干细胞之家 - 中国干细胞行业门户第一站

标题: Inhibition of heme oxygenase decreases sodium and fluid absorption in the loop o [打印本页]

作者: 轻羽    时间: 2009-4-21 13:43     标题: Inhibition of heme oxygenase decreases sodium and fluid absorption in the loop o

作者:Tong Wang, Hyacinth Sterling, Wei A. Shao, QingShang Yan, Matthew A. Bailey, Gerhard Giebisch,  Wen-Hui Wang作者单位:1 Department of Cellular and Molecular Physiology,Yale University School of Medicine, New Haven, Connecticut 06520; and Department of Pharmacology, New York Medical College,Valhalla, New York 10595
2 T9 f: J+ C1 c2 t  I                  
  E8 B, _9 D" z- [, ~  _                  6 J& c% q6 J% J& Y% X/ \% {
          ' r  t1 y  U6 U# v5 |
                        
6 `9 I# n7 B& |6 {* L            
. j/ r; E" |4 \# q            ' s+ j+ k" P% g5 k
            
% c! J. h- A# F5 \            
; n$ M; U+ B% V, q9 [                     
/ b# h  z( L  _        2 c2 _0 m/ O( D0 O- |- D; H
        
  o' j  E3 ?6 A8 ~8 I: }        
8 p' O. o+ v: S          【摘要】
4 N  f6 n& @! Z4 f/ C# b, Z      We previously demonstrated that carbon monoxide (CO) stimulates the apical70-pS K   channel in the thick ascending limb (TAL) of the ratkidney (Liu HJ, Mount DB, Nasjletti A, and Wang WH. J Clin Invest 103: 963-970, 1999). Because the apical K   channel plays a key rolein K   recycling, we tested the hypothesis that heme oxygenase(HO)-dependent metabolites of heme may affect Na   transport in theTAL. We used in vivo microperfusion to study the effect of chromiummesoporphyrin (CrMP), an inhibitor of HO, on fluid absorption( J v ) and Na   absorption( J Na ) in the loop of Henle and renal clearance methods toexamine the effect of CrMP on renal sodium excretion. Microperfusionexperiments demonstrated that addition of CrMP to the loop of Henle decreased J v by 13% and J Na by 20% in animals onnormal rat chow and caused a decrease in J v (39%) and J Na (40%) in rats on a high-K   (HK) diet. Theeffect of CrMP is the result of inhibition of HO because addition of MgPP, ananalog of CrMP that does not inhibit HO, had no effect on J v. Western blot analysis showed that HO-2 is expressed inthe kidney and that the level of HO-2 was significantly elevated in animals ona HK diet. Renal clearance studies demonstrated that the infusion of CrMPincreased the excretion of urinary Na   (E Na ) and volume(UV) without changes in glomerular filtration rate. The effect of CrMP on E Na and UV was larger in HK rats than those kept on normal chow. Weconclude that HK intake increases HO-2 expression in the kidney and thatHO-dependent metabolites of heme, presumably CO, play a significant role inthe regulation of Na   transport in the loop of Henle.
) N) [8 |- j" _) h' O          【关键词】 carbon monoxide sodium and potassium transport microperfusion
5 ]" ?# P5 q8 u! h# B                  HEME OXYGENASE (HO) metabolizes heme molecules to producebiliverdin, carbon monoxide (CO), and chelated iron by oxidative cleavage ( 19 ). Three isoforms of HOhave been identified: HO-1, an inducible isoform; HO-2, a constitutivelyexpressed isoform; and HO-3 ( 19, 20 ). HO-1 and HO-2 areexpressed in the kidney ( 16, 22 ), and a large body ofevidence suggests that CO plays an important role in the regulation of avariety of cell functions ( 6, 8 ). For instance, CO has beenreported to increase the production of cGMP by stimulation of guanylatecyclase ( 6, 8 ). Also, CO is involved in theactivation of Ca 2   -dependent large-conductanceK   channels( 26 - 28 ),which may be responsible for CO-induced vasodilation of renal arterial vessels( 26 ).* G; d2 d2 ?8 n+ ]0 [

! B  ~8 w0 a) ^: A3 HWe previously demonstrated that inhibition of HO by chromonium mesoporphyrin (CrMP) decreases the activity of the 70-pS K   channelin the thick ascending limb (TAL) of the rat kidney ( 16 ). Because the inhibitoryeffect can be reversed by CO, this suggests that CO is an HO-dependentmetabolite of heme responsible for stimulating the apical 70-pS K   channel ( 16 ). Because theseK   channels play a key role in K   recycling across theapical membrane ( 1, 2, 5 ), their inhibition byblocking HO with CrMP is expected to decrease K   recycling andsuppress the activity of the Na-K-2Cl cotransporter. This hypothesis wastested by examining the effect of inhibition of HO on transepithelial Na   transport in the loop of Henle. We demonstrate that luminal perfusion of CrMP significantly decreases Na   absorption and increases Na   excretion in the loop of Henle. Those effects areenhanced by increasing dietary K   intake.
( l2 |$ s, `  \1 e
5 R* S0 E+ @! o- g8 B" `METHODS
( G. e& G* d- g4 q- c& d, r, r( @3 J( e0 i8 g' R
Animal preparation. Male Sprague-Dawley rats (from Harlan, Indianapolis, IN) weighing 200-250 g were used for the renal clearance andtubule microperfusion experiments. Animals were kept on normal rat chow, ahigh-K   (HK), or a K   -deficient (KD) diet (HarlanTeklad) and tap water until the experiment. The animals were anesthetized byintravenous injection of Inactin (100 mg/kg) and placed on a thermostaticallycontrolled surgical table to maintain body temperature at 37°C. The leftjugular vein and the carotid artery were cannulated for the infusion of salineand for collection of arterial blood samples, respectively. These methods havebeen described previously ( 29, 30 )./ E, u% C5 q# r4 D

; p/ T9 `2 t% I% J4 aRenal clearance studies. Renal clearance techniques were used aspreviously described ( 26, 27 ) to investigate the effects of the HO inhibitor (CrMP) on glomerular filtration rate (GFR) and on absolute(E Na, E K ) and fractional excretion rates of Na   and K   (FE Na, FE K ). Surgicalfluid losses were replaced with isotonic saline and a priming dose of 25µCi of [methoxy- 3 H]inulin (New England Nuclear, Boston, MA) wasgiven in 0.5 ml isotonic saline, followed by a maintenance infusion of 0.9%NaCl containing 25 µCi/h at a rate of 4.6 ml/h. Blood and urine sampleswere collected after a 60-min equilibration period. Urine collections lasted30 min, and blood samples were taken at the beginning and end of eachcollection period. After two control periods, either CrMP (3 mg/kg) or vehicle solution (control) was given intravenously as a bolus injection. Urine andplasma Na   and K   concentrations were measured by flamephotometry (type 480 Flame Photometer, Corning Medical and Scientific,Corning, NY) and absolute and fractional renal excretions were calculated bystandard methods ( 29, 30 ).
7 o# H8 ^- i, K1 r" t3 x! F5 m7 r5 ^
Microperfusion of the loop of Henle. The methods of in vivo microperfusion of superficial loops of Henle were similar to those describedpreviously ( 29, 30 ). First, a loop of Henle was selected by microperfusing a proximal tubule to locate its last loop onthe kidney surface. Then, the loop of Henle was perfused from the last loop ofthe proximal tubule with a microperfusion pump at a rate of 20 nl/min. Tubulefluid was collected from the first segment of the early distal tubule with anoil block placed distally from the collection site. The rate of fluid Na   and K   absorption in the loop of Henle was expressedas absorption rate per loop, because the length of individual loops of Henlein the rat has been found to vary little. Na   and K   concentrations in the perfusing fluid and the collected tubule fluid weremeasured with a ultramicroatomic absorption spectrophotometer as previouslydescribed ( 29, 30 ).4 @! g  v6 `- \/ E" |

' E) g) Q% {: S3 Y5 x1 CThe composition of the perfusion fluids was as follows (in mM): 115 NaCl,25 NaHCO 3, 4 KCl, 1 CaCl 2, 5 Na-acetate, 5 glucose, 5 L -alanine, 2.5 Na 2 HPO 4, and 0.5NaH 2 PO 4 (pH was adjusted to 7.4 and the osmolality wasat 295 mosmol/kgH 2 O).+ y- h5 r# u; y( K$ a* K! d

3 ^# l* k3 A6 f$ ]# Y. IWestern blot analysis. Rats were kept on different K   diets: KD (   diet (NK;Harlan Teklad) for 1 wk before use. Renal cortex and outer medulla weredissected and homogenized as described previously( 16 ). Protein samplesextracted from the renal tissue were separated by electrophoresis on 8%SDS-polyacrylamide gels and transferred to nitrocellulose membranes. Themembranes were blocked with 10% nonfat dry milk in Tris-buffered saline (TBS),rinsed, and washed with 1% milk in Tween-TBS. The HO-1 and HO-2 antibodies were purchased from Transduction Laboratories (Lexington, KY) and were dilutedat 1:1,000. The protein concentration used for immunoblot was 100 µg.
; @7 N: ~, y% p* E& x
8 q0 {& |6 t, x0 j$ X. l) {: |$ z; wMaterials and statistics. [methoxy- 3 H]inulin wasobtained from New Research Products (Boston, MA), CrMP and magnesiumprotoporphyrin (MgPP) from Porphyrin Products (Logan, UT). Data are presented as means ± SE. Control and experimental values were compared using theunpaired Student's t -test. Dunnett's test was used for comparison ofseveral treatment groups with a single control group. Differences betweengroups are reported as significant at P
; g- a9 o' `& S# O" a$ G& n6 ]4 ]7 K- n0 Q4 Q- t- t
RESULTS) L) W$ u4 u; x/ t/ H7 w

, p) f% s& a5 ~+ ~0 XWe confirmed our previous findings that HO-2 is expressed in the renalcortex and outer medulla ( 16 )and extended those studies to animals kept on different K   diets.Western blot analysis revealed that the expression of HO-2 is 150 ± 10%( n = 4) higher in the kidney from rats on a HK diet than those kepton a NK or KD diet ( Fig.1 A ). HO-2 expression is significantly diminished in thekidney from rats on a KD diet compared with that observed in rats on a NKdiet. In contrast, HK intake did not significantly affect the expression ofHO-1 in the kidney ( Fig.1 B ).
; Y8 j5 s1 D" D# z5 }6 ~4 d' w7 `7 C. p- T1 h( }% H$ }' B
Fig. 1. Western blotting shows the presence of heme oxygenase (HO) type II( A ) and type I ( B ) in the renal cortex and outer medullafrom rats on normal-K   (NK), high-K   (HK), andlow-K   (LK) diets. PC, positive control.$ T0 Z* B; F$ t; ]4 j
- r8 O2 P9 p% G3 R
After it was established that HO-2 expression is affected by dietaryK   intake, the role of HO in the regulation of transport in theloop of Henle was investigated. Microperfusion techniques were used to examinethe effect of CrMP on Na   and K   transport in the loopof Henle in rats on a NK and a HK diet.
! i5 w+ Z; b" l! f9 X' a9 w0 D, \4 j* O5 E* ~9 V, v; x9 m
Figure 2 and Table 1 summarize resultsshowing the effects of 50 µM CrMP on the rate of Na   ( J Na ), fluid ( J V ), and K   absorption ( J K ). It is apparent that perfusion of the loop with CrMP (50 µM) inhibits Na   and K   absorption intubules from rats on NK and HK diets. It should be noted that the inhibitory effect of CrMP on J Na is larger in rats on a HK diet thanthose on a NK diet. In control rats, J Na decreased by 20%,from 1.54 ± 0.07 to 1.22 ± 0.05 nmol/min ( n = 11). Incontrast, CrMP decreased J Na by 40%, from 1.35 ±0.07 to 0.79 ± 0.10 nmol/min ( n = 10), in rats on a HK diet.The inhibitory effect of CrMP on J K is also enhanced inanimals on a HK diet: inhibition of HO decreased J K by 64%from 31.7 ± 3.54 to 11.2 ± 5.27 compared with a 28% decrease inthe control rats. The reason that the inhibitory effect of CrMP on J K is larger than that on J V and J Na may be due to backleak of K   from theperitubular fluid into the lumen. Huang et al.( 7 ) reported that inhibition ofapical K   channels significantly increases the luminalK   concentration and Jamison et al.( 9 ) also observed that netK   secretion takes place at low transepithelial voltage in the TAL.It has been previously shown that CrMP inhibits the apical 70-pS K   channel and this could lead to attenuation of the lumen-positive potential. Moreover, because the concentrations of K   in the medullary interstitial fluid may exceed that in the lumen, these two factors favorpassive influx of K   from the peritubular fluid to lumen., E& \5 h' V7 V9 g
* A  j8 p. _/ @
Fig. 2. Effects of chromium mesoporphyrin (CrMP) on Na   absorption( J Na ) in the loop of Henle in rats on a NK and HK diet.Data are means ± SE. CrMP was added to the luminal perfusate at aconcentration of 50 µM.  S$ N5 ^' M8 T" G

' C3 u9 K" G0 l; v  bTable 1. Effects of CrMP on fluid sodium and potassium absorption in loop ofHenle of rat kidney& D/ b5 d( ]7 t* _* Y! c  f

* }. J6 C( j, e$ D/ r1 j6 C2 t: nAlso, J Na and J K were slightlylower under control conditions in rats on a HK diet than in rats on a NK diet.A similar observation has been reported previously( 25 ), and this modest decline of J Na and J K may be the result of adecrease in the driving force of Na   and K   transport inHK-adapted rats. It is possible that a high plasma K   leads todepolarization of the basolateral membrane, which diminishes theelectrochemical gradient of Cl - exit across the basolateralmembrane. Because a decrease in Cl - diffusion across thebasolateral membrane leads to attenuation of the lumen-positive potential thatis the driving force for the paracellular Na   and K   absorption, Na   and K   transport is expected to slightlydecrease.8 \7 B3 X- m* }( z2 t

1 i  h! v) A/ ]% aThe effect of CrMP on J V was also significantly largerin animals on a HK diet than that observed in rats on a NK diet. Thus infusion of CrMP decreased fluid reabsorption in the loop of Henle. Figure 3 and Table 1 summarize resultsdemonstrating that perfusion of the loop with CrMP decreased J V by 39% from 9.20 ± 0.48 to 5.65 ± 0.83nl/min ( n = 10) in rats on a HK diet, compared with a decrease of 13%from 9.62 ± 0.42 to 8.35 ± 0.33 nl/min ( n = 11) in ratson a NK diet.7 y9 Z: L. e  v$ @& ^
/ ^+ q, T% ?7 U9 J% |+ O
Fig. 3. Effects of CrMP on fluid absorption ( J v ) in the loop ofHenle from rats on a NK and HK diet. Data are means ± SE. CrMP wasadded to the luminal perfusate at a concentration of 50 µM.
6 A+ o) G' z# S7 p; I8 Q- n8 q4 v# s* C6 L8 ]# y, K; a
To exclude the possibility of unspecific inhibitory action of CrMP, weemployed MgPP, an agent that has a similar structure to CrMP but does notinhibit HO, to determine whether MgPP can mimic the effect of CrMP. Figure 4 summarizes the results from five experiments demonstrating that perfusion of the loop of Henle with50 µM MgPP did not affect J V. These results indicatethat the effect of CrMP on J Na and J V results from inhibition of HO.
+ L* e$ F5 Q4 y& N- W+ k  h1 m
" q0 O$ @& H7 oFig. 4. Effects of CrMP and magnesium protoporphyrin (Mgpp) on J v in the loop of Henle from rats on a HK diet.
. B. U$ J  y' B0 M9 y/ y
" @0 J$ d& r' `6 L+ u, M5 mAfter establishing that inhibition of HO inhibits Na   and fluid absorption in the loop of Henle, we extended our study by examining theeffects of CrMP on urinary Na   and K   excretion withrenal clearance techniques. After two 30-min baseline periods, a bolus intravenous infusion of CrMP (3 mg/kg) was administered and four additionalurinary collections were carried out. Application of CrMP did notsignificantly affect blood pressure (data not shown). Inspection of Table 2 and Fig. 5 shows that infusion ofHO inhibitor also did not significantly alter GFR. However, CrMP significantlyenhanced the excretion of Na   (E Na ) from a mean controlvalue of 0.34 ± 0.07 to 1.27 ± 0.22 meq·min - 1 ·100 g - 1 inrats on a NK diet ( n = 5) and from 0.34 ± 0.12 to 2.42± 0.43 meq·min - 1 ·100 g - 1 in rats on a HK diet ( n = 7)( Table 2 ). It is of interest that infusion of a HO inhibitor did not significantly change urinaryK   excretion (E K ) in either rats on a NK or a HK diet ( Table 2 ). Figure 5 also shows the timecourse of the effect of CrMP on urinary volume (UV) in rats on a NK or HKdiet. Inhibition of HO increases UV progressively, from 0.011 ( n = 10) to 0.047 ml/min ( n = 5) in rats on a NK diet and from 0.015 ( n = 7) to 0.042 ml/min ( n = 7) in animals on a HK diet.
1 @" a- G2 ]; f6 F" I+ N$ L% m& o$ n, `2 o; m2 T
Table 2. Effects of CrMP on GFR, urinary volume, and Na   andK   excretion in normal- and high-K diet4 W. ~" s, j* A% h# |* Q
: a0 p. L+ {1 F& F1 W8 w
Fig. 5. Effects of HO inhibitor CrMP on urinary volume and glomerular filtrationrate (GFR). Data are means ± SE. CrMP was given by intravenous (iv)bolus injection at a concentration of 3 mg/kg in rats on NK or HK diets. * Significantly different from control values ( P/ `' o& C  V8 p9 f) M" @% ]$ O- ~
; p) \7 a8 S, x& m3 B+ J: p
Data summarized in Fig. 6 demonstrate the effects of intravenous injection of CrMP on FE Na and FE K. It is apparent that the effect of CrMP on FE Na is larger in rats on a HK diet than that observed in rats on a NK diet. Thusinhibition of HO increased FE Na from 0.012 to 2.44% in rats on a HKdiet but only from 0.031 to 1.34% in rats on a NK diet. Inspection of Fig. 6 shows that CrMP has noeffect on FE K in rats on a NK or HK diet, although rats on a HKdiet had a higher basal level of FE K.# {& t% H' V3 U- ~$ W' u3 p

3 u& L5 q; C$ a0 |! uFig. 6. Effects of CrMP on fractional excretion of Na   (FE Na; top ) and K   (FE K; bottom ). CrMP wasgiven by iv bolus at a concentration of 3 mg/kg in rats on NK or HK diets. * Significantly different from control values ( P
# @( [) U. L# @7 N0 j! i2 G' z/ M2 U) M9 i/ {  Z# D9 r
DISCUSSION, E% X; v' k6 ^* j3 ~/ o
2 E+ N$ N9 q$ P- ]3 J3 ]
Previous studies showed that dietary K   intake affects ion transport in the TAL ( 15, 17, 18 ). However, the mechanism bywhich dietary K   intake alters membrane transport in the TAL isincompletely defined. We previously demonstrated that a high dietaryK   intake increases the expression of inducible nitric oxidesynthase in the renal cortex and outer medulla and attenuates the inhibitoryeffect of external Ca 2   on the apical 70-pSK   channel in the TAL( 3 ). In the present study, wereport that HO-2 expression is also augmented in the kidney from rats on a HKdiet. Because HO-2 is also expressed in the TAL( 22 ), the finding that a HKintake increases HO-2 expression suggests that, like nitric oxide,HO-dependent metabolites of heme are also involved in regulating ion transportin the TAL from K   -adapted animals. This suggestion is supported by the finding that infusion of CrMP, a known inhibitor of HO, lowersNa   reabsorption along the loop of Henle. Two lines of evidencesuggest that the effect of CrMP results from inhibition of HO-dependentmetabolism: 1 ) perfusion of the loop of Henle with MgPP, a CrMPanalog and weak inhibitor of HO, did not inhibit Na   absorption inthe loop; and 2 ) the inhibitory effect of CrMP on Na   andfluid absorption was enhanced in rats on a HK diet. This is consistent withour observation that the renal expression of HO-2 was also significantlyelevated in these animals.3 z' n4 m/ c) d( t% I/ u* E

2 g! [4 W! a' Q4 l: V. KThe mechanism by which inhibition of HO inhibits Na   and fluid absorption in the loop of Henle is not fully understood. The loop of Henleincludes the late proximal tubule, the thin descending limb, the TAL, and theearly distal convoluted tubule. Immunocytochemical studies show that HO-1 andHO-2 are expressed in the proximal tubule, TAL, and distal tubule( 22 ). Accordingly, theinhibitory effect of CrMP on Na   transport could be the result ofinhibition of Na   transport in the late proximal tubule, TAL, ordistal convoluted tubule. The observation that CrMP significantly decreases J v suggests that inhibition of HO decreases the transportin the S3 segment and descending limb, because the TAL has very low waterpermeability. However, the observation that high dietary K   intakesignificantly augmented the expression of HO-2 in the renal outer medulla,consisting mainly of the TAL, strongly suggests that this nephron segment isan important site for the regulation of transport by HO-dependent metabolites. One interesting observation in the present study was that the inhibitoryeffect of CrMP on Na   was greater in HK than control, despite thefact that J Na and J K were slightlylower in HK rats. The reduction in J Na and J K in HK has been reported previously ( 25 ); this modest decline of J Na and J K may be the result of adecrease in the driving force of Na   and K   transportfrom lumen to cell in HK-adapted rats. The increased inhibitory action of CrMPon J Na may be explained by our recent observation that theratio of 35- and 70-pS K   channels in the TAL is significantly modulated by HK intake. The 35-pS K   channel was reduced from 57 to26%, but the 70-pS channel was increased from 2 to 23% by HK. Because the35-pS K   channel is not regulated by HO-dependent CO production( 16 ), the inhibitory effect ofCrMP on Na   absorption would be the result of inhibition of theincreased total 70-pS K   channel activity in HK-treated rats.+ P( p8 |! X( K6 l

  q5 i9 E* m5 H: C9 s- GThe TAL is responsible for absorption of 25% filtered NaCl load and plays akey role in the urinary concentrating ability ( 1 ). The absorption of NaClinvolves two steps: 1 ) NaCl enters the cells across the apicalmembrane through the Na-K-2Cl cotransporter; and 2 ) Na   isextruded across the basolateral membrane via Na-K-ATPase and Cl - leaves the cell by diffusion along a favorable electrochemical gradient.K   recycling is important to maintain the activity of the Na-K-2Clcotransporter because it provides an adequate K   supply for thecotransporter ( 1, 2 ). Therefore, inhibition ofeither apical K   channels( 24 ) or Na-K-2Cl cotransporters ( 4 ) could blocktransepithelial NaCl absorption. In addition, if CrMP inhibits basolateralCl - channels, it can also lead to a decrease in transepithelialNaCl absorption ( 23 ). However,it is safe to conclude that the diuretic effect of CrMP results at leastpartially from inhibition of apical K   recycling by decreasingHO-dependent metabolites such as CO, because it was previously shown that COcan reverse the inhibitory effect of CrMP on the apical 70-pS K   channel ( 16 ). It is mostlikely that the effect of CrMP is caused by decreasing CO generation. A largebody of evidence indicates that CO plays an important role in the regulationof several cell functions. CO has been reported to regulate blood pressure( 10 - 12, 14 ). This effect is possiblymediated by stimulation of Ca 2   -activated large-conductance K   channels( 27, 28 ). CO has also been suggested to be involved in energy metabolism and synaptic transmission ( 21 ). Our present data suggestthat CO may be involved in the regulation of NaCl transport in the loop ofHenle.
0 s& p# x+ Q5 R, @4 B# `# Z/ s& z  G# K; J# V4 ^! a' f
Three observations support the suggestion that the effect of CrMP ismediated by inhibition of HO-2. First, the expression level of HO-1 wassignificantly lower than that of HO-2 under control conditions( 22 ). Second, the expressionof HO-1 was not altered by a high dietary K   intake. Third, HKintake significantly increased the expression of HO-2 and enhanced theinhibitory effect of CrMP on Na   absorption in the loop of Henle.However, the role of HO-1 in the regulation of NaCl transport in the loopcould not be completely excluded. The mechanism by which HK intake increasesHO-2 expression is not clear. High dietary K   intake has beendemonstrated to increase plasma aldosterone levels. However, it is unlikelythat a large increase in HO-2 levels results from an increase in plasmaaldosterone levels, because low-Na   intake did not increase HO-2expression in renal cortex and outer medulla (unpublished observation).
1 _) J! L  P; ?; C. X1 w& j9 u* z, |( p; ]5 Z0 Q; w
Inhibition of Na   absorption in the loop of Henle is expected toincrease Na   delivery in the collecting tubule( 13 ), and this should lead tostimulation of Na   absorption and K   secretion in theinitial cortical collecting tubule. However, our clearance studiesdemonstrated that infusion of CrMP did not alter K   excretion,although Na   excretion increased significantly. It is possible thatCrMP inhibits apical Na   channels, apical small-conductancesecretory K   channels, or the Ca 2   -dependent large-conductance K   channel. CO has been shown to activate theCa 2   -dependent large-conductance K   channelin smooth muscle cells( 26 - 28 ).If inhibition of HO with CrMP would similarly block theCa 2   -dependent large-conductance K   channel in principal cells, CrMP should also attenuate flow-dependent K   secretion that is mediated by Ca 2   -dependentlarge-conductance K   channels( 31 ). Alternatively,inhibition of HO may stimulate K absorption in the medullary collecting ductvia H-K-ATPase ( 32 ). Furtherexperiments are needed to examine these possibilities.0 S! c3 K0 Z; `0 s, \

8 I0 n+ R$ B+ c- KIn conclusion, HO-2 expression is regulated by K   intake and HO-dependent metabolites of heme such as CO regulate Na  ,K  , and fluid absorption in the loop of Henle.
9 q/ |9 o8 z; c' q; J- e, Q- M+ M- k+ j: D
DISCLOSURES
. N3 V, ], g2 I8 d! I8 f0 I
1 G" N  c7 ~8 s5 ]This work is supported by National Institutes of Health Grants HL-34300 (toW. H. Wang) and DK-17433 (to G. Giebisch).( }4 ~0 K+ H! O$ \5 k2 H2 ?+ M0 y

- z% `7 ?6 J; I, p' zACKNOWLEDGMENTS; m3 w7 \, C  j8 O+ Z, b1 F

9 m' j) m$ V: s. E8 @- I9 f7 m3 d0 bThe authors thank M. Steinberg for editorial assistance.
6 k: m6 _3 ?1 }3 T1 P5 K5 l5 V  ^          【参考文献】
+ Q8 g/ ^8 z- w: n  l$ I% n Giebisch G. Renal potassium transport: mechanisms and regulation. Am J PhysiolRenal Physiol 274:F817-F833, 1998.% e5 {! F) W9 e/ }  M& f# T
# u6 `  C7 B. \
/ y  L* w# X" b( [! ?. F% x
: h, v) D+ K- ~* s* q
Greger R. Ion transport mechanisms in thick ascending limb of Henle's loop of mammaliannephron. Physiol Rev 65:760-797, 1985.
, q2 Z7 k) t" V; _  P. h2 N6 G

0 m; I4 \3 n+ d3 V  S* J5 q
) v: z+ }+ k) C1 U9 g( \Gu RM, Wei Y,Jiang HL, Lin DH, Sterling H, Bloom P, Balazy M, and Wang WH. K depletionenhances the extracellular Ca-induced inhibition of the apical K channels inthe mTAL of rat kidney. J Gen Physiol 119: 33-44,2002.) z* f4 i& {( m6 o' x! B1 Q5 k! B

/ N: D* a: H3 ?) @- X- z2 Z8 S  q! b+ W5 l- s, \. p! h' y

5 d5 L- P; a" m3 F/ b7 IHebert SC andGullans SR. The electroneutral Na-K-Cl cotransporter family: a journeyfrom fish to the renal cotransporters. Curr Opin NephrolHypertens 4:389-391, 1995., w3 ^  }) i$ ~4 ]+ l0 W# f( Q

2 ~4 |: H- `6 n/ s( }) S6 n7 x$ D' ]* b8 l0 u
1 E! \+ j! w0 S. ]" K' W
Hebert SC,Reeves WB, Molony DA, and Andreoli TE. The medullary thick limb: functionand modulation of the single-effect multiplier. KidneyInt 31: 580-588,1987.- T% I3 R8 |+ B' k8 f
" m+ B5 L4 V& l

, b" Z3 E9 [. K& w& [6 T3 `5 w( s' f
Hobbs AJ. Soluble guanylate cyclase: the forgotten sibling. Trends PharmacolSci 18: 484-491,1997.
9 n3 B: }- ^8 T& w" T0 F, F
$ W) Z1 z" P% ?3 f5 D. G8 w  d3 ?' I+ e. j5 v6 @

" k, \7 `) g3 iHuang DY,Osswald H, and Vallon V. Sodium reabsorption in thick ascending limb ofHenle's loop: effect of potassium channel blockade in vivo. Br JPharmacol 130:1255, 2000.
. d: S7 e+ k: R: P( G. P7 Q2 ^3 a" L

5 [5 E% y9 z& t! J
2 Q0 T7 s4 x. [5 @, E" [( B, NIngi T, ChengJ, and Ronnett GV. Carbon monoxide: an endogenous modulator of the nitricoxide-cyclic GMP signaling system. Neuron 16: 835-842,1996.
; j* F. {# p8 H- Z, Q% V2 O5 [7 ?6 A6 M! `/ y. y+ _

+ J) C8 c; F. M
: b- h$ ~, z* m: k& @$ x+ VJamison RL,Work J, and Schafer JA. New pathway for potassium transport in the kidney. Am J Physiol Renal Fluid Electrolyte Physiol 242: F297-F312,1982.1 X: z: O& p! [. Z" M, W# @  {& g
; [# _. T  l1 I' A: s

4 ]  R# R/ C, K4 j) N8 n  F* {& b
- o: j% j# B: a+ ]Johnson RA,Lavesa M, Askari B, Abraham NG, and Nasjletti A. A heme oxygenase product,presumably carbon monoxide, mediates a vasodepressor function in rats. Hypertension 25:166-169, 1995.4 A2 V6 Y# A7 j2 q2 y8 U

+ {! D, a& a- }7 M2 k# Z2 X
$ g: t+ V( `$ u, ]' D
# l- o8 V4 @; P5 h: ^# P5 OJohnson RA,Lavesa M, DeSeyn K, Scholer MJ, and Nasjletti A. Heme oxygenase substratesacutely lower blood pressure in hypertensive rats. Am J PhysiolHeart Circ Physiol 271:H1132-H1138, 1996." ^0 M- B) z' N4 o6 \8 G8 ]- W9 X/ E( a
1 L6 X: K+ }7 X; X

8 J) {$ I4 c; ~5 i6 X& d: D3 p$ g  q/ J0 M0 G
Kaide JI, ZhangF, Wei Y, Jiang HL, Yu C, Wang WH, Balazy M, Abraham NG, and Nasjletti A. Carbon monoxide of vascular origin attenuates the sensitivity of renalarterial vessels to vasoconstrictors. J Clin Invest 107: 1163-1171,2001.
6 a4 m4 W5 f! R
. G6 K7 g. L* A+ w$ D& p
9 l' X+ R9 t* D" n" _$ o  ^3 |+ I4 y( q9 r0 {! B0 y5 L
Koeppen BM andStanton BA. Sodium chloride transport. In: The Kidneyhysiology and Pathophysiology, edited by Seldin DW and GiebischG. New York: Raven, 1992, p.2003-2039.
8 P: g6 p5 V  G# ^+ a
3 n% P3 |+ F- B+ W: Q7 G1 S% E8 h; |

- p9 U' L) X0 I" }. _Kozma F,Johnson RA, and Nasjletti A. Role of carbon monoxide in heme-inducedvasodilation. Eur J Pharmacol 323: R1-R2,1997.
& U' V8 E+ e- o1 ?8 z
1 x3 W+ ?1 D  h! M' ^( }' G5 R4 |, \$ V

( a0 |6 A" T9 _, G  _+ D7 GLevi M,Peterson L, and Berl T. Mechanism of concentrating defect inhypercalcemia. Role of polydipsia and prostaglandins. KidneyInt 23: 489-497,1983.
& \6 a: p( ^0 E7 F5 ^) [  T
& w- w/ ]1 q, r3 [2 R' g, Q5 b% z8 S6 m( T0 w/ t# r. K

9 }+ R! z) D2 w- yLiu HJ, MountDB, Nasjletti A, and Wang WH. Carbon monoxide stimulates the apical 70 pSK channel of the rat thick ascending limb. J ClinInvest 103:963-970, 1999.
! f. A4 m) h  G' T" I  D" J, c3 u: s) Z/ K1 V# F7 o
, A% Z, j8 }6 `! w+ o
* N: A/ C0 _: v. ?7 v
Luke RG, BookerBB, and Galla JH. Effect of potassium depletion on chloride transport inthe loop of Henle in the rat. Am J Physiol Renal Fluid ElectrolytePhysiol 248:F682-F687, 1985.0 ^  N3 A1 ?& r# r% r5 \

: r- f  J9 W# x4 S' }
; a" L# n# E/ m% \0 h+ N7 R. n& e. X2 {' i
Luke RG, WrightFS, Fowler N, Kashgarian M, and Giebisch G. Effects of potassium depletionon renal tubular chloride transport in the rat. KidneyInt 14: 414-427,1978.
& v* v* C4 J7 h* @  }5 t; q( |. e- H$ ?4 R% u) V$ G- `
8 F3 i3 Q' Z% ~& D9 }# a# u
0 c! b* t* v4 p* Z: h
Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517-554, 1997.; z' Q/ Q& ~' ]4 C3 x- A% h

- G, }7 v$ b8 p- [2 N+ ~& J4 i6 H: Q% |/ N: J. U
+ E/ v. r' R/ M; Q
McCoubrey WK Jr, Huang TJ, and Maines MD. Isolation and characterization of a cDNA fromthe rat brain that encodes hemoprotein heme oxygenase-3. Eur JBiochem 247:725-732, 1997./ g% U( X2 n; O# Y# Y9 j' S3 ]

) ~7 @9 ?! R& f1 k: ^( w( H5 v; V0 R

  l2 `6 Z: M  C2 l# FNathanson JA,Scavone C, Scanlon C, and McKee M. The cellular Na   pump as asite of action for carbon monoxide and glutamate: a mechanism for long-termmodulation of cellular activity. Neuron 14: 781-794,1995./ ~  e' p, r  S( \: D: w

0 @' R# d/ b/ ~  p) Z: S4 O
; p9 P' O& H: \9 ^: \& F5 @1 z) u' p) ]! ^( n1 L) J% t9 }
Silva JL, ZandBA, Yang LM, Sabaawy HE, Lianos E, and Abraham NG. Heme oxygenaseisoform-specific expression and distribution in the rat kidney. Kidney Int 59:1448-1457, 2001.
( V- S" ?: d( F8 v
+ O1 G2 E, d7 q& ^9 T9 G4 l
8 [- p9 n4 M0 M7 q# R0 G2 }
8 y" H9 K& q! w% c: S' a. gSimon DB,Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, Schurman S,Nayir A, Alpay H, Bakkaloglu A, Rodriguez-Soriano J, Morales JM, Sanjad SA,Taylor CM, Pilz D, Brem A, Trachtman H, Griswold W, Richard GA, John E, andLifton RP. Mutations in the chloride channel gene, CLCNKB, cause Bartter'ssyndrome type III. Nat Genet 17: 171-178,1997." i! N( U# E/ l/ Q7 r2 a
" Z1 f. R3 M( C! L3 {1 G. ~

& k' n# \) F/ [- l3 J/ u9 J
& w  Z/ u* Q2 r# n& P; ~) q; i( XSimon DB, KaretFE, Rodriguez J, Hamdan JH, DiPietro A, Trachtman H, Sanjad SA, and LiftonRP. Genetic heterogeneity of Bartter's syndrome revealed by mutations inthe K channel, ROMK. Nat Genet 14: 152-156,1996.
& l0 Q) L  w$ @6 c8 K, _
8 L: o3 b2 B0 w% h  S7 Q5 e8 y5 ]& v2 w5 E

) i& ?  u$ l: ~Unwin R,Capasso G, and Giebisch G. Potassium and sodium transport along the loopof Henle: effects of altered dietary potassium intake. KidneyInt 46:1092-1099, 1994.% P) q4 A, q  K" v* }* a2 i
9 C4 @- D5 c3 Y$ e( \

* G1 Z7 t& x5 y5 U) ~/ T) b  a( }0 e8 ]
Wang R, Wang Z,and Wu L. Carbon monoxide-induced vasorelaxation and the underlyingmechanisms. Br J Pharmacol 121:927-934, 1997.7 @! U. A, |2 N. _* X+ U9 T

2 T2 S6 ?' F" K; d( H
- N1 B! O1 P* h$ p
+ L% |( e( ]' _8 a% oWang R and WuL. The chemical modification of KCa channels by carbon monoxide invascular smooth muscle cells. J Biol Chem 272: 8222-8226,1997.6 m" N# w& T$ O5 G# a3 o

7 q" }* O7 q. B, a! o7 a
: A- n* t: r( J/ f/ W
7 j3 B- \% j, ~  eWang R, Wu L,and Wang Z. The direct effect of carbon monoxide on KCa channels invascular smooth muscle cells. Pflügers Arch 434: 285-291,1997.5 N/ Z# w( c- m* K4 @* z9 E

' A0 M0 T( c* k: i/ E2 g% [+ w
  }; a# |: ]" m. n6 D& e7 o2 f8 t3 @' L0 t' C
Wang T, WangWH, Klein-Robbenhaar T, and Giebisch G. Effects of glyburide on renaltubule transport and potassium channel activity. Renal PhysiolBiochem 18:169-182, 1995.# M9 T9 k. u( n7 k

' W0 `( l) K8 ?- F, M
+ u: u( Z" n$ |
$ N- D1 Q6 M2 C$ QWang T, WangWH, Klein-Robbenhaar T, and Giebisch G. Effects of a novel KATP channelblocker on renal tubule function and K channel activity. JPharmacol Exp Ther 273:1382-1389, 1995.
# g3 P" `; A; j& [, i& |, `: U5 {% V4 {7 c9 F9 i* n
1 B% F" T4 z( H" W' `/ {  Z
8 y9 P+ e* g, s/ B) ~) G: t
Woda CB, LeiteM Jr, Rohatgi R, and Satlin LM. Effects of luminal flow and nucleotides onCa 2   in rabbit cortical collecting duct. Am JPhysiol Renal Physiol 283:F437-F446, 2002.2 S) i8 h- Q% u& ~& w$ c4 V4 j  v
6 E% ?5 C/ y5 k2 h  U

; Q% E4 Y5 j, K0 g2 ?& Z& h; \; g' u6 v  q  z
Zhou X, LynchIJ, Xia SL, and Wingo CS. Activation of H-K-ATPase by CO 2 requires a basolateral Ba 2   -sensitive pathway during Krestriction. Am J Physiol Renal Physiol 279: F153-F160,2000.
作者: 我心飞翔    时间: 2015-6-1 13:17

不错,看看。  
作者: MIYAGI    时间: 2015-6-9 19:32

21世纪,什么最重要——我!  
作者: nauticus    时间: 2015-6-24 12:27

好贴坏贴,一眼就看出去  
作者: 大小年    时间: 2015-7-2 16:18

来上茶~~~~  
作者: 我心飞翔    时间: 2015-8-7 19:29

貌似我真的很笨????哎  
作者: xuguofeng    时间: 2015-8-8 20:35

不早了 各位晚安~~~~  
作者: 杏花    时间: 2015-8-13 19:18

真好。。。。。。。。。  
作者: dypnr    时间: 2015-8-26 12:54

今天的干细胞研究资料更新很多呀
作者: 龙水生    时间: 2015-8-29 21:07

表观遗传学
作者: xuguofeng    时间: 2015-12-22 14:42

每天早上起床都要看一遍“福布斯”富翁排行榜,如果上面没有我的名字,我就去上班……  
作者: 红旗    时间: 2016-1-8 09:54

帮你顶,人还是厚道点好  
作者: 榴榴莲    时间: 2016-1-17 21:27

对不起,我走错地方了,呵呵  
作者: txxxtyq    时间: 2016-1-20 22:01

今天无聊来逛逛  
作者: txxxtyq    时间: 2016-1-24 13:28

谢谢哦  
作者: marysyq    时间: 2016-2-2 19:40

知道了 不错~~~  
作者: chongchong    时间: 2016-2-22 17:43

哈哈,有意思~顶顶 ,继续顶顶。继续顶哦  
作者: xiao2014    时间: 2016-3-13 21:42

在线等在线等  
作者: dglove    时间: 2016-3-30 11:27

先顶后看  
作者: awen    时间: 2016-4-8 15:35

干细胞存储  
作者: 小倔驴    时间: 2016-4-17 20:35

声明一下:本人看贴和回贴的规则,好贴必看,精华贴必回。  
作者: 墨玉    时间: 2016-4-22 14:10

就为赚分嘛  
作者: bluesuns    时间: 2016-5-18 14:18

努力,努力,再努力!!!!!!!!!!!  
作者: awen    时间: 2016-6-23 14:43

文笔流畅,修辞得体,深得魏晋诸朝遗风,更将唐风宋骨发扬得入木三分,能在有生之年看见楼主的这个帖子。实在是我三生之幸啊。  
作者: 风云动    时间: 2016-6-24 10:18

对不起,我走错地方了,呵呵  
作者: 龙水生    时间: 2016-6-24 18:40

先顶后看  
作者: hmhy    时间: 2016-6-30 10:10

加油啊!偶一定会追随你左右,偶坚定此贴必然会起到抛砖引玉的作用~  
作者: ines    时间: 2016-8-3 12:19

来上茶~~~~  
作者: aliyun    时间: 2016-8-8 05:52

不错的东西  持续关注  
作者: 老农爱科学    时间: 2016-8-9 01:03

长时间没来看了 ~~  
作者: 张佳    时间: 2016-8-30 13:01

…没我说话的余地…飘走  
作者: 坛中酒    时间: 2016-9-1 14:26

做一个,做好了,请看  
作者: txxxtyq    时间: 2016-9-22 20:21

围观来了哦  
作者: netlover    时间: 2016-9-29 17:54

dddddddddddddd  
作者: xm19    时间: 2016-10-11 17:13

呵呵 哪天得看看 `~~~~  
作者: 快乐小郎    时间: 2016-10-28 18:21

我毫不犹豫地把楼主的这个帖子收藏了  
作者: ines    时间: 2016-11-10 11:54

我卷了~~~~~~~  
作者: 陈晴    时间: 2016-11-15 14:43

我的妈呀,爱死你了  
作者: 橙味绿茶    时间: 2016-12-9 13:10

这个站不错!!  
作者: na602    时间: 2016-12-11 19:43

说的不错  
作者: 加菲猫    时间: 2017-1-10 06:18

晕死也不多加点分  
作者: 陈晴    时间: 2017-1-13 12:18

人气还要再提高  
作者: 黄山    时间: 2017-1-17 23:36

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: 昕昕    时间: 2017-2-4 03:55

人之所以能,是相信能。  
作者: 分子工程师    时间: 2017-2-14 04:13

我也来顶一下..  
作者: 修复者    时间: 2017-2-27 20:41

一楼的位置好啊..  
作者: 苹果天堂    时间: 2017-3-13 11:19

支持一下吧  
作者: 8666sea    时间: 2017-3-26 07:24

我喜欢这个贴子  
作者: dd赤焰    时间: 2017-4-7 01:49

水至清则无鱼,人至贱则无敌!  
作者: 榴榴莲    时间: 2017-4-8 12:54

呵呵 那就好好玩吧~~~~  
作者: sshang    时间: 2017-4-19 03:08

谢谢哦  
作者: myylove    时间: 2017-4-26 17:48

琴棋书画不会,洗衣做饭嫌累。  
作者: 昕昕    时间: 2017-5-22 13:53

顶下再看  
作者: dreamenjoyer    时间: 2017-5-29 01:17

鉴定完毕.!  
作者: 龙水生    时间: 2017-5-30 11:54

我的啦嘿嘿  
作者: wq90    时间: 2017-6-4 05:06

dddddddddddddd  
作者: 剑啸寒    时间: 2017-6-21 07:27

人之所以能,是相信能。  
作者: doc2005    时间: 2017-7-4 16:18

想都不想,就支持一下  
作者: 983abc    时间: 2017-7-11 21:24

不看白不看,看也不白看  
作者: 橙味绿茶    时间: 2017-8-21 07:22

哎 怎么说那~~  
作者: 旅美学者    时间: 2017-9-2 11:42

好人一个  
作者: 命运的宠儿    时间: 2017-9-2 13:27

干细胞研究重在基础
作者: xuguofeng    时间: 2017-9-4 19:49

干细胞我这辈子就是看好你
作者: alwaysniu    时间: 2017-9-10 10:35

楼上的话等于没说~~~  
作者: xm19    时间: 2017-9-21 04:58

谢谢分享  
作者: sky蓝    时间: 2017-10-31 01:47

你还想说什么啊....  
作者: marysyq    时间: 2017-10-31 03:54

干细胞行业  
作者: 罗马星空    时间: 2017-11-1 12:54

真是汗啊  我的家财好少啊  加油  
作者: 安生    时间: 2017-12-1 10:27

帮你项项吧  
作者: 小敏    时间: 2017-12-8 18:27

21世纪,什么最重要——我!  
作者: SCISCI    时间: 2017-12-15 06:19

我也来顶一下..  
作者: 兔兔    时间: 2018-1-14 17:01

楼主,支持!  
作者: syt7000    时间: 2018-1-31 12:27

感謝樓主 干细胞之家真的不错  
作者: 橙味绿茶    时间: 2018-2-13 12:57

感觉好像在哪里看过了,汗~  
作者: 安安    时间: 2018-2-15 12:18

干细胞产业是朝阳产业
作者: 天蓝色    时间: 2018-2-19 10:18

干细胞行业门户 干细胞之家
作者: 8666sea    时间: 2018-3-10 16:43

dc-cik nk  
作者: na602    时间: 2018-3-24 22:27

世界上那些最容易的事情中,拖延时间最不费力。  
作者: 365wy    时间: 2018-4-13 10:53

努力~~各位。。。  
作者: 小倔驴    时间: 2018-4-14 13:10

这个站不错!!  
作者: 剑啸寒    时间: 2018-4-19 11:10

楼主福如东海,万寿无疆!  
作者: 安生    时间: 2018-4-25 20:24

呵呵,找个机会...  
作者: 碧湖冷月    时间: 2018-5-5 10:53

爷爷都是从孙子走过来的。  
作者: kaikai    时间: 2018-5-5 13:18

厉害!强~~~~没的说了!  
作者: 甘泉    时间: 2018-5-8 13:19

回个帖子支持一下!
作者: 安安    时间: 2018-5-10 22:17

我仅代表干细胞之家论坛前来支持,感谢楼主!  
作者: 王者之道    时间: 2018-6-15 14:51

呵呵,明白了  
作者: 温暖暖    时间: 2018-6-19 22:27

真是天底下好事多多  
作者: 983abc    时间: 2018-6-29 11:35

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: 123456zsz    时间: 2018-7-10 20:44

楼上的话等于没说~~~  
作者: 甘泉    时间: 2018-7-28 11:09

我十目一行也还是看不懂啊  
作者: beautylive    时间: 2018-8-10 13:10

顶你一下.  
作者: s06806    时间: 2018-8-15 09:54

回复一下  
作者: dypnr    时间: 2018-8-23 04:57

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: 小小C    时间: 2018-8-28 03:17

设置阅读啊  
作者: chongchong    时间: 2018-9-6 09:19

加油啊!!!!顶哦!!!!!  
作者: marysyq    时间: 2018-9-15 16:37

拿把椅子看表演
作者: cjms    时间: 2018-10-1 03:02

不是吧  
作者: 碧湖冷月    时间: 2018-10-2 17:32

勤奋真能造就财富吗?  
作者: qibaobao    时间: 2018-10-27 17:27

初来乍到,请多多关照。。。  




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5