2 d" G8 w# \' J7 C" w& w/ M; z
This work was supported by funding from National Institutes of Health (grant GM60560) and the American Cancer Society.
  R. }' s( U5 X+ X
. G0 d) ]. N6 B: j7 LReferences; y% y9 p5 i. n* v  M, I

# {6 m) J: ~0 j- zDujardin, D., U.I. Wacker, A. Moreau, T.A. Schroer, J.E. Rickard, and J.R. De Mey. 1998. Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment. J. Cell Biol. 141:849–862.
4 w& k( b( d0 u4 c$ ~
3 V4 S  E3 }/ F+ V. sFaulkner, N.E., D.L. Dujardin, C.Y. Tai, K.T. Vaughan, C.B. O'Connell, Y. Wang, and R.B. Vallee. 2000. A role for the lissencephaly gene LIS1 in mitosis and cytoplasmic dynein function. Nat. Cell Biol. 2:784–791.
* l% F: R! ~- O9 X6 a8 i# R0 j1 g# K5 J# K! J* T4 E* h# f$ q9 v3 W
Goshima, G., F. Nedelec, and R.D. Vale. 2005. Mechanisms for focusing mitotic spindle poles by minus end–directed motor proteins. J Cell Biol. 171:229–240.
1 s0 x5 t* n3 w# X+ L& |7 r/ h
) ?& U, P5 D: y! |0 q" wLiakopoulos, D., J. Kusch, S. Grava, J. Vogel, and Y. Barral. 2003. Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell. 112:561–574.( q  F3 \4 z- z0 O

0 `- q% B' Z, ELigon, L.A., S.S. Shelly, M. Tokito, and E.L. Holzbaur. 2003. The microtubule plus-end proteins EB1 and dynactin have differential effects on microtubule polymerization. Mol. Biol. Cell. 14:1405–1417.
% E7 K- @2 m' V7 F. l  y5 @& p( H9 {. r' k9 t. f
Mimori-Kiyosue, Y., N. Shiina, and S. Tsukita. 2000. The dynamic behavior of the APC-binding protein EB1 on the distal ends of microtubules. Curr. Biol. 10:865–868.7 `8 R$ c6 e' J0 ~; X5 e

; `+ h* d% t: t$ EMorrison, E.E., B.N. Wardleworth, J.M. Askham, A.F. Markham, and D.M. Meredith. 1998. EB1, a protein which interacts with the APC tumour suppressor, is associated with the microtubule cytoskeleton throughout the cell cycle. Oncogene. 17:3471–3477.
, d; i, S! J9 e
, u8 J* @+ p" \* `# }9 w( EPierre, P., J. Scheel, J.E. Rickard, and T.E. Kreis. 1992. CLIP-170 links endocytic vesicles to microtubules. Cell. 70:887–900.$ b! T- I# ?- o: A* x
3 M: C( v3 A$ y* ?8 g7 Q: [* I* C
Rogers, S.L., and V.I. Gelfand. 1998. Myosin cooperates with microtubule motors during organelle transport in melanophores. Curr. Biol. 8:161–164.  X3 I9 h& p$ m( j
$ [6 |/ d. Y0 C" S
Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro. Proc. Natl. Acad. Sci. USA. 94:3720–3725.
: n; [7 z8 e( ^
$ F# O, ~( }) ^" x: G1 iRogers, S.L., G.C. Rogers, D.J. Sharp, and R.D. Vale. 2002. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158:873–884.
2 R) `+ @8 k" Q# c$ B7 F: P0 U: `) h5 `/ ~# Q: b& _0 s0 Z
Rogers, S.L., U. Wiedemann, U. Hacker, C. Turck, and R.D. Vale. 2004. Drosophila RhoGEF2 associates with microtubule plus ends in an EB1-dependent manner. Curr. Biol. 14:1827–1833.
7 K4 w# }: I3 N4 s  Y
5 K/ q. B# {: cSu, L.K., M. Burrell, D.E. Hill, J. Gyuris, R. Brent, R. Wiltshire, J. Trent, B. Vogelstein, and K.W. Kinzler. 1995. APC binds to the novel protein EB1. Cancer Res. 55:2972–2977.
; W5 U8 @  s5 O% X& C( t9 x# x  }2 E4 O& @) h2 A
Tirnauer, J.S., and B.E. Bierer. 2000. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J. Cell Biol. 149:761–766.
4 J& |+ z7 H6 h3 @% N* A1 a& L5 C* q3 R
Tirnauer, J.S., J.C. Canman, E.D. Salmon, and T.J. Mitchison. 2002a. EB1 targets to kinetochores with attached, polymerizing microtubules. Mol. Biol. Cell. 13:4308–4316.
" v  a- k. y' f+ ~7 m) s/ }# G& \
+ j  d+ s8 q! n" I; L. ?* y4 [Tirnauer, J.S., S. Grego, E.D. Salmon, and T.J. Mitchison. 2002b. EB1-microtubule interactions in Xenopus egg extracts: role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules. Mol. Biol. Cell. 13:3614–3626., E# N4 J* t* U6 E+ ?1 n

+ e3 o1 D' O/ h3 a% G) T  iValetti, C., D.M. Wetzel, M. Schrader, M.J. Hasbani, S.R. Gill, T.E. Kreis, and T.A. Schroer. 1999. Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol. Biol. Cell. 10:4107–4120." i8 O7 d! U& O+ Y: [) |* t

% |$ _5 y8 U5 a  Q# b$ ]  ]. sVaughan, K.T. 2004. Surfing, regulating and capturing: are all microtubule-tip-tracking proteins created equal Trends Cell Biol. 14:491–496.5 z, B& b9 ~$ ~, e! Z

; b* W' V  s1 d: S. m2 L* l: `Vaughan, P.S., P. Miura, M. Henderson, B. Byrne, and K.T. Vaughan. 2002. A role for regulated binding of p150Glued to microtubule plus ends in organelle transport. J. Cell Biol. 158:305–319, D: q/ g) r1 K; X' c0 d

9 e& H# K/ a3 [8 ?7 N8 dWen, Y., C.H. Eng, J. Schmoranzer, N. Cabrera-Poch, E.J. Morris, M. Chen, B.J. Wallar, A.S. Alberts, and G.G. Gundersen. 2004. EB1 and APC bind to mDia to stabilize microtubules downstream of Rho and promote cell migration. Nat. Cell Biol. 6:820–830.
7 q6 l+ T8 B' y2 ?, I4 [( d9 j+ E- p4 y3 \/ S
Wu, X., G.L. Tsan, and J.A. Hammer. 2005. Melanophillin and myosin Va track the microtubule plus end on EB1. J. Cell Biol. 171:201–207.
. i+ j; X+ r9 e2 C" v/ W7 A0 {( m- U/ ~( G  o
Wu, X.S., K. Rao, H. Zhang, F. Wang, J.R. Sellers, L.E. Matesic, N.G. Copeland, N.A. Jenkins, and J.A. Hammer III. 2002. Identification of an organelle receptor for myosin-Va. Nat. Cell Biol. 4:271–278.
$ e, `( x, L- D% e% K1 y( k# ~( ?, c& B
Xiang, X., G. Han, D.A. Winkelmann, W. Zuo, and N.R. Morris. 2000. Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1. Curr. Biol. 10:603–606.(Kevin T. Vaughan)
作者: 罗马星空    时间: 2015-6-2 07:59

哈哈,这么多的人都回了,我敢不回吗?赶快回一个,很好的,我喜欢  
作者: beautylive    时间: 2015-6-15 10:26

不是吧  
作者: immail    时间: 2015-6-24 11:27

加油啊!!!!顶哦!!!!!支持楼主,支持你~  
作者: 石头111    时间: 2015-6-24 22:00

一楼的位置好啊..  
作者: 杏花    时间: 2015-6-26 19:53

顶也~  
作者: yukun    时间: 2015-7-13 10:54

看看..  
作者: haha3245    时间: 2015-7-26 15:17

说的不错  
作者: 兔兔    时间: 2015-7-28 09:10

天啊. 很好的资源
作者: txxxtyq    时间: 2015-8-20 09:10

我回不回呢 考虑再三 还是不回了吧 ^_^  
作者: tempo    时间: 2015-9-9 19:31

一定要回贴,因为我是文明人哦  
作者: haha3245    时间: 2015-9-20 09:26

正好你开咯这样的帖  
作者: 榴榴莲    时间: 2015-9-30 02:04

楼上的稍等啦  
作者: tuanzi    时间: 2015-10-15 12:35

长时间没来看了 ~~  
作者: 泡泡鱼    时间: 2015-10-18 16:19

一个子 没看懂  
作者: awen    时间: 2015-11-7 20:27

说的不错  
作者: 昕昕    时间: 2015-11-26 08:01

人气还要再提高  
作者: 橙味绿茶    时间: 2015-12-15 16:34

楼主,支持!  
作者: yukun    时间: 2015-12-28 08:36

继续查找干细胞研究资料
作者: 橙味绿茶    时间: 2016-1-16 06:54

dddddddddddddd  
作者: s06806    时间: 2016-1-21 20:32

嘿嘿  
作者: 我心飞翔    时间: 2016-4-17 19:18

我的啦嘿嘿  
作者: 123456zsz    时间: 2016-4-26 13:43

不错,看看。  
作者: 蝶澈    时间: 2016-5-4 19:18

昨天没来看了 ~~  
作者: 安生    时间: 2016-6-12 10:54

干细胞治疗糖尿病  
作者: 分子工程师    时间: 2016-6-24 09:18

神经干细胞
作者: chinagalaxy    时间: 2016-7-6 21:14

我在努力中  
作者: 苹果天堂    时间: 2016-8-29 12:08

牛牛牛牛  
作者: 甘泉    时间: 2016-8-30 08:34

干细胞研究非常有前途
作者: feixue66    时间: 2016-9-6 20:01

谁都不容易啊 ~~  
作者: 小敏    时间: 2016-9-24 20:35

说嘛1~~~想说什么就说什么嘛~~  
作者: changfeng    时间: 2016-9-26 13:43

偶啥时才能熬出头啊.  
作者: xuguofeng    时间: 2016-9-26 22:35

小生对楼主之仰慕如滔滔江水连绵不绝,海枯石烂,天崩地裂,永不变心.  
作者: 生物小菜鸟    时间: 2016-10-14 17:35

说的真有道理啊!
作者: doc2005    时间: 2016-10-24 06:35

今天没事来逛逛,看了一下,感觉相当的不错。  
作者: lab2010    时间: 2016-10-25 10:11

顶你一下.  
作者: 温暖暖    时间: 2016-11-6 11:54

帮顶  
作者: SCISCI    时间: 2016-11-16 09:00

爷爷都是从孙子走过来的。  
作者: dr_ji    时间: 2016-11-28 21:26

看或者不看,贴子就在这里,不急不忙  
作者: myylove    时间: 2016-12-2 15:01

干细胞美容
作者: 生物小菜鸟    时间: 2016-12-4 11:28

免疫细胞治疗  
作者: 求索迷茫    时间: 2016-12-30 03:17

一个子 没看懂  
作者: heart10    时间: 2017-1-8 20:35

不要等到人人都说你丑时才发现自己真的丑。  
作者: htc728    时间: 2017-2-13 15:19

神经干细胞
作者: abc987    时间: 2017-2-13 17:10

祝干细胞之家 越办越好~~~~~~~~~`  
作者: s06806    时间: 2017-2-16 14:01

干细胞美容
作者: txxxtyq    时间: 2017-3-7 17:16

写得好啊  
作者: happyboy    时间: 2017-3-15 03:22

这贴子你会收藏吗  
作者: dada    时间: 2017-4-23 07:27

你加油吧  
作者: 狂奔的蜗牛    时间: 2017-5-21 01:06

端粒酶研究
作者: dr_ji    时间: 2017-5-28 16:35

免疫细胞疗法治疗肿瘤有效  
作者: 知足常乐    时间: 2017-6-2 16:16

好贴子好多啊  
作者: 狂奔的蜗牛    时间: 2017-6-14 16:06

好帖子,要顶!
作者: yunshu    时间: 2017-7-9 17:28

有才的不在少数啊  
作者: 8666sea    时间: 2017-8-1 19:33

希望可以用些时间了~````  
作者: 某某人    时间: 2017-8-2 07:13

@,@..是什么意思呀?  
作者: IPS干细胞    时间: 2017-8-13 14:27

老大,我好崇拜你哟  
作者: 昕昕    时间: 2017-8-29 09:35

慢慢来,呵呵  
作者: ladybird    时间: 2017-8-30 00:48

不管你信不信,反正我信  
作者: sky蓝    时间: 2017-9-5 14:35

写得好啊  
作者: 红旗    时间: 2017-9-27 14:01

顶的就是你  
作者: 追风    时间: 2017-10-3 11:32

初来乍到,请多多关照。。。  
作者: 甘泉    时间: 2017-10-6 17:01

干细胞研究重在基础
作者: xiao2014    时间: 2017-10-9 23:11

应该加分  
作者: beautylive    时间: 2017-10-11 23:56

感謝樓主 干细胞之家真的不错  
作者: nauticus    时间: 2017-10-19 19:19

太棒了!  
作者: 张佳    时间: 2017-11-21 03:28

不错不错.,..我喜欢  
作者: Greatjob    时间: 2017-11-25 09:27

说的不错  
作者: 求索迷茫    时间: 2017-12-3 07:32

羊水干细胞
作者: 蚂蚁    时间: 2017-12-3 07:42

我仅代表干细胞之家论坛前来支持,感谢楼主!  
作者: 草长莺飞    时间: 2017-12-13 03:16

发贴看看自己积分  
作者: 泡泡鱼    时间: 2018-1-7 09:27

干细胞行业  
作者: 蚂蚁    时间: 2018-1-31 14:35

经过你的指点 我还是没找到在哪 ~~~  
作者: 锦锦乐道    时间: 2018-2-2 08:17

你还想说什么啊....  
作者: heart10    时间: 2018-2-6 00:36

人之所以能,是相信能。  
作者: 追风    时间: 2018-2-20 11:35

帮你项项吧  
作者: heart10    时间: 2018-3-18 06:19

鉴定完毕.!  
作者: 与你同行    时间: 2018-4-13 19:32

不要等到人人都说你丑时才发现自己真的丑。  
作者: MIYAGI    时间: 2018-6-12 22:43

说嘛1~~~想说什么就说什么嘛~~  
作者: 追风    时间: 2018-6-13 18:36

哈哈,看的人少,回一下  
作者: tian2006    时间: 2018-6-25 18:09

老大,我好崇拜你哟  
作者: Whole    时间: 2018-6-30 11:35

慢慢来,呵呵  
作者: 舒思    时间: 2018-7-10 17:54

我仅代表干细胞之家论坛前来支持,感谢楼主!  
作者: SCISCI    时间: 2018-7-12 00:29

我来看看!谢谢  
作者: changfeng    时间: 2018-7-13 10:35

哈哈,有意思~顶顶 ,继续顶顶。继续顶哦  
作者: hmhy    时间: 2018-7-17 01:35

世界上那些最容易的事情中,拖延时间最不费力。  
作者: yunshu    时间: 2018-7-17 04:24

不错,感谢楼主
作者: 陈晴    时间: 2018-7-26 00:00

干细胞行业  
作者: immail    时间: 2018-7-26 15:32

端粒酶研究
作者: pengzy    时间: 2018-8-15 01:52

一楼的位置好啊..  
作者: sshang    时间: 2018-9-5 15:14

你加油吧  
作者: 水木清华    时间: 2018-9-12 04:52

这年头,分不好赚啊  
作者: 刘先生    时间: 2018-9-27 11:53

说嘛1~~~想说什么就说什么嘛~~  
作者: dr_ji    时间: 2018-10-1 17:10

干细胞之家是不错的网站
作者: leeking    时间: 2018-10-3 23:06

原来这样也可以  
作者: 生科院    时间: 2018-10-10 07:48

我起来了 哈哈 刚才迷了会  
作者: beautylive    时间: 2018-11-4 23:45

谁都不容易啊 ~~  
作者: dataeook    时间: 2018-12-6 16:35

干细胞治疗  
作者: www1202000    时间: 2018-12-15 04:39

支持你一下下。。  
作者: 温暖暖    时间: 2018-12-18 01:17

神经干细胞




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5