
- 积分
- 3
- 威望
- 3
- 包包
- 15
|
现在对终末期心脏疾患的治疗包括新药、临床治疗、机械辅助装置和心脏移植。心脏移植是一个很好的方法,但是供体器官的缺乏、免疫抑制治疗的合并症、移植器官的远期衰竭都是心脏移植不容忽视的问题。因此发展替代疗法针对终末期心脏疾患的治疗是目前研究人员面临的主要目标。在治疗心脏疾患的过程中如何修复缺血或损坏的心肌或使其再生是主要的挑战。目前在这两个领域都有突破性进展,现在已证明骨髓源性成人体干细胞可以作为心肌细胞和新血管的潜在外源细胞,而且发现在某些情况下成人心脏内心肌细胞的再生是有可能的。虽然目前还有很多疑问没有得到解决,但是干细胞在心梗和终末期心脏疾患治疗中的意义为广大的研究者带来广阔的前景。此外干细胞对于研究心脏早期的发育、分化和形成具有重要价值。
* L6 t* e. Y* \9 [4 e: U5 r2 N. s0 r* R7 t
Cardiac specific differentiation of mouse embryonic stem cells5 J" ]- b, h9 d7 }4 [6 [
) {) \0 j) k* D QCardiomyocytes derived from embryonic stem cells resemble cardiomyocytes
1 ^3 t; d3 T& i7 b5 Q8 i
8 O. _- k$ \& j/ |" ZCellular cardiomyoplasty—cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure
6 w* L: r, [( Z5 c2 ?
8 B5 k" w" s* o3 p1 z# x v8 ^De novo vasculogenesis in the heart
- y S! C" _# p) ]9 x! K
& u$ m4 s z0 ^3 jDiabetic Mouse Bone Marrow Cells Inhibit Skin Wound Vascularization but Promote Wound Healing: R( {* v. g; D
: O+ I2 `- v- c P% o+ @, L$ `embryonal carcinoma cell line taught us about cardiomyocyte differentiation4 t- m, h: k+ k! @0 n7 Y+ O c
) e; E- |" [7 }3 r( B0 ~
Endothelial progenitor cell culture and differentiation in vitro
1 e7 c$ P8 ^1 k& g i. Y+ d5 N$ I& y
Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage0 y2 k' I1 [8 K7 X
8 t1 D6 X8 |# `7 ]9 ^& ^) yhindrance for phenotyping embryonic stem cell-derived cardiomyocytes
4 B$ U: J2 S0 y
# y: W3 G5 N! J- r% mhuman adult cardiomyocyte phenotype' u: K; v) l: \7 V3 L5 C
& B& U" e- `5 m" b" I. XHuman embryonic stem cells for cardiovascular repair
# \( W5 w ` e3 c
8 A, j8 H# f2 ~0 AMolecular pathways in myocardial development- a stem cell perspective8 @, N3 W/ Q* g
6 ^/ o* H0 I1 \ U+ ?6 R/ JMyoblasts transplanted into rat infarcted myocardium are functionally isolated from their host
$ L6 `$ ]7 Q2 l3 E% C$ O- b) h+ o: Z8 z: @
Myocyte and myogenic stem cell transplantation in the heart- j" m3 @, K8 Y. O
/ h r* s: p/ uNeoendothelialization after peripheral blood stem cell transplantation in humans
; g( O+ d0 T Z6 Y0 E( j, f& N. G1 T: m1 s1 N
New directions in strategies using cell therapy for heart disease
2 F9 T+ \6 v6 v9 r8 R3 `; T
& h. ~: j1 X7 v' W0 E3 g! d* e- M( sOrigin and use of embryonic and adult stem cells in differentiation and tissue repair7 w2 O9 w, D& g6 `
& b8 e2 K$ |" z1 C' l# y$ C5 y% d
Phosphatidylinositol 3-Kinase Regulates Bone Morphogenetic Protein-2 (BMP-2)-induced Myocyte Enhancer Factor 2A-dependent Transcription of BMP-2 Gene in Cardiomyocyte Precursor Cells w3 h6 ]. N# E v3 O
0 T- k7 c1 z: J4 ]4 r) g8 o+ ^
Physiological Coupling of Donor and Host Cardiomyocytes After Cellular Transplantation i8 ~) E% k |
; N/ }7 j+ R% ^ yPost-natal endothelial progenitor cells for neovascularization in tissue regeneration
3 P4 ~ B2 }0 Z/ x
' y5 R+ t/ U9 FSkeletal muscle satellite cell transplantation
1 _: m9 V% \- s3 _) S, \0 }% ?9 n5 w) e
( J; \( q2 H/ A, y. W0 KSpotlight on stem cells—makes old hearts fresh
1 q' ~0 M, p% x7 c6 B
$ ^0 A( D$ Q% m9 qStem cells and cardiac disorders$ K/ C, w7 L( s3 x1 I, C" }( S+ @3 n
. v4 x$ v8 h/ b9 A# N* `Stomach Visceral Endoderm-Like Cells Drive Human Embryonic Stem Cells to a Cardiac Fate$ g. `# F ]" i+ H3 m
/ p, O: z1 i: v" bSurvival and function of mouse embryonic stem cell-derived cardiomyocytes in ectopic transplants
# R- r% Q" Y# ?5 l* G
8 O2 x. D+ c8 T. G. Y6 {: }' a/ P! [Temporal patterns of bone marrow cell differentiation following transplantation in doxorubicin-induced cardiomyopathy
* Y; E1 F, S. R
4 Y4 v0 e4 Z5 n2 U) N# Z* Y1 @& r1 mVascular gene delivery of anticoagulants by transplantation of retrovirally-transduced endothelial progenitor cells) E" c0 d' y& Q: G1 n
3 N8 G6 T- j) z
cardiac myocyte apoptosis and regeneration
# \8 ^% k! Z( R- r, o( l) K; k7 a1 l9 T
Assessment of the Tissue Distribution of Transplanted Human Endothelial Progenitor Cells by Radioactive
, j0 _' }7 K4 N3 {5 j
4 ^ @+ u+ j4 L7 ^( |Different Differentiation Kinetics of Vascular Progenitor Cells in Primate Embryonic Stem Cells* X, _% T# U9 q! J4 e
5 X0 {7 c% z8 ^2 A6 c: l# q' p2 HIsolation of Bone Marrow Stromal Cell-Derived Smooth Muscle Cells by a Human SM22[alpha] Promoter
/ R( V" `6 L+ n4 E# G1 G! s- T
; w5 H& E" ^1 V7 x; COrigin of Smooth Muscle Progenitor Cells4 |7 k& _) P" V$ R
% Z3 \. q' f; kPhysiological Coupling of Donor and Host Cardiomyocytes After Cellular Transplantation
6 s3 E# ^$ g- O+ b0 w7 `' h" d; x6 T) V
Tissue Engineering Therapy for Cardiovascular Disease6 V# C1 N4 H) D2 D
c7 W4 g- h5 e& c! h% ^
Cardiomyocytes In Embryonic Bodies Derived From Human Embryonic Stem Cells d2 }7 h a! O% |* `5 J
& p: X) M. }' z- l8 M( T
Cell-To-Cell Coupling Between Host And Donor Cells In The In Situ Myocardium
4 b9 M' Z/ n0 ], ]! S8 v& R1 o& D. H' A
Endothelial Progenitor Cells( ?' ?5 s+ i e, j4 \3 W4 Y- S5 {3 I" z
) ]% Y4 T F+ L2 p. G" |
Endothelial Progenitor Cells-Mobilization, Differentiation, And Homing
6 I5 b n7 P$ I0 z- K& D/ {% u6 N0 x. v
Human Embryonic Stem Cells Develop Into Multiple Types Of Cardiac Myocytes
2 H" {6 N/ s- H. \ _7 U. L* S7 U% Q5 u9 @, N
Long-Term Outcome Of Fetal Cell Transplantation On Postinfarction Ventricular Remodeling And Function
+ o/ e& s" B# Z* G) y% q. t$ ?0 ^6 I$ o2 h$ q
Tissue Engineering Therapy For Cardiovascular Disease0 {' r) y. h2 P& R' e
. b# o& K3 W$ f- z2 A _Transplantation Of Neonatal Cardiomyocytes After Permanent Coronary Artery Occlusion Increases Regional Blood Flow Of Infarcted Myocardium% {: t- d& P' k. b. g
$ z3 K) A( U8 h3 p. g
Neural Stem Cells
0 T* c7 p, v; U' g- X; I
g- A! T @( n& G- r6 _) v. y6 y2 [Ascorbic Acid Enhances Differentiation of Embryonic Stem Cells Into Cardiac Myocytes
" i r; u( c; S3 m/ D* J; k: S: t( Y
Bone marrow transplantation reveals an essential synergy between neuronal-in pulmonary inflammation.
5 y3 y8 |% k9 o, y9 H( Q1 c y, K
* i* [$ \) @. g! O/ q% n, Y2 aBone Marrow-Derived Cell Transplantation for Acute Myocardial Ischemia. C+ G7 w6 ?( U; H. O
8 k" w' E7 o: j$ d" ^5 ~4 D7 MIntravenous Administration of Human Bone Marrow Stromal Cells Induces Angiogenesis After Stroke* r3 C7 D* X. y z' D) g& l2 V
! y) ]4 o$ g: ], ?Nuclear Protein Kinase C Activation to the Transcription of Cardiogenic Genes-Embryonic Stem Cells
# t" e; |$ X2 p! I- g- _% H4 n: ~! j
Primitive Cells and Tissue Regeneration
7 V2 {8 k& a2 o W8 H! E( ]
' p2 k: C& p X& aProtein Kinase C Signaling Transduces Endorphin-Primed Cardiogenesis in GTR1 Embryonic Stem Cells: [# s3 q+ J, s$ Z% E; \8 i
- a8 O: D; U7 ^0 B: {Regeneration-Primitive Cells and Tissue Regeneration
, w' E) t) ?0 m: v: ~4 t! M
, V- m' v3 z/ \Adult Stem Cell Therapy in Perspective
) X3 {0 P6 Q: O: P, B7 y. b8 [- H& ~5 ^
Bone marrow transplantation abolishes inhibition of arteriogenesis in placenta growth factor
8 {: o7 ?* C0 i3 H2 A3 X% u# h) }4 {8 s' I C) G
Peripheral Blood Endothelial Progenitor Cells Are Derived From Monocyte-Macrophages
: l) [1 a/ u/ g# t; v: R7 U# O1 I1 ?7 \5 N0 Q+ `
Stem Cell Therapy in Perspective: R8 t- z7 A, ^1 ]- @2 x: S8 q# H0 s
4 l5 J* |% }4 N. i; v. q5 Z
Stem Cells- The Chameleon Fountain of Youth. @$ e# e' I& ]7 Q: n( W3 J
5 U0 C% v+ Q7 U, S! l* L; f! m. RBone Marrow-Derived Cardiomyocytes Are Present in Adult Human Heart$ M& a1 S U4 C# s3 `* c
& L+ j" @+ H* T
Adherent Cells Generated During Long-Term Culture of Human Umbilical Cord Blood CD34+ Cells Have Characteristics of Endothelial Cells
1 t$ g; R' p8 v4 B0 E
) |+ y+ A; V9 G- H5 qMigration of mesenchymal stem cells to heart allografts during chronic rejection6 c2 x: [. z1 p- W# s5 W3 w: p
# a8 p3 Y, ?8 R5 b. [" e! p! I# a- KOrigin of Vascular Smooth Muscle Cells and the Role of Circulating Stem Cells in Arteriosclerosis
0 x- U9 J5 W; ]- C/ G5 O4 }9 G# c* W; r% f* A
Structural Adaptation of the Nuclear Pore Complex in Stem Cell-Derived Cardiomyocytes
& h+ p% r" f' ]2 f% m
$ c$ Y6 o z& I8 }$ a4 m7 \( uTransplantation of Monocyte CC-Chemokine Receptor 2-Deficient Bone Marrow Inhibits Atherogenesis5 @2 ~- N9 W$ g8 L6 \
* D/ u! v) A- B0 hMyocyte Death, Growth, and Regeneration in Cardiac Hypertrophy and Failure/ I# Y/ \6 A9 R' `, U/ Q' X
* j; _2 [. s) U* N+ R- HAngiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation
& p8 f' a2 h* }$ Y6 T; \3 s9 a8 A, n+ B- l* U+ `0 M
Autologous bone-marrow stem-cell transplantation for myocardial regeneration
# n/ s" E5 p/ J' A" g0 B( m. G: H8 ]. K+ Z
Circulating Endothelial Progenitor Cells, Vascular Function, and Cardiovascular Risk# S( {0 J, v; ~7 `+ q: D" u
5 f$ S: W5 r' B) K* F* CDifferentiation and Genetic Manipulation of Human Embryonic Stem Cells and the Analysis of the Cardiovascular System
- l3 M3 @8 M2 b( n# I0 D7 Y9 O) |" a' O9 A! P* z! Q
Endothelial Progenitor Cells
* d8 q2 `/ O. u; ?! w3 U$ t' P/ q+ c, d
Transplantation of Endothelial Progenitor Cells-Neovascularization of Myocardial Ischemia
7 `+ E" J' |7 ], M
% Y% k) J" _' u gUrokinase-Type Plasminogen Activator Gene-Knockout Mice-Rescue by Normal Bone Marrow-Derived Cells
& Y; i$ z! d) }9 x! M6 L2 n; R# e3 J7 q& _, A8 i) x1 C) w3 w8 N+ S+ J
Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy
. k9 t7 A8 w2 F8 P4 Z' Y
+ d! J' t9 H9 b) N0 ?Cre-constructing the heart5 R7 x! f; P' ?5 a' l9 ~4 ]0 x# u2 P
1 N! r1 m8 ?8 j/ CHuman Umbilical Vein Endothelium-derived Cells Retain Potential to Differentiate into Smooth Muscle-like Cells
# |$ P3 i4 B; y# U& {8 G; d4 D4 @: e; k; \) M+ y9 D
Stem Cells for Myocardial Regeneration
k5 s k d; \# X0 [% g. z8 f% ~8 t( y5 ~( N \. D
Cardiac differentiation of mesenchymal stem cells in sex mis-matched transplanted hearts1 K- b5 m0 `1 b) F+ n! F ?
% k3 N: H, l$ A8 W! NCardiovascular tissue engineering/ _* @2 j; y/ f, u+ d1 I: L; |1 o
- ^3 J( }0 f8 R. w0 b9 G( r
Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration
' z6 y K* |+ z! g4 R. ]! v' M- R8 U, z/ a! V
Host cell-derived cardiomyocytes in sex-mismatch cardiac allografts
9 B* m$ K9 E# p+ X) u
o0 L% s7 x/ qPeripheral-blood or bone-marrow mononuclear cells for therapeutic angiogenesis$ I" w" F- ?0 f" e9 K4 j8 A1 v
) Y2 _, Z& r8 \0 m8 P0 j
Stem Cells to Repair the Heart- A Clinical Perspective |
|