
- 积分
- 0
- 威望
- 0
- 包包
- 4
|

Induction of Pluripotency: ; M5 S6 [3 P6 ~5 N" B1 [, E( p! \
From Mouse to Human
* s/ `' f9 U2 f" K% ]- }Holm Zaehres11 E4 s1 n/ ?1 r) O# A9 B% r
and Hans R. Schöler1,
# b& K, @9 U' L' [6 [*
0 F% G. n7 ]" Q. D16 b$ v7 z, U5 d1 Y- M- @ T
Max Planck Institute for Molecular Biomedicine, Department of Cell and Developmental Biology, Münster, NRW 48149, Germany2 B1 y) r3 |# O6 Y& ^1 F7 U
*Correspondence: schoeler@mpi-muenster.mpg.de
+ a4 C$ S8 F1 \* `3 [DOI 10.1016/j.cell.2007.11.020
? q' P+ ^0 L% B/ u/ ~In this issue of Cell, Takahashi et al. (2007) transfer their seminal work on somatic cell
' N, W! m1 V/ V& ?- m+ A4 @: Yreprogramming from the mouse to human. By overexpressing the transcription factor
$ y+ C& P+ ~, |& A' U8 y+ a# N5 Hquartet of Oct4, Sox2, Klf4, and c-Myc in adult human fbroblasts, they successfully
5 [! n5 G$ s, Z, n! visolate human pluripotent stem cells that resemble human embryonic stem cells by all
1 \( H; p; N4 U* V9 n4 c9 w6 _4 S7 Gmeasured criteria. This is a signifcant turning point in nuclear reprogramming research + K! c" B% b3 m+ M. u
with broad implications for generating patient-specifc pluripotent stem cells for research & q' m4 t% C6 _
and therapeutic applications.
% ~& x: y7 s6 S6 Z+ EThis year’s three Physiology or Medi-
$ c/ B7 L# u" f! J2 N) @cine Nobel Laureates—Martin Evans, , F/ k" i+ K( g7 |7 ^
Mario Capecchi, and Oliver Smithies—5 K+ K3 e' U4 L5 [
will be honored in Stockholm in 10
& ^$ p( r5 P+ vdays time for their discovery of DNA % t; s$ J' l" F/ o$ F& v
recombination and the development
( w/ n# }( @1 v! z" z5 W: v1 }of mouse embryonic stem (ES) cell
) D; ^" g3 Q, [# U: H6 b/ Ntechnology. It was Martin Evans who
2 U# q( k! i4 t$ hdiscovered how to make mouse ES # b& O: V& _1 ^3 a% d
cells, enabling any genetic alteration & u+ {% l9 S% [2 [' G
to be transferred to the germline and
: L# `; G4 S/ T6 _' G8 U9 T/ Mhence to the next generation (Evans , [7 L1 o; ?- t2 }4 h: W
and Kaufman, 1981; Martin, 1981).
+ I" v) U( j$ N5 F7 k. [# w4 uBefore this breakthrough, researchers
L" ` ^: f5 d& O9 ]: D* Pstudied mouse embryonal carcinoma
; o# K5 t9 q* P# wcells derived from tumors, which
: K" [4 b# {2 i1 Ccould form every mouse cell lineage
$ K% G4 a; N7 i" e8 i) Nexcept the germline. Combining DNA / j9 v3 x7 @/ H7 L9 b
recombination and mouse ES cell
; b' s- W# R: V7 {: Q u4 Htechnology revolutionized an entire 0 S& H+ W# ^( \; \8 y1 h* k7 X+ I
feld of research, forming the basis for ( F7 x5 v- t5 x6 I9 ^1 q
studying and understanding the roles
4 j; j8 u' Z, s2 w; f6 [of numerous genes in embryonic 1 ^9 {! p/ d8 J9 [' Z% B
development, adult physiology, dis-
) k- v$ S' x( s1 x, jease, and aging. To date, more than 7 z# D+ ^ t9 j6 D6 o% t
500 mouse models of human disor-
8 v0 I3 a) [6 E8 c4 g% F) Mders have been generated. Now, with 5 S6 b' U0 F7 u4 ~3 n
the study by Takahashi et al. (2007) 1 N P: b0 h/ |% e
published in this issue of Cell, another
6 ~1 _+ L# A0 J+ z4 Simportant revolution is taking place.
$ x1 S, h7 U& A( j" tLast summer, Takahashi and . q( G' V5 S, T2 G, K! y. _9 ?' G
Yamanaka (2006) stunned the scientifc $ n$ t2 M4 S+ h' v2 I+ `. Z6 U
community with their study showing
$ l5 Y" R( D* lmolecular reprogramming of mouse
' K4 Y7 p: ~( I- Csomatic cells into induced pluripotent 2 U+ ~. x1 t& V; L: m9 |; F
stem (iPS) cells using just four factors: 4 D0 h" J5 X+ j+ l4 I% B4 k1 Y) c
Oct4, Sox2, Klf4, and c-Myc. Their " ]& `2 S3 R* y5 v$ G! @
elegant but demanding approach of
! P7 n# v8 A2 I; s2 ?7 ~5 nscreening for a cocktail of factors that 0 J7 f9 V; o6 D8 S7 x9 Q0 O$ d, H
could reprogram mouse fbroblasts
2 W5 [. y0 Y- j8 b; u* L5 s) Xstarting from 24 candidate genes paid " M( a* Q4 w8 i' w7 l# Y
off with their detailed description of iPS
0 f! B- G5 s9 N: `& Ucells, which are almost indistinguish-
. R: K# ~( U5 P. Z( }. P7 E+ }8 Kable from mouse ES cells. As with all % E9 l }: W4 Z/ I
scientifc discoveries, these exciting . j7 k) @0 o. g" _% ]2 H
fndings had to be reproduced. Sev-0 B! e0 k9 a/ w& w! U6 I
eral studies published this year not ) C: H" y; |' e. A( a
only reproduced but also extended
7 f# g: m; w6 x7 q' vthe Takahashi and Yamanaka fndings
# Y6 J# `3 ]% `8 h* n1 Tby demonstrating the pluripotency and 5 v$ Y F% b/ F2 T( A! ~
differentiation potential of mouse iPS " N* j, Z! f; m
cells in rigorous developmental assays
/ v$ B3 `1 n; s( L4 ](Maherali et al., 2007; Okita et al., 2007; 3 `9 N# p* H0 p$ X9 T$ j9 a1 _7 c
Wernig et al., 2007).5 i& `- W# F5 ?/ Z0 ?, V# O
In their new study, Takahashi, + [6 B' k$ A; w/ a# E/ M! C
Yamanaka, and their colleagues 1 _4 B& J4 j& h* b
(Takahashi et al., 2007) now translate
0 Z; M: E% k0 t, Y5 Vtheir remarkable fndings from mouse # a6 @$ B2 E$ B, m0 N& N9 I: `: N
to human (see Figure 1). They selected
+ `- b9 y& e3 g: o/ R' h( {# |adult human dermal fbroblasts and
* F6 B1 e: Y9 O- d& v- b0 M; qtwo other human fbroblast popula-1 {6 H6 q0 b) r& t! l2 c
tions (from synovial tissue and neo-
" z8 R. e1 _1 P& B0 inatal foreskin) from different human
Y7 R8 e$ `5 T6 Z% Adonors as their reprogramming target
! f% }' E- U/ x# b- l+ g0 k0 Acell populations. They then trans-
4 c6 w0 f7 ^3 @/ q. x$ G7 [5 _duced the human fbroblast cultures # Q w: N) F- w4 ]% `% `0 ~+ s
with retroviral vectors carrying trans-
( Z% P8 J4 L7 i' w, F% v" Vgenes for the human versions of Oct4,
! J2 P I _ T9 [Sox2, Klf4, and c-Myc and cultured * t A' A1 ~6 b/ K z( g# N
the cells under human ES cell culture
1 j/ R- L! @$ Jconditions. Thirty days after transduc-
# A- ?! p7 p4 l0 a# ]tion, the culture plates were covered 8 Y' ~; A3 R7 d8 e( c8 x
with human ES cell-like iPS colonies 1 H7 X1 R3 l/ n' ?0 ?9 b; R$ J
(among other colonies), which could
6 q& Y# P& c" K# }$ c' y% @. Mbe further propagated and expanded.
: ?1 l2 `0 X5 ]7 ?' oThe retroviral vectors enabled silenc-! w& G3 t# U d( t
ing of all four transgenes after human
3 W. {( w" S0 y4 b. j, viPS formation (as found in the mouse . C" p, l" F" l) ]
system) indicating that the iPS cells 9 e f8 F' B' z9 S
are fully reprogrammed and no longer ) p6 \% J7 B8 H, {7 j
depend on transgene expression." |! \1 u0 O1 W
Unlike the mouse study, human % h/ ^' a8 z) d0 @) E
iPS cells were generated without any
Q3 K9 x# l4 F: ggenetic selection procedures. Given
1 ^6 M9 {) m1 [the lower mitotic index of human ES
+ Q2 Z& d: {& B5 k8 `& |, I/ Kcells, it is not surprising that the gen-7 {1 B& g2 G3 G2 C: ^
eration of human iPS cells takes nota-) a& N8 g, G! Q6 b o) ?- g# M) E
bly longer than in the mouse system.
- ?1 ~8 H, l5 \$ y- y7 uThe authors subjected their human
5 Z, c4 k9 z3 ^" s) j7 T1 V: PiPS cells to a panel of assays to com-
! S, f3 |9 p) ^2 Apare them with human ES cells. These 4 p3 f" I; K3 m& ^( i
assays included morphological stud-+ E# j1 U) E, M" n* @5 {
ies, surface-marker expression, epi-3 D; H: L. k% a
genetic status, formation of embryoid 7 g: u, A: N; `
bodies in vitro, directed differentia-" m8 u( k2 }& y9 I
tion into neural cells and beating car-4 s% | B& _( v+ g7 b
diomyocytes (according to human 7 o$ ~* O! p( k) m
ES cell differentiation protocols), and
8 G6 n" ^0 K" s4 K }( qfnally teratoma formation in vivo.
/ b3 O7 Z# X2 a5 t! [6 E" zDNA microarray analysis revealed
; H9 @; i7 h" q: t; e6 o) `, H7 ^the remarkable degree of similar-; D0 ~" e$ v/ b" N0 f- M
ity between the global gene expres-$ N9 c0 d; W8 B ?+ j
sion patterns of human iPS cells and # N1 B7 I3 M1 s. Y, H
human ES cells. Notably, genomic
& c5 \1 {+ J! u/ f2 @- m! m$ qDNA analysis as well as analysis of
4 Q% E2 C0 o5 Y/ R5 i( _8 mshort tandem repeats demonstrated
! t- k& M' I- P. mthe genetic origin of independent 7 W1 S5 b( ]( t( h& J
human iPS clones from their parental
! ]8 w. F1 Y1 p; k: xfbroblast populations.
, Z8 ~1 L: v& ^: e# U p8 ^The derivation of mouse and then
% g1 p$ N9 H( u3 Fhuman ES cells (Thomson et al., 1998)
: ?# \3 V7 Z1 Vas the gold standard of pluripotent 7 v* r* o2 t0 }- r
stem cell populations has necessarily
* L6 p3 G/ D7 L/ ?) Y% \) }led to emphasis on differences in the
3 r5 p2 T# h; R% L* I: X. Cregulation of self-renewal between 6 }2 w4 {$ l7 w% l& S
mouse and human ES cells. For 2 m j. j. D; G: c. {/ u
example, human ES cells depend on
l, r/ B+ n) rbFGF for self-renewal, whereas their
3 V; {* d# I# L; Q! {mouse counterparts depend on the - X2 ?% }' u6 E1 S; d. n7 m
Lif/Stat3 pathway; BMP is involved in
# o* S R8 s4 @/ emouse ES cell self-renewal, whereas ! b/ X1 Z8 H( I$ q5 ^: x
in human ES cells it induces differen-9 o* D2 Y9 p* }
tiation. Extrinsic factors and signals 4 o# y( F7 q6 |' {! v, U8 G
for maintaining pluripotency may dif-
; s* V# I0 l1 k0 i, pfer between mouse and human. How-$ u' V/ J4 U0 t o) |
ever, the ability to translate somatic " K, Q3 c8 r8 W) B5 @
cell reprogramming from mouse to
+ K6 T) @$ u# x& f/ n4 h% ]! }human using the same transcription n* x7 B1 [3 [& \; ?% F* M% c+ p! Q
factor quartet further emphasizes the
* {9 o, h( k% F/ Nconserved nature of the Oct4/Sox2 ' o7 M. A$ @& w2 _6 n. P) ]5 p
transcription factor network that
+ `/ g2 n7 k: A9 l. L/ q+ e3 Scontrols self-renewal of mouse and ! f! O8 E8 D. S
human ES cells (Boyer et al., 2005). " {6 ~$ |4 D, v% g
Given that Klf4 and c-Myc are chro-% H# Z" @( C, M
matin modifers and can immortal-
. j5 B. h( [8 e! D! {ize cells, one might be able to fnd
9 s3 w* I2 d. w4 l# q; uother factors or small molecules that ) |# J* ]! {) w
could replace these two factors in the
5 ~7 e7 p. @/ J; e3 \& c# |cocktail (Yamanaka, 2007). In these
5 _! M, a- C( rstudies, the possibility of retroviral 5 [# J1 M) {0 f' r) K. t5 j/ i" S, O' ^
insertional mutagenesis, resulting ' q5 S% x: T2 |) s) E9 l T8 i5 `
in the activation of other genes con-* p& u3 f( r1 o1 X. W6 F, R
tributing to reprogramming, cannot
5 v& q( I$ u1 ?9 wbe excluded, providing an opportu-
/ G6 L$ P$ U' @1 C( Y: O6 snity to potentially identify new repro-
9 O4 z" F9 C* D1 Z1 h7 d fgramming factors beyond the cur-0 }# H" L) ~8 ?( a- I
rent quartet. Also, taking a broader 3 |4 F) Q" O- \% N0 [8 [) _7 ~
screening approach for reprogram-9 f9 r. C$ B$ t! W1 ~
ming human fbroblasts (as Takahashi
6 }6 {! `$ q% C) N7 ^and Yamanaka did for their mouse
2 ?' p0 z' Z' c# \study) might yield other combinations
- C Y6 r* \; ~2 n. m$ H8 K6 S' Vof reprogramming factors.
/ G3 @9 C% g4 a* P* s$ P! W9 ]Direct reprogramming of somatic
& |3 t+ x' ~- x/ g$ c" \cells to a pluripotent state, thus revers-' q; V$ l5 S' s1 @1 |* F
ing the developmental arrow of time,
2 C, Q$ l0 I# j, s! `- G" His considered by some to be the “holy / P {3 ^: J% l' V/ c+ V: N
grail” of stem cell research. Once the
# a& L6 o7 |3 N$ nresults in human cells are confrmed, 2 {7 ?, i2 o. ]" ], W
these advances will enable the cre-3 o- Q$ S# _) F
ation of patient-specifc stem cell lines X' s, F& g+ A9 q1 O
to study different disease mechanisms
$ R, r: X- w# C/ r. c3 B9 E ein the laboratory. Such cellular models : X, b0 u( o# ?' L: m8 ?; u( ^
also have the potential to dramatically * O6 c2 o6 }# J8 J8 o
increase the effciency of drug discov-
9 d( y5 j7 V/ `8 n2 sery and to provide valuable tools for ; @6 K4 k8 q" U+ S6 U( o
toxicology testing. Furthermore, this
3 B6 Z0 i& s5 H& B0 freprogramming system could make " i) |- ^# _9 k, T' P6 C
the idea of customized patient-specifc
; Y1 d+ J" s& p) w* ?4 pscreening and therapy both possible
0 {9 z4 M9 O0 o& L9 fand economically feasible. Finally, the
; L( S6 a. F( q9 T/ |/ z* _work will have a powerful impact on ; V4 a' V1 E f" h
the intense debate regarding the moral, % {8 j8 }: L! Z8 R- W
religious, and political aspects of ES cell
7 C2 f8 F, H# E9 Gresearch. However, a big mistake now
3 S1 Q8 `/ C! z- T5 N8 ?" Z3 Pwould be to consider human ES cells
( r4 J8 v+ }9 {: e: ~3 ]+ P iobsolete. There are still many hurdles
: K( W- `8 ?0 Y. p$ {6 eto overcome before we ful ly understand " g" j5 _$ N3 x2 A; M
pluripotency and before we have human
+ f4 [; ], ?5 H7 z1 y2 z/ y6 V* S& f9 ziPS cells in hand that are suitable for
W4 m, P* \& Itherapeutic application. For example, I, S" z: z4 [7 r
a signifcant proportion of mice derived
9 r4 h* C V7 Sfrom mouse iPS cells develop tumors
0 J/ {7 a+ ^ e. @# N. ydue to reactivation of the c-Myc retro-
# u3 ] \3 n9 P( z0 jvirus (Okita et al., 2007) compared to
0 N4 H5 u. P) v2 ymice derived from ES cells, which are & b* t0 H% q' G/ k9 B
normal. The search is now on to fnd a - @8 ]. |( X# a* d$ @* o# o
way to reprogram somatic cells without 0 b1 B6 B& T2 J+ O6 Y4 L
retroviruses and maybe even using a
. H# X& w4 c6 [* j7 h2 |2 rcocktail of small molecules. Given this,
C7 N E; S% mit should be emphasized that human , }! g& l" m4 p1 A" G
ES cell research is more important than # l* p# W) {: V" i* J( S( @/ b
ever for it will shed light on how iPS ) Q4 l3 P( T7 _; y& I1 {6 |
cells can best be maintained in their
( [) A2 B9 R, P2 Vpluripotent state and how they can be # ]/ z" c. y1 P/ W, n
induced to differentiate into the cell
) n5 q# G! j6 s6 f# V1 L6 Ylineage of interest. The feld of nuclear ! G: S0 o: D; D# K5 |; r8 d
reprogramming has come a long way * V$ K& H- ?, e$ b% |
from the initial nuclear transplantation + R: i' f5 x8 i" c
studies in frogs 50 years ago, to the " T3 Y' N6 e4 I2 U5 f P
birth of Dolly, the frst mammal cloned / I. F- Y8 t# p8 }, X0 I: y Q
from adult somatic cells (Wilmut et al., : X! A& x- ~& I- n1 a9 t' x
1997), to the fallout from the fabricated
* n8 l2 |" o; t: ?' Ghuman nuclear transfer experiments , [. ? C- B. X
of several years ago, to the landmark # K4 X3 F8 c$ P& N2 y1 x: ?& j
studies of Takahashi, Yamanaka, and ' H8 Z8 }" C, j1 ~) b. W8 D
their colleagues, frst in mice and now " s& Q/ A/ ~) d% s7 j
in humans.+ z& @" V/ ^8 W5 C, ~
ReFeRences2 T5 L! e7 [/ a* T% a4 v. y7 P8 r( U
Boyer, L.A., Lee, T.I., Cole, M.F., Johnstone,
0 z% ?% {) G% {% @S.E., Levine, S.S., Zucker, J.P., Guenther,
# D0 P0 q6 C! U) ~' oM.G., Kumar, R.M., Murray, H.L., Jenner, R.G.,
l" v' U ?* S' ~+ U4 @1 det al. (2005). Cell 122, 947–956.
+ U7 O1 z. ~( {6 W$ REvans, M.J., and Kaufman, M.H. (1981). Na-3 |' [$ t: s! X
ture 292, 154–156.
4 E% ^5 D' V! r4 Z5 t6 kMaherali, N., Sridharan, R., Xie, W., Utikal, J., - x! T" p q+ ]1 ?& T
Eminli, S., Arnold, K., Stadtfeld, M., Yachenko, 4 ] s# C# p- d3 u% J
R., Tchieu, J., Jaenisch, R., et al. (2007). Cell
/ w- c; _& Q0 a0 N6 ZStem Cell 1, 55–70., S) ~8 {) E% m
Martin, G.R. (1981). Proc. Natl. Acad. Sci. USA 1 K" \- X7 x6 l
78, 7634–7638.
% _3 U) I# j' ~1 ZOkita, K., Ichisaka, T., and Yamanaka, S. , w1 b8 c1 `+ z% G; H( J/ e# g4 L. z
(2007). Nature 448, 313–317.
+ d/ c6 f9 c: c% V' yTakahashi, K., and Yamanaka, S. (2006). Cell 3 `8 Z9 C+ y5 O' g9 d, s Y
126, 663–676.8 G, c0 f: _: ?0 K. O% Q+ [
Takahashi, K., Tanabe, K., Ohnuki, M., Narita,
! j; Q* l, e/ U7 N' N$ @3 |M., Ichisaka, T., Tomoda, K., and Yamanaka, S. 7 A- H4 V6 B/ `+ M
(2007). Cell, this issue.
; m/ d# M; W7 y/ zThomson, J.A., Itskovitz-Eldor, J., Shapiro, 8 d* k9 O9 Y2 w3 M1 y
S.S., Waknitz, M.A., Swiergiel, J.J., Marshall, R P+ W1 n. [$ |% S9 D
V.S., and Jones, J.M. (1998). Science 282, 2 v$ c6 v' S8 H, P& B( m
1145–1147.. K- v5 v1 t3 m: A/ W6 d# w: v$ u
Wernig, M., Meissner, A., Foreman, R., Bram-7 l4 Y" B2 }7 Z/ M" @) K
brink, T., Ku, M., Hochedlinger, K., Bernstein,
$ @ u( m7 ?4 g3 N4 a% iB.E., and Jaenisch, R. (2007). Nature 448, 6 I* d* S+ N) M
318–324.1 _: R# W- [/ S D# y- V
Wilmut, I., Schnieke, A.E., McWhir, J., Kind, ( J2 T$ L8 z, b: L7 E, x
A.J., and Campbell, K.H. (1997). Nature 385,
. W0 b* X: |4 Z, s; g( F2 e810–813. h8 X* H0 r3 R4 S1 F
Yamanaka, S. (2007). Cell Stem Cell 1, 39–49. |
|