
- 积分
- 3
- 威望
- 3
- 包包
- 15
|
现在对终末期心脏疾患的治疗包括新药、临床治疗、机械辅助装置和心脏移植。心脏移植是一个很好的方法,但是供体器官的缺乏、免疫抑制治疗的合并症、移植器官的远期衰竭都是心脏移植不容忽视的问题。因此发展替代疗法针对终末期心脏疾患的治疗是目前研究人员面临的主要目标。在治疗心脏疾患的过程中如何修复缺血或损坏的心肌或使其再生是主要的挑战。目前在这两个领域都有突破性进展,现在已证明骨髓源性成人体干细胞可以作为心肌细胞和新血管的潜在外源细胞,而且发现在某些情况下成人心脏内心肌细胞的再生是有可能的。虽然目前还有很多疑问没有得到解决,但是干细胞在心梗和终末期心脏疾患治疗中的意义为广大的研究者带来广阔的前景。此外干细胞对于研究心脏早期的发育、分化和形成具有重要价值。
: u1 ~5 c% k* `! o$ M7 a
6 l$ P$ K' |7 E4 D2 A2 oCardiac specific differentiation of mouse embryonic stem cells, N, s( R& V* j2 \
" J5 v& T x' |. A- KCardiomyocytes derived from embryonic stem cells resemble cardiomyocytes
# ]. A2 R; ?6 a' Q7 E! N
5 [% H2 x9 i2 [; wCellular cardiomyoplasty—cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure7 h1 z1 Y1 f: L: L' B
% y( B, I$ N) l7 F6 G, Z" e& BDe novo vasculogenesis in the heart: f- H- `" X8 t4 o" K/ q2 }
& E; w# x7 t) H `# ?+ E+ z, N
Diabetic Mouse Bone Marrow Cells Inhibit Skin Wound Vascularization but Promote Wound Healing* v" M* R# Z1 W, R$ d
4 J) \' x# ` A$ Z' Z- }
embryonal carcinoma cell line taught us about cardiomyocyte differentiation
0 L s; w! _7 o6 v! t9 k3 d) ^. w
! Q' O7 l4 W: P6 r8 I8 J" b( n- uEndothelial progenitor cell culture and differentiation in vitro; V. j+ Z/ g6 |/ | x9 e( x
+ M6 w" {8 K7 o+ D# i9 YEndoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage; W8 D5 \( O- Y( d) M
* @+ h2 _( Y5 ?hindrance for phenotyping embryonic stem cell-derived cardiomyocytes/ Q2 h3 H" ?/ \8 Z+ _9 ]
+ o1 P; Q5 w( P: A( {human adult cardiomyocyte phenotype
9 c2 ^ v8 c d! D# A0 \8 M$ ^% Q+ ]5 m7 Z& D, c% z
Human embryonic stem cells for cardiovascular repair8 \! j8 {3 a, _+ t& M4 Q- x% s. Y
# @0 ]. K' f+ |: U; `( c0 aMolecular pathways in myocardial development- a stem cell perspective
. y" D- D3 w) p% a8 N' W' G2 }* k) X# Y; }/ q. H# f2 P
Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host7 w# K0 @5 K: T4 f
# `; k$ d$ i+ L0 A
Myocyte and myogenic stem cell transplantation in the heart
0 b2 k) ` x: E" K3 Y( @
$ V! v l+ d) V: F& j f) QNeoendothelialization after peripheral blood stem cell transplantation in humans
7 B: \% ?4 E2 F0 M+ d3 a' d
% \7 ~- O9 O+ J0 [New directions in strategies using cell therapy for heart disease
; T- `7 A2 I% J. O, M. p4 [( I0 R
Origin and use of embryonic and adult stem cells in differentiation and tissue repair
- p) j' G6 c) x% X8 _
) f2 w9 F9 ]4 n/ N! m/ wPhosphatidylinositol 3-Kinase Regulates Bone Morphogenetic Protein-2 (BMP-2)-induced Myocyte Enhancer Factor 2A-dependent Transcription of BMP-2 Gene in Cardiomyocyte Precursor Cells
5 T8 M4 S8 p* I# z! ^ k6 d
% Q0 C3 B9 ]0 s" Q3 y7 ^5 mPhysiological Coupling of Donor and Host Cardiomyocytes After Cellular Transplantation3 `/ x6 i+ Z7 K8 B$ [( c
5 s1 m" s4 x; a
Post-natal endothelial progenitor cells for neovascularization in tissue regeneration
5 M7 T! N9 ~# E3 i2 D7 l2 c% _' h. N2 p
Skeletal muscle satellite cell transplantation/ P- B. U7 w+ n9 U( o6 I
4 N7 w# s# y$ E1 @
Spotlight on stem cells—makes old hearts fresh) L0 }. u; t p" _8 H
! Q: V8 M% b) X8 ]6 R' cStem cells and cardiac disorders
7 T) U" W: N2 o4 \. h; \$ y; b) \9 w- K% Z* B5 N/ p8 g$ {
Stomach Visceral Endoderm-Like Cells Drive Human Embryonic Stem Cells to a Cardiac Fate
/ J R! i, q/ }8 v% X9 `+ ^# e" p0 e, K
Survival and function of mouse embryonic stem cell-derived cardiomyocytes in ectopic transplants9 ~, y/ A( {9 h/ l3 u5 a8 Z
+ X4 k2 a$ o6 ~+ F( [: Z' c
Temporal patterns of bone marrow cell differentiation following transplantation in doxorubicin-induced cardiomyopathy
+ L4 ]$ N# ]( b: ?" i0 h3 X2 E0 E% I# b) M( b0 q% ]7 L# Y
Vascular gene delivery of anticoagulants by transplantation of retrovirally-transduced endothelial progenitor cells, {) P% ^7 N# s2 \
) B$ @5 _! K3 c; b* F* K! _
cardiac myocyte apoptosis and regeneration
9 }! B6 T( c; Q; p' j. E) S) |* ]' V* D& P- {
Assessment of the Tissue Distribution of Transplanted Human Endothelial Progenitor Cells by Radioactive
+ }" |& e! A+ m9 H6 n' s2 D# H& W' ~1 z; `
Different Differentiation Kinetics of Vascular Progenitor Cells in Primate Embryonic Stem Cells
: y2 U& r+ k% A6 J% d* b' \/ H8 y& Y9 C1 U# Z, ]2 l
Isolation of Bone Marrow Stromal Cell-Derived Smooth Muscle Cells by a Human SM22[alpha] Promoter1 p! b! d) w2 b! C% U2 w8 K
R. A! f3 U0 Z$ Y7 S: w1 }
Origin of Smooth Muscle Progenitor Cells8 |8 m: O; E, j$ s
8 m$ v" w! U* r* t* D% h
Physiological Coupling of Donor and Host Cardiomyocytes After Cellular Transplantation' Z' Q5 s) x( C6 m
; X( I$ C! D! z, x
Tissue Engineering Therapy for Cardiovascular Disease) X4 Q4 A- g- a7 y* B& F
3 F6 ^) x/ m3 O3 H/ ^* w Y3 w7 B& Y
Cardiomyocytes In Embryonic Bodies Derived From Human Embryonic Stem Cells
2 R2 U; A9 S: b9 _2 E: B, j8 K; n, a
Cell-To-Cell Coupling Between Host And Donor Cells In The In Situ Myocardium" d+ c: ~; L: A1 _: O2 u" _- [
, h7 U0 B0 }6 K4 ^, U' @Endothelial Progenitor Cells
_# L2 {3 d, z, L2 z* M E; c+ S( `2 V( e( `( W* c* y/ _
Endothelial Progenitor Cells-Mobilization, Differentiation, And Homing! r* @2 o) V2 D. l/ ]8 Y1 o
* h) i- `) N" n3 h. b5 n! y z
Human Embryonic Stem Cells Develop Into Multiple Types Of Cardiac Myocytes
5 v& z; c% A& v
- L6 @, |5 s( f4 c9 F* A: `1 w1 ULong-Term Outcome Of Fetal Cell Transplantation On Postinfarction Ventricular Remodeling And Function
' [) \0 u) L/ V- x8 M$ i n9 J% K$ f0 _: n. h* u' z6 Q; |
Tissue Engineering Therapy For Cardiovascular Disease
8 t" z) e- b* R9 c- }
4 h, W6 u9 [* c; u; J$ _, mTransplantation Of Neonatal Cardiomyocytes After Permanent Coronary Artery Occlusion Increases Regional Blood Flow Of Infarcted Myocardium
" c- y7 I2 v+ W4 l( C( V5 L$ R- j, A5 S9 K, F% s7 t
Neural Stem Cells
S. ^8 q {+ b: }+ Y
7 s# c1 b8 b9 X6 P: |! ~$ DAscorbic Acid Enhances Differentiation of Embryonic Stem Cells Into Cardiac Myocytes- H9 Y# M# N) j3 \, A# T
! ~$ b7 ?7 M) G. J
Bone marrow transplantation reveals an essential synergy between neuronal-in pulmonary inflammation.
4 q- ?3 k' f0 `& z1 ]* j( R9 B/ Y; E$ P5 d* v! s0 G
Bone Marrow-Derived Cell Transplantation for Acute Myocardial Ischemia
9 P3 y0 f6 q# ]. ~ ^7 u1 ~3 T! E- e6 y! `* S
Intravenous Administration of Human Bone Marrow Stromal Cells Induces Angiogenesis After Stroke
" [7 [) h2 z' } v( P
: k6 c }/ H. b; V4 tNuclear Protein Kinase C Activation to the Transcription of Cardiogenic Genes-Embryonic Stem Cells1 O; N- J9 n7 N# Y( A" {1 D$ z
9 Y" x% B2 n, }. O2 L8 X; TPrimitive Cells and Tissue Regeneration' K8 G; A( o: N2 v/ _5 U- w. u
% H; ]% [* ~* |( L9 P8 D: P
Protein Kinase C Signaling Transduces Endorphin-Primed Cardiogenesis in GTR1 Embryonic Stem Cells
& m e& \! X# C# |! n6 b# G0 I$ g" Q8 [' U7 b& _, a
Regeneration-Primitive Cells and Tissue Regeneration
( `* s0 D/ B6 E8 Q) P7 G
/ B J+ y3 q3 z$ kAdult Stem Cell Therapy in Perspective
' a5 E2 T, y w- |3 \8 b( x4 g a
. O6 _( X8 y3 |' h% U7 SBone marrow transplantation abolishes inhibition of arteriogenesis in placenta growth factor8 {0 |& J. [4 Y3 r
, q4 f: d& |7 w% ?) |5 l
Peripheral Blood Endothelial Progenitor Cells Are Derived From Monocyte-Macrophages4 {3 Z; }% x7 p: w$ `% k
! E8 e3 u$ m" k! H
Stem Cell Therapy in Perspective
- v4 ?& i/ F* W# f; F3 t7 A& j1 w2 E: b" Y! k
Stem Cells- The Chameleon Fountain of Youth, J4 y5 C" P5 ^' v
7 J7 B# G7 G& S8 a$ O. UBone Marrow-Derived Cardiomyocytes Are Present in Adult Human Heart
/ b& o" N# F4 Z/ t7 r& K; W7 H! k& g. r0 X. b5 \
Adherent Cells Generated During Long-Term Culture of Human Umbilical Cord Blood CD34+ Cells Have Characteristics of Endothelial Cells
( O3 q7 Y/ X: @7 p
" \6 g, c. `5 u. k6 [: KMigration of mesenchymal stem cells to heart allografts during chronic rejection
" P3 j& c' z$ L% I
" h# w3 ?" F0 c XOrigin of Vascular Smooth Muscle Cells and the Role of Circulating Stem Cells in Arteriosclerosis( u/ W( m/ r+ F
1 U) c- k3 _0 ]7 A4 K* U+ VStructural Adaptation of the Nuclear Pore Complex in Stem Cell-Derived Cardiomyocytes2 P6 ?: ?( J. u+ V' o
7 w4 ^6 k( w- [8 P) \* K `
Transplantation of Monocyte CC-Chemokine Receptor 2-Deficient Bone Marrow Inhibits Atherogenesis+ @. E g, O" R$ _
& N& \! X+ S+ }- ~+ QMyocyte Death, Growth, and Regeneration in Cardiac Hypertrophy and Failure
& {+ e4 d9 v5 B: g: ~3 C9 `1 {3 S- Z7 m. ^( h$ r
Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation
" @& f* |3 L) j5 d. @. h. h* I3 F2 }9 B
Autologous bone-marrow stem-cell transplantation for myocardial regeneration! b3 ?8 n" Z+ O1 v
4 l" O2 U8 K7 d4 W6 L& lCirculating Endothelial Progenitor Cells, Vascular Function, and Cardiovascular Risk2 j$ M. ^! P, ~
$ P n8 e! k7 ], A) v' E5 LDifferentiation and Genetic Manipulation of Human Embryonic Stem Cells and the Analysis of the Cardiovascular System
" S7 V- U7 u6 }, I
2 f( M5 N2 g7 f' h5 V( BEndothelial Progenitor Cells4 z) z+ J8 S2 M S* a. j
5 u) J8 f5 F' v$ x9 R+ m
Transplantation of Endothelial Progenitor Cells-Neovascularization of Myocardial Ischemia5 W( m/ r5 j5 |2 t2 s
0 {9 q2 i5 \' b# z9 U+ _Urokinase-Type Plasminogen Activator Gene-Knockout Mice-Rescue by Normal Bone Marrow-Derived Cells
; \, {" x2 S( B9 @4 o
; X/ j z* N4 G7 N7 _4 `% h: LViability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy
" g* |( E, g2 Y7 w1 M; j- m( U$ ?# l N9 z# _- k
Cre-constructing the heart
3 `% D6 L& y2 x" m: n2 N9 M# V' Z' j( P+ ?' |6 u% p: i* J0 E F
Human Umbilical Vein Endothelium-derived Cells Retain Potential to Differentiate into Smooth Muscle-like Cells `* A# M9 j" w$ z; b. {' d- ]% E
$ b1 R" d+ o& ~* P* A* w
Stem Cells for Myocardial Regeneration
) y1 ]2 y( V6 T- K$ W3 t7 z0 b% X4 E# {( P: l M$ {, Z
Cardiac differentiation of mesenchymal stem cells in sex mis-matched transplanted hearts
8 i! A8 p5 X4 \+ d& X8 \" B
, A+ n# X/ @% HCardiovascular tissue engineering( ?" W3 B8 i) O9 i3 z
_+ R$ o1 v, ^- [Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration
4 S0 b2 O9 i8 d @0 Z7 ?" ^8 N6 T( a; V5 }$ ~& r
Host cell-derived cardiomyocytes in sex-mismatch cardiac allografts
$ T4 H D" a5 w G3 e6 D9 W& T$ Y- l4 b% P1 t9 ^* i6 i( \' x. ^
Peripheral-blood or bone-marrow mononuclear cells for therapeutic angiogenesis
- C6 a6 g2 O W6 I3 j# O' k! H3 Z; u" s, i, m
Stem Cells to Repair the Heart- A Clinical Perspective |
|