  
- 积分
- 13286
- 威望
- 13286
- 包包
- 34831
|

本帖最后由 sunsong7 于 2015-4-29 23:23 编辑 1 {6 l+ F# B7 ~, B: ^8 s9 P
1 q1 W# Z/ n# U/ Z5 [+ V/ M+ {著名学者Cell发表颠覆性文章:波涛汹涌的细胞质
4 X1 |/ U L% q! F5 g2014-8-15 11:31| 发布者: slytjiaofei 来自: 生物通% ]+ J, j3 ~" n
摘要: 人们一直认为,哺乳动物的细胞质就是一种粘性液体,悬浮其中的细胞器和蛋白在不断做着无规则运动和随机撞击。然而,哈佛大学的一项新研究颠覆了这一理论,研究指出细胞质其实是一个波涛汹涌的胶质海洋。相关论文发表 ...
0 y6 L y0 B+ m9 N人们一直认为,哺乳动物的细胞质就是一种粘性液体,悬浮其中的细胞器和蛋白在不断做着无规则运动和随机撞击。然而,哈佛大学的一项新研究颠覆了这一理论,研究指出细胞质其实是一个波涛汹涌的胶质海洋。相关论文发表在八月十四日的Cell杂志上。' y0 ^* k6 J$ M4 f7 p) n' h; U( D
研究人员将细胞质形容成一种有弹性的凝胶,这个环境并不适合随机扩散。细胞尤其是细胞骨架中进行着许多耗能的细胞过程,这些过程使细胞质形成了强力的波浪,推动着其中的蛋白和细胞器。
5 P, o5 s1 {" {# J1 VDavid A. Weitz教授领导的研究团队,不仅提出了新的细胞质模型,还展示了一个检测细胞质波动力的新方法。鉴于细胞质内的运输主要依赖于各种耗能过程,因此在任何时间点获得细胞质中的力学谱,就能了解细胞当时的代谢状态。# e2 C: c. Z* S% a5 K4 f
David A. Weitz 教授是美国哈佛大学工程与应用科学学院的著名教授,是美国科学院院士、美国艺术与科学学院院士。Weitz教授是国际上软湿功能材料、胶体微粒系统、生物物理与生物材料、微流控等研究领域的知名专家。
) A/ u9 v) N, z* D1 B5 \1 [“这项工作对未来的发育、癌症生物学和代谢研究会产生重要的影响,”文章的第一作者Ming Guo博士说。& Q* r0 }2 l* f# L( j
细胞生物学家一致认为细胞质里的颗粒是被动扩散,因为在显微镜下,它们之间的随机碰撞似乎符合布朗运动。结果大家都低估了细胞质在细胞复杂动态中的重要性,Guo说。, b) u, `' o, [
就像用勺子搅动咖啡里的糖一样,细胞机器的运行让细胞质里的悬浮颗粒无法平静。细胞质的波涛主要是由分子马达反复拉动肌动球蛋白(actomyosin)引起的,不过其它酶促活动也能掀起波澜。(延伸阅读:Cell亮点文章:马达蛋白团结就是力量) ^; s( Z8 X4 |6 n# K) Z
研究人员通过一系列“敲除”实验进行了验证,在去除了细胞能量源(ATP)的情况下,悬浮颗粒和细胞器的运动大大减慢。他们还将显微镜、微流变技术和光钳结合起来,建立了一种称为FSM(force spectrum microscopy)的新方法。该技术可以检测细胞质的硬度,以及注入细胞质的惰性颗粒运动,并以此计算细胞中的力。6 J$ k, O% ^! G6 w* S$ |( y
“我们的结果意味着,影响分子马达活性的因素,也会间接影响细胞质的总体流变性,”文章的共同作者,NIH的Jennifer Lippincott-Schwartz说。
8 q' p( P( _/ f研究总结道,分子马达和酶促反应的活性改变,会影响细胞质硬度和物质运输的容易程度。而细胞质的改变又会进一步影响下游的细胞活性。目前,研究人员正在用FSM进一步研究细胞质和核质的弹性,分析它们对基因表达、代谢信号、细胞生长和运动的具体影响。
# A% i a" V8 I, @- Y" I推荐原文:Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum Microscopy( F2 e3 j( _. h3 L* ]! Z
( m6 C- v9 e. u3 }$ W
. Y1 {& ]( f# R! X人们一直认为,哺乳动物的细胞质就是一种粘性液体,悬浮其中的细胞器和蛋白在不断做着无规则运动和随机撞击。然而,哈佛大学的一项新研究颠覆了这一理论,研究指出细胞质其实是一个波涛汹涌的胶质海洋。相关论文发表在 8 月 14 日的《细胞》(Cell)杂志上。- Q' _# }' q' ]% t8 ?
研究人员将细胞质形容成一种有弹性的凝胶,这个环境并不适合随机扩散。细胞尤其是细胞骨架中进行着许多耗能的细胞过程,这些过程使细胞质形成了强力的波浪,推动着其中的蛋白和细胞器。
) o3 u" D8 R! ~$ Q4 xDavid A. Weitz教授领导的研究团队,不仅提出了新的细胞质模型,还展示了一个检测细胞质波动力的新方法。鉴于细胞质内的运输主要依赖于各种耗能过程,因此在任何时间点获得细胞质中的力学谱,就能了解细胞当时的代谢状态。. ^% G% X* h$ O( d
David A. Weitz 教授是美国哈佛大学工程与应用科学学院的著名教授,是美国科学院院士、美国艺术与科学学院院士。Weitz教授是国际上软湿功能材料、胶体微粒系统、生物物理与生物材料、微流控等研究领域的知名专家。( V7 H3 N; p, B, q" n
论文第一作者 Ming Guo 博士表示:“这项工作对未来的发育、癌症生物学和代谢研究会产生重要的影响。”+ k7 {/ A0 b6 H& I( |3 a) t( w
细胞生物学家一致认为细胞质里的颗粒是被动扩散,因为在显微镜下,它们之间的随机碰撞似乎符合布朗运动。结果大家都低估了细胞质在细胞复杂动态中的重要性,Guo说。* C& ]. b) d8 T# Q6 l
就像用勺子搅动咖啡里的糖一样,细胞机器的运行让细胞质里的悬浮颗粒无法平静。细胞质的波涛主要是由分子马达反复拉动肌动球蛋白(actomyosin)引起的,不过其它酶促活动也能掀起波澜。
; N, D+ h- w' r& d' l7 x% H研究人员通过一系列“敲除”实验进行了验证,在去除了细胞能量源(ATP)的情况下,悬浮颗粒和细胞器的运动大大减慢。他们还将显微镜、微流变技术和光钳结合起来,建立了一种称为FSM(force spectrum microscopy)的新方法。该技术可以检测细胞质的硬度,以及注入细胞质的惰性颗粒运动,并以此计算细胞中的力。
5 l8 b, c5 k; B' {! V' y( P9 `论文共同作者,NIH的Jennifer Lippincott-Schwartz 表示:“我们的结果意味着,影响分子马达活性的因素,也会间接影响细胞质的总体流变性,”。
( u9 Z& Q! s% B5 R7 N研究总结道,分子马达和酶促反应的活性改变,会影响细胞质硬度和物质运输的容易程度。而细胞质的改变又会进一步影响下游的细胞活性。目前,研究人员正在用FSM进一步研究细胞质和核质的弹性,分析它们对基因表达、代谢信号、细胞生长和运动的具体影响。
/ I5 d$ J( t9 a0 \3 }原文检索:Ming Guo, Allen J. Ehrlicher, Mikkel H. Jensen, Malte Renz, Jeffrey R. Moore, Robert D. Goldman, Jennifer Lippincott-Schwartz,Frederick C. Mackintosh, David A. Weitz. Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum Microscopy. Cell, 14 August 2014; DOI: 10.1016/j.cell.2014.06.051 |
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
-
总评分: 威望 + 2
包包 + 10
查看全部评分
|