干细胞之家 - 中国干细胞行业门户第一站

标题: Concise Review: Regulation of Embryonic Stem Cell Lineage Commitment by Mitogen- [打印本页]

作者: 江边孤钓    时间: 2009-3-5 00:55     标题: Concise Review: Regulation of Embryonic Stem Cell Lineage Commitment by Mitogen-

作者:Bernard Bintruya,b, Lynn Heasleyc, Frdric Bostd,e, Leslie Carond,e, Myriam Aouadid,e
5 P' C6 _0 f7 m                  
& m7 J& m* r$ {4 B% f' Q                  
2 J0 H* E: W9 ^& A9 m         
8 s+ [4 X' a9 Y                        
$ K, |! H* \7 a: X- O5 g! W            
8 U7 x# B  i+ K& [: j$ K+ H% O            
3 l5 l* y/ F. B* g7 H            
$ q4 }  e4 D. V8 `, j            
0 p; Z- Z! `2 X2 p* J3 J: Q4 r5 Q                      # p1 i/ ]  v1 q; j; l
        
$ H" g8 ?( T6 L( q* I. L        
/ x# |* @. R& [  g, s        - i# ]. b# z9 ]
          【摘要】0 ~. E6 Y& Q# ?- [# t; C
      Embryonic stem (ES) cells can give rise, in vivo, to the ectodermal, endodermal, and mesodermal germ layers and, in vitro, can differentiate into multiple cell lineages, offering broad perspectives in regenerative medicine. Understanding the molecular mechanisms governing ES cell commitment is an essential challenge in this field. The mitogen-activated protein kinase (MAPK) pathways extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38MAPK are able to regulate ES commitment from early steps of the process to mature differentiated cells. Whereas the ERK pathway inhibits the self-renewal of ES cells, upon commitment this pathway is involved in the development of extraembryonic tissues, in early mesoderm differentiation, and in the formation of mature adipocytes; p38MAPK displays a large spectrum of action from neurons to adipocytes, and JNK is involved in both ectoderm and primitive endoderm differentiations. Furthermore, for a given pathway, several of these effects are isoform-dependent, revealing the complexity of the cellular response to activation of MAPK pathways. Regarding tissue regeneration, the potential outcome of systematic analysis of the function of different MAPKs in different ES cell differentiation programs is discussed.
" C! D6 g( h' F- H6 K8 _2 ?& H, {$ x2 ^" Q6 n% A
Disclosure of potential conflicts of interest is found at the end of this article.
5 g4 Q  y3 P8 Y3 X, }6 L          【关键词】 Mitogen-activated protein kinases Embryonic stem cells commitment c-Jun amino-terminal kinase pathway pMAPK pathway Extracellular signal-regulated kinase pathway. O4 ~# K4 H: ^& p/ I6 j. a  E
                  INTRODUCTION
! I  f4 h  U- b( `) P6 o7 T9 `6 U8 g" j: e: Z) R9 @
Embryonic stem (ES) cells can give rise, in vivo, to the ectodermal, endodermal, and mesodermal germ layers and, in vitro, can differentiate into multiple cell lineages, offering broad perspectives in regenerative medicine (see for extensive reviews on mouse and human ES cells ). One existing limitation to the therapeutical use of these cells is that, in vitro, the capacity to orientate ES cells in a given lineage is often limited to a small proportion of cells. In fact, the cellular population obtained is usually a mixture of different specialized cells. Thus, understanding the molecular mechanisms governing the commitment of ES cells to specific lineages is an essential challenge in this field.
. z, B# G3 r9 B& V+ L7 p! x8 e! M' X  _5 J
Mouse ES cells can be maintained, in vitro, in an undifferentiated state in the presence of a cytokine, the leukemia inhibitory factor (LIF) . It is almost certain that different differentiation protocols and inducers will selectively activate distinct signaling pathways that activate cell lineage-specific genetic programs to bring about the observed enrichment in differentiated cell populations. Yet, the precise molecular identity of these signaling pathways controlling cell differentiation of ES cells remains poorly understood. The purpose of this article is to review the recent studies that identify the role of mitogen-activated protein kinases (MAPKs) in the in vitro differentiation of ES cells.% j; C+ }( b% N3 C) s

1 @9 m" X" s$ Q; |1 ]! \  J; `THE MITOGEN-ACTIVATED PROTEIN KINASE SIGNAL TRANSDUCTION PATHWAYS
5 t2 n9 }! ~; W) ~. W# N# y+ S3 k/ x
Cells respond to extracellular signals by engaging a variety of intracellular signaling pathways, which trigger both immediate and long-term cell responses. The latter activate cascades that signal to the nucleus and regulate gene expression. The signaling pathways leading to activation of MAPKs and their downstream effects on gene regulation represent a paradigm in cellular signaling (see reviews ). The MAPK family comprises four groups of proteins: extracellular signal-regulated kinases (ERKs) 1 and 2; ERK5; c-Jun amino-terminal kinases (JNKs) 1, 2, and 3; and p38MAPK , ¦Â, , and , where each isoform is encoded by its own gene. Much of the present understandings of the MAPKs, especially regarding ES cell signaling, arise from the study of ERK1/2, JNK, and p38MAPK proteins. These protein serine/threonine kinases are regulated by phosphorylation cascades organized in specific modules comprised of two additional protein kinases activated in series and leading to activation of a specific mitogen-activated protein (MAP) kinase: a MAP kinase kinase (MAPKK), which phosphorylates a specific MAPK, and a MAP kinase kinase kinase (MAPKKK), which phosphorylates a specific MAPKK (Fig. 1). Besides the activities of the different components of the cascades themselves, there are two other important means to specifically regulate these signaling pathways: interfering with the scaffolding proteins or MAPK phosphatases that are specific for each pathway.4 D! `: |( X* B" U7 u' D; R1 X7 w
7 D9 A( r! a& p7 i1 h3 c
Figure 1. Schematic representation of the main mitogen-activated protein kinase signal transduction pathways and their regulators. Abbreviations: ERK, extracellular signal-regulated kinase; JNK, c-Jun amino-terminal kinase; K, kinase; MAPK, mitogen-activated protein kinase; MEK, MAP/ERK kinase; MKK, MAP kinase kinase.
0 I7 g. b& e; Q8 Y6 t; h/ a  u: W# z0 `! c
Taking advantage of the development of specific chemical inhibitors for each MAPK pathway, numerous investigations have explored their biological functions and demonstrated their involvement in a wide variety of cellular functions. These multiple functions are dependent on the pathway that is activated and on the cellular model analyzed. In addition, the duration of the stimulus can also affect the cellular response. A wide panel of different stimuli are able to activate the MAPK pathways, but a good correlation has been found between the types of stimulus and the function assigned to the pathway. Schematically, ERK is preferentially activated by mitogens such as the serum or growth factors and, accordingly, this pathway is an important regulator of cell cycle and cell proliferation, whereas p38MAPK and JNK are responsive to various stress stimuli from UV to cytokines and constitute important mediators of cellular responses to these stimuli (see for extensive reviews ). For example, the JNK pathway is the mediator of apoptosis induced by tumor necrosis factor-. However, this growth factor is also able to activate the nuclear factor B pathway, which, in turn, inhibits JNK. Therefore, the cellular response will result from the combinatorial action of distinct signaling pathways.1 t% d) A0 m7 e- _7 ^  J
- F' t1 t0 i: O6 Z) k
Regarding the process of differentiation, the role of MAPKs is extremely complex and depends on multiple parameters. The complexity is due, first, to the biological process itself, which, in general, involves distinct, successive steps. Furthermore, each of these steps can be modulated by MAPKs leading, sometimes, to opposite effects. Probably because of this complexity, most of the tools used for these studies have found their limitations. With regard to small molecule inhibitors of protein kinases, inhibitors of a given pathway differ widely in their inhibitory potency and specificity . Whereas targeted gene disruption in animals may unveil important biological functions, they also have limits, especially when the knockout is lethal during early embryogenesis. Recently, the study of ES cells bearing disrupted MAPK genes revealed that no role could been assigned to these pathways in undifferentiated ES cells, as MAPK pathways are apparently dispensable for ES cell self-renewal and cell cycle (see below). By contrast, new biological functions can be attributed to these proteins in the modulation of ES cell lineage commitment, which is the subject of the subsequent sections of this review.
0 O8 B& @8 q+ B, ?' t6 ?' j: T/ n
" w+ M& H) K" rTHE ERK PATHWAY* d+ z  a4 M, }
! ^4 }: ]2 Y* \& y
Engagement of the gp130 cytokine receptor subunit by the LIF generates two intracellular signaling pathways: on one hand, the Janus tyrosine kinase-signal transducer and activator of transcription (STAT)3 pathway, which is required for ES self-renewal, and, on the other hand, the ERK pathway. Surprisingly and in contrast with most cultured cell lines, undifferentiated ES cells do not require the ERK pathway for normal cell cycle, proliferation, and self-renewal .4 V/ g4 _! @$ Y8 `1 |- ~, l6 A2 x/ m

) q2 l9 E' r; ~. }) t  rThe dominant role of the ERK pathway becomes apparent upon differentiation, both in vivo and in vitro. Interfering with the ERK signaling pathway, for example by knockout of the upstream activator Grb2, leads to inhibition of primitive endoderm . To gain genetic evidence of the role of ERK1 in adipocyte differentiation of ES cells and to analyze its function in other cell lineages, it would be of interest to generate and test the differentiation capacities of ERK1¨C/¨C ES cells.
6 O4 E. l  S. o: M# r3 [/ V/ k
4 h$ u  a* Y4 ^. y$ _# J4 \) GInterestingly, although ERK1¨C/¨C mice are viable and fertile . These findings confirm the direct role of the ERK pathway early during the embryonic development. Furthermore, they demonstrate that ERK1 and ERK2 have distinct biological functions. Although, as expected, ERK2 disruption does not interfere with proliferation of undifferentiated ES cells, no apparent mesoderm-derived lineages can be observed upon ES commitment (B. Bin¨¦truy and F. Bost, personal observation), suggesting that ERK2 is necessary at an early step of ES cell commitment. Since ERK1¨C/¨C mice present normal mesoderm differentiation (except for adipocyte formation), it is likely that the defect of ERK2¨C/¨C ES cells in mesoderm commitment takes place earlier than the defective adipogenesis of ERK1¨C/¨C cells.9 v- N$ n2 k1 M4 w$ B: @6 c
; H5 s- F0 ?2 t+ p
Many defined ERK substrates are transcriptional regulators (reviewed in .3 g0 X9 L4 M& A; }' b
; y1 i- \8 Z+ m; [* |' |1 q& X: \! f
THE P38MAPK PATHWAY$ x' a4 i  ~2 B; K" R5 T
6 k+ W* e, o  v: M: K
Among the four p38MAPK isoforms, , ¦Â, , and , only the knockout of p38 is embryonic lethal .3 b* w! W3 Z: G5 t+ K& K/ E1 A

) A# V/ ^/ b$ w7 z7 x; BInterestingly, RA treatment inhibited both the first peak of p38MAPK activation and the in vitro formation of cardiomyocytes. Therefore, it is likely that RA blocks cardiomyogenesis in ES cells via p38MAPK inhibition. Few studies have shown that RA modulates MAPK activity; however, a recent report demonstrated that RA inhibits cyclic stretch induced activity in neonatal cardiomyocytes via MAPK inhibition .
) J1 Z2 M* N! k+ U
. l  g) |9 X2 _) M! rIn PC12 and P19 cell lines, p38MAPK activation is required for neurite formation and neuron survival during late stages of differentiation .
* d. t! M0 Q& n  ]# X; @8 j! ^9 T0 f1 f
Altogether, these results suggest that p38MAPK may exert different roles depending on the stage of neuronal differentiation: inhibitory during cell commitment and antiapoptotic during the late stages of differentiation. It is very likely that the molecular mechanisms underlying these distinct functions are different, and their identification should be of a great interest for the development of ES cells in therapeutic applications.: D/ _5 V2 L) E8 m# ]( _
  |8 e9 e- B! w7 M) i
THE JNK PATHWAY% j' O* |5 W3 p3 }# `

. H. G1 t8 j+ B- w& f1 U: b# p6 cWhereas single knockout of individual JNK genes has no effect on mice, jnk1¨C/¨Cjnk2¨C/¨C mice undergo midgestational embryonic lethality associated with defects in neural tube closure and deregulated neural apoptosis . Thus, these studies support a model where JNK1 activity represses a Wnt-4/Wnt-6 and BMP4 signaling axis that would otherwise direct the cells toward an epithelial lineage.* D  q! e" y) Y7 f6 k- U
7 V: z" X/ ]# a5 U$ ]9 ^5 J+ g
The earliest two extraembryonic cell lineages are the trophectoderm and the primitive endoderm, which will form the placenta and yolk sac, respectively. Following implantation of early mammalian embryos, primitive endoderm differentiates to visceral endoderm and parietal endoderm; these tissues reside on the periphery of embryoid bodies formed in vitro by ES cells and embryonal carcinoma cells. Several groups have used P19 cells to unveil the requirement of a JNK signaling pathway in the retinoic acid-stimulated differentiation of these cells to primitive endoderm lineages  demonstrated that the G13-interacting JNK pathway scaffold protein, JNK-interacting leucine zipper protein, is markedly induced by retinoic acid in P19 cells. Thus, a key regulatory step in retinoic acid-stimulated primitive endoderm differentiation appears to be the increased expression of a specific scaffold protein to assemble a G13-stimulated JNK module.' K' y0 h3 ?! `6 p1 ~' X+ V8 b  l9 I
& w7 q) `% ~- J5 Y4 m
CONCLUSIONS AND PERSPECTIVE
% u- [7 @7 v, j  @% h" O& V7 }
MAPK pathways are able to regulate both the early embryonic development and the ES cell commitment from early steps of the process to mature differentiated cells (the various effects are summarized in Fig. 2). The ERK pathway is mainly involved in mesoderm differentiation, especially in adipogenesis, with both positive and negative effects. p38MAPK displays a large spectrum of action from neurons to adipocytes, and JNK is involved in both ectoderm and primitive endoderm differentiations. Furthermore, for a given pathway, these effects are isoform-dependent, revealing the complexity of the cellular response to activation of these pathways. Notably, several lineages tested are affected by more than one transduction pathway. Adipogenesis is controlled by both ERK and p38MAPK, and neurogenesis is controlled by both p38MAPK and JNK. These observations are reminiscent of our recent studies in PC12 pheochromocytoma cells, indicating that complex differentiation programs such as neurogenesis will involve the integration of multiple signal pathways . Thus, it is equally likely that distinct ES cell lineage commitment programs will be regulated through the integrated action of two or more MAPK families. Cross talks between MAPK pathways can be either synergistic-ERK/JNK in neural differentiation of PC12¨C or antagonistic-p38MAPK/ERK in adipocyte differentiation of ES cells. Yet, taking advantage of the availability of the various MAPK-disrupted ES cell lines, the role of MAPKs in differentiation of numerous other cell types needs to be investigated.) Z- F+ y' }9 X. G4 [* h6 M
' o' ]! h& |  H7 F( _! W$ R
Figure 2. Proposed model for the in vivo and in vitro mitogen-activated protein kinase effects on development (in italics) and embryonic stem cell differentiation. This model is deducted from the literature (see text). Abbreviations: ERK, extracellular signal-regulated kinase; JNK, c-Jun amino-terminal kinase.2 P0 ^3 }3 s& Z

1 [. @9 G$ u/ SAlthough the precise molecular mechanisms underlying the various MAPK functions in ES cell commitment are unknown, they must eventually lead to activation of cell lineage-specific genetic programs. Recently, important features of regulation of gene expression in ES cells have been unveiled. In undifferentiated mouse and human ES cells, the transcriptional repressors polycomb group proteins (PcG) repress numerous developmental regulators that, once derepressed, are able to trigger ES cells to undergo differentiation . Yet, we do not know whether this regulation is related to the biological role of MAPKs in ES cell commitment.
; _0 |+ B/ P! F& w! G0 G, P6 A1 W; m- B5 e& p+ j; r% V% \) D
Dominant signal pathways that control ES cell lineage commitment in vitro do not always translate to critical roles for these MAPK pathways unveiled with gene knockout approaches during mouse development. As an example, JNK1-deficient ES cells fail to undergo neurogenesis . In conclusion, despite the fact that not all ES cell findings may directly translate to dominant mechanisms of cell fate specification during development, they provide a highly valuable foundation of knowledge as tissue propagation from ES cells emerges as a discipline distinct from developmental biology.. S+ I  c+ @; E( W/ D9 ]- P) Q

# j" S) m# g* i$ [# HDISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST
3 `* p. [. s( R8 ^% F6 w: H6 a9 p; @4 p2 c$ I4 S
The authors indicate no potential conflicts of interest.
: i* P5 o; {/ D: R; c3 n0 L0 l" w
ACKNOWLEDGMENTS) I# c4 _6 u' L  O! \5 ]  L6 J: c

8 R: y% A1 D1 c, C) Z' ]' vWe thank F. Peiretti for critical reading of the manuscript. L.C. and M.A. were supported by fellowships from Institut National de la Sante et de la Recherche M¨¦dicale-Provence Alpes Cote d'Azur.
2 e: O: |/ v# R8 \# n: ?3 ]          【参考文献】* a( O! k; u! r& A; \; @7 ?
% ?2 l' Q& ?; z% {
0 f0 I: y' t) `" i1 M0 h( U+ o
Wobus AM, Boheler KR. Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiol Rev 2005;85:635¨C678.. V# }# w+ |: s& p

5 |4 w5 X7 E4 D; wKeller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005;19:1129¨C1155.) r" g9 i* Z% E% G, b  }2 c

- ?) H5 \( \- v) KSmith AG, Heath JK, Donaldson DD et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 1988;336:688¨C690.
# A7 E2 Y  y4 o$ E, U0 x% o! D, j# M1 i1 j. M' Q9 r
Williams RL, Hilton DJ, Pease S et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 1988;336:684¨C687.$ U' _  z% @1 }& `. ~
+ d% O; i* d/ B, V$ x% B& I4 o
Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 2004;23:7150¨C7160.. u" |5 ?* z3 z) Z  Z- ^
7 y3 x: a- T6 f& {1 R9 |
Wobus AM. Potential of embryonic stem cells. Mol Aspects Med 2001;22:149¨C164.! r0 s1 D5 ^0 t0 F7 O  C/ L

* @/ p' E% M* A9 s. ~4 RMunoz-Sanjuan I, Brivanlou AH. Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 2002;3:271¨C280.3 h* b  C$ V! q) N( X3 m
+ P. E1 Q/ e: ~' z! A7 R* r
Amura CR, Marek L, Winn RA et al. Inhibited neurogenesis in JNK1-deficient embryonic stem cells. Mol Cell Biol 2005;25:10791¨C10802.
6 O& t* S# J/ N: z# y
' _! m. m! Q$ {. G# ARohwedel J, Guan K, Wobus AM. Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 1999;165:190¨C202.% T; f0 @9 p5 r9 z% l, x* a

7 Z2 H) M% y% ]1 `# v) LYing Q-L, Stavridis M, Griffiths D et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003;21:183¨C186.6 f% t: d6 k+ r% }- e

% l4 S; \& P  W* r: F" sAouadi M, Bost F, Caron L et al. p38 mitogen-activated protein kinase activity commits embryonic stem cells to either neurogenesis or cardiomyogenesis. STEM CELLS 2006;24:1399¨C1406.
6 E; q. s2 N: h. X* y  t. G6 n% A& C
Pearson G, Robinson F, Beers Gibson T et al. Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocr Rev 2001;22:153¨C183.& S7 j3 `6 l; t

' L- ^. K$ Q- M9 X& R$ zRoux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004;68:320¨C344.
. k1 O. O- }5 y# O/ M( |8 D; D6 g2 Q1 d2 M
Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001;81:807¨C869./ U/ |0 R, X0 P( O" g
* ]2 ]: Z$ \2 _; A
Torii S, Yamamoto T, Tsuchiya Y et al. ERK MAP kinase in G cell cycle progression and cancer. Cancer Sci 2006;97:697¨C702.9 c9 u0 d3 B! S6 w) v/ R

8 u& d9 @- `: r! B# w" L8 }7 ?Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res 2005;15:11¨C18.
' n4 h9 n- F0 C# T8 ]; t6 k3 Z
3 S7 p$ T7 a7 O, b# DPapa S, Bubici C, Zazzeroni F et al. The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ 2006;13:712¨C729.. J& J0 k/ K% D! p

. H) ^+ Y1 m$ x. b2 \* {Bain J, McLauchlan H, Elliott M et al. The specificities of protein kinase inhibitors: An update. Biochem J 2003;371:199¨C204.( D. x6 N" a- O8 u" w
& T2 i* k2 @: X, a# H" n1 D
Aouadi M, Bin¨¦truy B, Caron L et al. Role of MAPKs in development and differentiation: Lessons from knockout mice. Biochimie 2006;88:1091¨C1098.1 ]+ Y+ L1 `- {0 {# |

1 v' e1 I* O  \$ w' }5 X5 vNiwa H, Burdon T, Chambers I et al. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 1998;12:2048¨C2060.6 M3 }4 a4 B" U* F
3 f- Q. K3 A! N8 N8 v! q
Burdon T, Chambers I, Stracey C et al. Signaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cells. Cells Tissues Organs 1999;165:131¨C143.
) G- i( L  `& P$ X/ o) C
8 B: b/ t7 i; Y5 T, j0 i/ I1 EBurdon T, Smith A, Savatier P. Signalling, cell cycle and pluripotency in embryonic stem cells. Trends Cell Biol 2002;12:432¨C438.
' L' L- E% ^' k: ]; X7 q( [' o& Y
James RM, Arends MJ, Plowman SJ et al. K-ras proto-oncogene exhibits tumor suppressor activity as its absence promotes tumorigenesis in murine teratomas. Mol Cancer Res 2003;1:820¨C825.
8 c3 Z8 \& b, q  S( S" O7 I& I5 a+ n& ^- j
Burdon T, Stracey C, Chambers I et al. Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol 1999;210:30¨C43.
. h- O+ |: K' u: e: Y0 |! f) A/ z+ K+ }8 t) `
Cheng AM, Saxton TM, Sakai R et al. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell 1998;95:793¨C803.
2 z/ L# n7 o% V+ U" t
5 ^- b8 |2 y7 GChazaud C, Yamanaka Y, Pawson T et al. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Developmental Cell 2006;10:615¨C624.; L0 i7 b4 q9 l, O, m

# B+ P' w# `7 b; j/ k; ^Yang W, Klaman LD, Chen B et al. An Shp2/SFK/Ras/Erk signaling pathway controls trophoblast stem cell survival. Developmental Cell 2006;10:317¨C327.
! R- l/ l. k( Z& w- W: N
$ a  x; h2 ]( H7 [7 `) ]9 [Yoshida-Koide U, Matsuda T, Saikawa K et al. Involvement of Ras in extraembryonic endoderm differentiation of embryonic stem cells. Biochemical and Biophysical Research Communications 2004;313:475¨C481.( |6 Z# S, h$ J0 v, [3 Z

; z) l$ E# \7 d& k" O% f) i7 XBost F, Caron L, Marchetti I et al. Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J 2002;361:621¨C627.' y/ k0 s, E2 D! N; Q9 B8 h
* i0 v) L/ D) A3 m1 j5 _( O
Bost F, Aouadi M, Caron L et al. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 2005;87:51¨C56.! K6 L+ |0 v" N; W8 g

2 V: F$ Z1 D+ g: B! _Pages G, Guerin S, Grall D et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 1999;286:1374¨C1377.% P! H/ q" }7 H
/ C1 r" S( @1 y. L( V6 k
Saba-El-Leil MK, Vella FD, Vernay B et al. An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep 2003;4:964¨C968.
7 I. d! d4 \  P( n# ]
8 z& J% e" a% N+ o3 d2 e8 `4 s8 M2 NYao Y, Li W, Wu J et al. Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc Natl Acad Sci U S A 2003;100:12759¨C12764.& A4 |* ^1 H* ~; a( u' E6 i
+ t2 J2 t0 V6 u) Q1 g
Yang SH, Sharrocks AD, Whitmarsh AJ. Transcriptional regulation by the MAP kinase signaling cascades. Gene 2003;320:3¨C21.
( n# b- f& b/ |4 y& O  b2 n. E2 ]$ d+ K( J! k) O. ?' g
Hu E, Kim JB, Sarraf P et al. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 1996;274:2100¨C2103.. Q6 E7 g2 @+ f; |5 E
* S  t7 u% \% Y
Camp HS, Tafuri SR. Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem 1997;272:10811¨C10816.
2 W: A0 j3 J: G" w3 G# l4 B0 m! R; p8 k1 s6 D1 B, U6 q
Sakaue H, Ogawa W, Nakamura T et al. Role of MAPK phosphatase-1 (MKP-1) in adipocyte differentiation. J Biol Chem 2004;279:39951¨C39957.. k& \7 |; x' _

  U; `- l" s7 B) B* Y  NTamura K, Sudo T, Senftleben U et al. Requirement for p38alpha in erythropoietin expression: A role for stress kinases in erythropoiesis. Cell 2000;102:221¨C231., _) |, C+ |# F9 i

/ r# ^1 x% o" y: t" K; x  Bde Angelis L, Zhao J, Andreucci JJ et al. Regulation of vertebrate myotome development by the p38 MAP kinase-MEF2 signaling pathway. Developmental Biology 2005;283:171¨C179.& ]6 G4 b# t* w* A+ q% H, _
, [, X+ l! [+ O5 {2 R
Allen M, Svensson L, Roach M et al. Deficiency of the stress kinase p38alpha results in embryonic lethality: Characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J Exp Med 2000;191:859¨C870.# M5 M% R$ [- ]; y) D% x
9 t9 J: J, F. M  ^, s2 O) o
Duval D, Malaise M, Reinhardt B et al. A p38 inhibitor allows to dissociate differentiation and apoptotic processes triggered upon LIF withdrawal in mouse embryonic stem cells. Cell Death Differ 2004;11:331¨C341.& Q  I; A! y( I, c: m9 N2 o

) w* q2 u( D/ w. x2 F( F! HAouadi M, Laurent K, Prot M et al. Inhibition of p38MAPK increases adipogenesis from embryonic to adult stages. Diabetes 2006;55:281¨C289.) R# h3 u5 U. A& G: I6 h
$ @$ z  S: y2 m8 a$ p
Palm-Leis A, Singh US, Herbelin BS et al. Mitogen-activated protein kinases and mitogen-activated protein kinase phosphatases mediate the inhibitory effects of all-trans retinoic acid on the hypertrophic growth of cardiomyocytes. J Biol Chem 2004;279:54905¨C54917.% y+ D& c  t/ ]2 s: u* z
0 K, q6 R$ P# f) H9 X1 I" x
Forte G, Minieri M, Cossa P et al. Hepatocyte growth factor effects on mesenchymal stem cells: Proliferation, migration, and differentiation. STEM CELLS 2006;24:23¨C33.
) H. c8 ?; N) {+ n  [8 X3 S5 j( r1 `- ^) H( m/ ?7 T
Yang S-H, Galanis A, Sharrocks AD. Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol 1999;19:4028¨C4038.  a4 ~; J# ?. P% Y7 _# l3 E! R

6 B% m- a6 N  W2 X" D. pZetser A, Gredinger E, Bengal E. p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J Biol Chem 1999;274:5193¨C5200.$ A' k% K- G3 a9 R9 u& }

6 J: [" a$ [% e& a5 O! X& cZhao M, New L, Kravchenko VV et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 1999;19:21¨C30.
/ d0 L4 [! [& o, @3 T) O- X% c3 ?6 `: Q
Zheng M, Reynolds C, Jo S-H et al. Intracellular acidosis-activated p38 MAPK signaling and its essential role in cardiomyocyte hypoxic injury. FASEB J 2005;19:109¨C111.
, Y8 u8 Q. H' u5 X+ h3 a3 K) Q" m" d* r/ o! W' H
Davidson SM, Morange M. Hsp25 and the p38 MAPK pathway are involved in differentiation of cardiomyocytes. Dev Biol 2000;218:146¨C160.
" ]% L8 W6 }, l+ k! b% q  v) f: ^( J$ a. n$ j
Eriksson M, Leppa S. Mitogen-activated protein kinases and activator protein 1 are required for proliferation and cardiomyocyte differentiation of P19 embryonal carcinoma cells. J Biol Chem 2002;277:15992¨C16001.
' m5 ^. q  Z0 a0 V, Z" e8 s1 g8 P. H7 z* I) [' K% A1 O
Adams RH, Porras A, Alonso G et al. Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 2000;6:109¨C116.4 T- Z# L8 J7 e- E5 J2 F/ d* C

$ M# N2 E& ?& V8 s+ U# K/ z: lTakeda K, Ichijo H. Neuronal p38 MAPK signalling: An emerging regulator of cell fate and function in the nervous system. Genes Cells 2002;7:1099¨C1111.& d, V( B* C6 Z, i1 H8 z
/ e- |' F! h$ [, f, m5 c
Okamoto S-i, Krainc D, Sherman K et al. Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. PNAS 2000;97:7561¨C7566.
' G1 [7 d* G6 A1 i+ r, m" }& l9 @  \- @7 C% Z/ x
Vaudry D, Stork PJ, Lazarovici P et al. Signaling pathways for PC12 cell differentiation: Making the right connections. Science 2002;296:1648¨C1649.: Q4 b* n/ S- z) c5 C8 {2 Z" K+ ]
/ g* c0 H+ [4 B0 O. A" e: w
McBurney MW. P19 embryonal carcinoma cells. Int J Dev Biol 1993;37:135¨C140.: `) B% S: B* Q& `0 H

" o4 |" }0 J  }$ B/ z$ USkerjanc IS. Cardiac and skeletal muscle development in P19 embryonal carcinoma cells. Trends Cardiovasc Med 1999;9:139¨C143.
0 {8 J, j) M4 T" `& m3 |
9 d: }/ o; b' eKuan C-Y, Yang DD, Roy DRS et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 1999;22:667¨C676.
1 f( |% ~& i. P. |/ H
2 e8 Q8 ^5 X7 F& G7 m8 j- {Sabapathy K, Jochum W, Hochedlinger K et al. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mechanisms of Development 1999;89:115¨C124.
6 Q. L9 X) R  s2 K0 z! e& o8 f2 J! Y& }) O
Hirosumi J, Tuncman G, Chang L et al. A central role for JNK in obesity and insulin resistance. Nature 2002;420:333¨C336.' A  A0 s& \# i$ f6 I

% O/ u+ E' `2 s. GAubert J, Dunstan H, Chambers I et al. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol 2002;20:1240¨C1245.
: a' O* k: N* t8 _& u/ y  V$ R  l# H
Haegele L, Ingold B, Naumann H et al. Wnt signalling inhibits neural differentiation of embryonic stem cells by controlling bone morphogenetic protein expression. Mol Cell Neurosci 2003;24:696¨C708.! ?; r4 ^- t$ X! r4 w
2 M3 I+ Y0 s# ]0 g
Xu P, Yoshioka K, Yoshimura D et al. In vitro development of mouse embryonic stem cells lacking JNK/stress-activated protein kinase-associated protein 1 (JSAP1) scaffold protein revealed its requirement during early embryonic neurogenesis. J Biol Chem 2003;278:48422¨C48433.4 ^# l3 U; N( n/ @2 k0 a

$ v! V9 _3 n1 {' y/ s4 qJho EH, Davis RJ, Malbon CC. c-Jun amino-terminal kinase is regulated by Galpha12/Galpha13 and obligate for differentiation of P19 embryonal carcinoma cells by retinoic acid. J Biol Chem 1997;272:24468¨C24474.
8 o! V0 I# |& n& S2 }
% z$ D+ B$ g" _2 m0 ELee YN, Malbon CC, Wang HY. G alpha 13 signals via p115RhoGEF cascades regulating JNK1 and primitive endoderm formation. J Biol Chem 2004;279:54896¨C54904.
$ b5 q, }: \) s- a# y
1 J% C5 W9 Z3 [7 eKashef K, Xu H, Reddy EP et al. Endodermal differentiation of murine embryonic carcinoma cells by retinoic acid requires JLP, a JNK-scaffolding protein. J Cell Biochem 2006;98:715¨C722.& V# @, A$ O9 ~5 Q1 e6 v

" Z6 R+ r) g; N4 MMarek L, Levresse V, Amura C et al. Multiple signaling conduits regulate global differentiation-specific gene expression in PC12 cells. J Cell Physiol 2004;201:459¨C469.
1 X4 D6 p, t) }" h4 {" x
. f6 L5 v6 ?! V) a/ @Bernstein BE, Mikkelsen TS, Xie X et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006;125:315¨C326.
/ C7 l. v9 r8 P2 E) E3 b) c% p) }# }$ K* q- {3 J: O
Boyer LA, Plath K, Zeitlinger J et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006;441:349¨C353.0 V- e' h/ V( V9 d
) q. v: `& a# o$ b+ C
Lee TI, Jenner RG, Boyer LA et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 2006;125:301¨C313.. \$ O) v: m8 o0 T9 {# m

0 \! z8 d1 p6 f( J+ d: ]) wLee ER, McCool KW, Murdoch FE et al. Dynamic changes in histone H3 phosphoacetylation during early embryonic stem cell differentiation are directly mediated by mitogen- and stress-activated protein kinase 1 via activation of MAPK pathways. J Biol Chem 2006;281:21162¨C21172., {% T& ^4 {3 R& Y

$ Q+ H8 Y( B8 ~* k5 N2 T5 |# hArmstrong L, Hughes O, Yung S et al. The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet 2006;15:1894¨C1913.
作者: yukun    时间: 2015-5-28 12:46

老大,我好崇拜你哟  
作者: bluesuns    时间: 2015-6-6 10:35

好人一个  
作者: 泡泡鱼    时间: 2015-7-3 17:42

不错不错.,..我喜欢  
作者: 泡泡鱼    时间: 2015-7-13 10:54

厉害!强~~~~没的说了!  
作者: nauticus    时间: 2015-7-15 15:43

回答了那么多,没有加分了,郁闷。。  
作者: 张佳    时间: 2015-7-16 10:14

干细胞美容
作者: 科研人    时间: 2015-8-13 16:54

造血干细胞
作者: bluesuns    时间: 2015-9-1 20:43

希望大家帮我把这个帖发给你身边的人,谢谢!  
作者: txxxtyq    时间: 2015-9-3 21:05

我起来了 哈哈 刚才迷了会  
作者: marysyq    时间: 2015-9-7 16:35

不要等到人人都说你丑时才发现自己真的丑。  
作者: s06806    时间: 2015-10-4 12:50

厉害!强~~~~没的说了!  
作者: 舒思    时间: 2015-11-28 17:27

干细胞与动物克隆
作者: aakkaa    时间: 2015-12-8 13:16

貌似我真的很笨????哎  
作者: foxok    时间: 2016-1-5 18:18

ding   支持  
作者: 橙味绿茶    时间: 2016-1-11 15:59

问渠哪得清如许,为有源头活水来。  
作者: IPS干细胞    时间: 2016-2-20 09:27

留个脚印```````  
作者: tian2006    时间: 2016-3-4 10:10

小生对楼主之仰慕如滔滔江水连绵不绝,海枯石烂,天崩地裂,永不变心.  
作者: Greatjob    时间: 2016-3-25 15:16

你还想说什么啊....  
作者: ines    时间: 2016-4-2 13:17

楼上的稍等啦  
作者: 旅美学者    时间: 2016-4-4 20:37

设置阅读啊  
作者: 小小C    时间: 2016-5-5 09:54

我该不会是最后一个顶的吧  
作者: 温暖暖    时间: 2016-5-21 22:35

貌似我真的很笨????哎  
作者: 蝶澈    时间: 2016-7-14 13:54

羊水干细胞
作者: aakkaa    时间: 2016-7-19 11:10

设置阅读啊  
作者: xiao2014    时间: 2016-8-1 17:42

青春就像卫生纸。看着挺多的,用着用着就不够了。  
作者: abc987    时间: 2016-8-8 07:20

ips是诱导多能干细胞induced pluripotent stem cells iPS
作者: 咖啡功夫猫    时间: 2016-9-15 16:52

ding   支持  
作者: 命运的宠儿    时间: 2016-9-22 08:18

小生对楼主之仰慕如滔滔江水连绵不绝,海枯石烂,天崩地裂,永不变心.  
作者: dmof    时间: 2016-10-29 20:22

好 好帖 很好帖 确实好帖 少见的好帖  
作者: feixue66    时间: 2016-11-18 11:02

我是来收集资料滴...  
作者: highlight    时间: 2016-12-6 23:43

谢谢分享了!  
作者: 123456zsz    时间: 2016-12-8 09:35

回复一下  
作者: 我学故我思    时间: 2016-12-13 20:07

佩服佩服啊.  
作者: xiaomage    时间: 2017-1-13 15:34

淋巴细胞
作者: txxxtyq    时间: 2017-1-15 17:26

说的不错  
作者: 修复者    时间: 2017-1-16 18:05

呵呵 那就好好玩吧~~~~  
作者: happyboy    时间: 2017-1-25 04:53

皮肤干细胞
作者: 求索迷茫    时间: 2017-1-26 21:09

青春就像卫生纸。看着挺多的,用着用着就不够了。  
作者: nosoho    时间: 2017-2-21 01:50

进行溜达一下  
作者: 初夏洒脱    时间: 2017-3-9 14:34

一楼的位置好啊..  
作者: biopxl    时间: 2017-3-15 08:35

回复一下  
作者: 温暖暖    时间: 2017-3-26 05:04

昨晚多几分钟的准备,今天少几小时的麻烦。  
作者: dypnr    时间: 2017-4-10 05:41

强人,佩服死了。呵呵,不错啊  
作者: doors    时间: 2017-4-16 21:53

顶一个先  
作者: 与你同行    时间: 2017-4-28 23:35

看贴回复是好习惯  
作者: happyboy    时间: 2017-5-8 00:56

干细胞行业门户 干细胞之家
作者: 榴榴莲    时间: 2017-5-18 15:18

顶顶更健康,越顶吃的越香。  
作者: Diary    时间: 2017-5-27 09:54

是楼主原创吗  
作者: marysyq    时间: 2017-6-8 16:41

站个位在说  
作者: haha3245    时间: 2017-6-8 23:33

干细胞研究重在基础
作者: 多来咪    时间: 2017-6-20 18:52

好帖子,要顶!
作者: 123456zsz    时间: 2017-6-21 05:02

长时间没来看了 ~~  
作者: 化药所    时间: 2017-6-22 11:27

呵呵,支持一下哈  
作者: dypnr    时间: 2017-6-27 20:35

看看..  
作者: laoli1999    时间: 2017-7-14 02:49

呵呵 那就好好玩吧~~~~  
作者: dada    时间: 2017-8-1 11:35

支持一下吧  
作者: 心仪    时间: 2017-8-18 10:27

顶也~  
作者: ines    时间: 2017-9-5 20:56

呵呵,找个机会...  
作者: 小小C    时间: 2017-9-14 11:36

我顶啊。接着顶  
作者: 蝶澈    时间: 2017-9-14 18:54

脂肪干细胞
作者: happyboy    时间: 2017-10-1 23:02

这年头,分不好赚啊  
作者: 化药所    时间: 2017-10-16 17:28

谢谢干细胞之家提供资料
作者: lalala    时间: 2017-10-24 14:13

看贴回复是好习惯  
作者: 多来咪    时间: 2017-11-10 11:25

希望大家帮我把这个帖发给你身边的人,谢谢!  
作者: 咖啡功夫猫    时间: 2017-12-22 14:00

支持一下吧  
作者: marysyq    时间: 2017-12-26 15:00

干细胞研究人员的天堂
作者: 三好学生    时间: 2018-1-15 10:43

我毫不犹豫地把楼主的这个帖子收藏了  
作者: xiaomage    时间: 2018-2-5 03:10

顶你一下.  
作者: 狂奔的蜗牛    时间: 2018-2-28 15:35

这贴子你会收藏吗  
作者: 化药所    时间: 2018-3-16 03:30

似曾相识的感觉  
作者: Whole    时间: 2018-4-13 14:01

我帮你 喝喝  
作者: cjms    时间: 2018-4-14 11:17

其实回帖算是一种没德德,所以我快成圣人了  
作者: popobird    时间: 2018-4-29 03:45

我等你哟!  
作者: 安安    时间: 2018-5-23 13:28

(*^__^*) 嘻嘻……   
作者: Whole    时间: 2018-5-31 07:52

支持你一下下。。  
作者: txxxtyq    时间: 2018-6-3 02:50

不错 不错  比我强多了  
作者: dypnr    时间: 2018-6-3 13:27

楼主good  
作者: 生物小菜鸟    时间: 2018-6-4 13:18

努力,努力,再努力!!!!!!!!!!!  
作者: 苹果天堂    时间: 2018-6-7 20:41

我帮你 喝喝  
作者: Greatjob    时间: 2018-6-15 23:45

免疫细胞疗法治疗肿瘤有效  
作者: 与你同行    时间: 2018-6-17 15:45

免疫细胞治疗  
作者: leeking    时间: 2018-6-27 21:40

我卷了~~~~~~~  
作者: 昕昕    时间: 2018-7-4 15:53

既然来了,就留个脚印  
作者: foxok    时间: 2018-8-10 19:49

希望大家都有好运  
作者: 一个平凡人    时间: 2018-8-21 03:37

每天早上起床都要看一遍“福布斯”富翁排行榜,如果上面没有我的名字,我就去上班……  
作者: 蝶澈    时间: 2018-9-5 08:54

今天临床的资料更新很多呀
作者: 我学故我思    时间: 2018-9-14 23:12

只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。  
作者: 追风    时间: 2018-9-18 02:17

怎么就没人拜我为偶像那?? ~  
作者: biopxl    时间: 2018-9-19 12:11

肌源性干细胞
作者: kaikai    时间: 2018-9-26 09:19

谢谢分享了!   
作者: 天蓝色    时间: 2018-10-9 16:11

我好想升级  
作者: nosoho    时间: 2018-10-23 13:25

来几句吧  
作者: 科研人    时间: 2018-10-23 17:35

心脏干细胞
作者: 某某人    时间: 2018-11-5 18:27

不错啊! 一个字牛啊!  
作者: pcr    时间: 2018-11-12 01:58

不错,支持下  
作者: lab2010    时间: 2018-12-12 16:40

努力~~各位。。。  
作者: htc728    时间: 2019-1-2 02:53

这样的贴子,不顶说不过去啊  
作者: frogsays    时间: 2019-1-8 17:23

不错不错.,..我喜欢  
作者: happyboy    时间: 2019-1-11 20:18

每天早上起床都要看一遍“福布斯”富翁排行榜,如果上面没有我的名字,我就去上班……  




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5