干细胞之家 - 中国干细胞行业门户第一站

标题: Retroviral Integration Sites Correlate with Expressed Genes in Hematopoietic Ste [打印本页]

作者: 江边孤钓    时间: 2009-3-5 10:48     标题: Retroviral Integration Sites Correlate with Expressed Genes in Hematopoietic Ste

a Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany;& A3 e8 X0 Q3 j7 P) ^) }

$ z6 h0 Q4 Z! y5 K) K; `b German Cancer Research Center (DKFZ), Heidelberg, Germany;
$ ^3 ^' z* D: `( O6 R# d& m
4 y6 f# m6 H5 }3 ~! Uc Biochemical Instrumentation Programme, European Molecular Biology Laboratory, Heidelberg, Germany;  H. T9 O' y7 {1 y
1 u2 R1 v8 ~" F5 H) j/ Z" D
d Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
% y1 W  q  k# e+ w/ e) A/ h( }" v" c+ d
Key Words. Hematopoietic stem cell ? Microarray ? Retroviral vector integration ? CD34  ? Gene expression ? Gene targeting1 X5 H1 k5 m* A

/ Z7 d  u* }& ]# ^+ ?5 A5 A, l4 OCorrespondence: Anthony D. Ho, M.D., Ph.D., Department of Internal Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany. Telephone: 49-6221-568001; Fax: 49-6221-565813; e-mail: anthony_dick.ho@urz.uni-heidelberg.de
2 t) n3 b; j, s4 a# Q
5 Y2 I# t% }% A& R) lABSTRACT
" P* Q6 t" o8 E5 g4 C! b" V
; @: H0 ]0 ]' kThe molecular characteristics of hematopoietic stem cells (HSCs) are still largely unknown . Many authors have demonstrated that the CD34 /CD38– cells were highly enriched in stem cells whereas the CD34 /CD38  subset represents more committed progenitors . We have demonstrated that division kinetics can be exploited as another parameter to further enrich HSCs. Asymmetric cell division and multipotency are found in the quiescent or slow dividing fraction of CD34 /CD38– cells (SDF) and not in the fast dividing fraction (FDF) . Whereas immunophenotype, division kinetics, and colony assays such as long-term culture-initiating cells or multilineage-initiating cells all represent surrogate markers for primitive hematopoietic cells, the engraftment capacity is an additional feature of this cell population.
2 E; u6 G) D" v% J6 s
! [8 _1 W) \: s& C3 z# l# AVarious studies have determined genome-wide gene expression profiles of HSCs, but these efforts are limited by the heterogeneity of populations using the available methods for enrichment . We have recently analyzed differential gene expression between CD34 /CD38– versus CD34 /CD38  cells as well as between the SDF versus FDF within the CD34 /CD38– population . The gene expression profiles of the SDF provided further evidence for their primitive function . Combination with different published microarray datasets revealed that several candidate genes, including hoxa9, fzd6, mdr1, and jak3, are highly expressed in different murine and human stem cell fractions . Whereas these overlapping genes shed some light on the biology of the stem cell population, it would be desirable to establish a straightforward approach to highlight genes that are initially expressed in the small subset of HSCs. Integrations of retroviruses that have been used as vectors for gene delivery in different experimental studies and clinical trials may be suitable for this attempt. Other authors have reported that retroviral vector integration in primitive marrow repopulating cells occurred preferentially in actively transcribed genes in murine and nonhuman primate models . After reverse transcription (RT) of viral RNA, this viral DNA is integrated into the host-cell DNA , and several studies have demonstrated that this integration is not random but favors actively transcribed genomic regions . We have described 189 retroviral integration sites in human severe combined immunodeficient (SCID) repopulating cells (SRCs) . Retroviral integration occurred preferably at the start of the transcription unit and in the first intron of genes in repopulating hematopoietic cells . Presuming that viral integration sites reflect actively transcribed genes in repopulating stem cells, this data might facilitate the understanding of gene expression in HSCs. To test this hypothesis, we have combined the microarray data with retroviral vector integration sites in SRCs., \$ H3 X" U7 c! G) O
/ z! }  I4 _8 K
MATERIALS AND METHODS
7 m# h5 n" `: X  m" E
4 U4 W- y. h  a) OWe have previously demonstrated that retroviral integration in repopulating CD34  cells of mobilized peripheral blood is not a random process and that transcriptional start regions of genes were preferred. Thus, retroviral vector integration might occur in genes that are actively transcribed in repopulating hematopoietic cells. To test this hypothesis, we have identified the ESTs on the Human Genome Microarray that correspond to genes targeted by retroviral integration. The differential expression in this set of genes was then analyzed (Fig. 1).3 I& k$ t# N. i" ~. b( t3 w6 U

4 Z* Y$ O5 u/ R9 f) HFigure 1. Combined analysis of retroviral integration sites and microarray data. Human CD34  cells were transduced with retroviral vector supernatant and transplanted into NOD/SCID mice. After 6–8 weeks, the retroviral integration sites were analyzed by ligation-mediated polymerase chain reaction in repopulating cells. Under the presumption that genes with a retroviral integration site were activated in repopulating hematopoietic cells, these results were compared with microarray data. Abbreviations: FDF, fast dividing fraction; HSC, hematopoietic stem cell; NOD/SCID, nonobese diabetic/severe combined immunodeficient; SDF, slow dividing fraction of CD34 /CD38– cells.
( H: E8 L: Y, w2 G+ m, ]+ S
" n% n7 v: k- W5 @Microarray data of two different studies were used: CD34 /CD38– cells versus CD34 /CD38  cells and SDF versus FDF . We have compared normalized signal intensity values and normalized ratios of 51,143 different ESTs of the UnigeneSet RZPD3 that is presented on the microarray with data of two subsets of genes targeted for integration: For the combination of 72 RefSeq genes and 82 Ensembl genes that were targeted by oncoretroviral vector integration in SRCs , we identified 76 genes that were represented by 117 different ESTs on the Human Genome Microarray (Table 1). For the 332 RefSeq genes that were targeted by retroviral integration in HeLa cells , we identified 268 different genes on the Human Genome Microarray represented by 446 different ESTs. In three different genes, retroviral integration sites were observed in both SRCs and HeLa cells (CD109 ; KIF13A ; FYB ).  A* e( H9 Y! r5 Z0 C# d1 X3 o
* e3 ]$ ?; e" ]! d) I3 E
Table 1. Genes with SF91m3-vector integration in SRCs and corresponding microarray data
$ V3 l' z+ M. O; X" e
6 W; l# r! Q& lTo estimate whether integration site selection correlated to transcriptional activity, signal intensity values of corresponding spots on the microarray were analyzed. Signal intensity correlates roughly with abundance of corresponding transcripts. The average signal intensity was determined for those channels that represent CD34 /CD38– cells. Signal intensities of all ESTs of the UnigeneSet RZPD3 represented on the array revealed a median signal intensity of 20,569 (arbitrary units). In 446 spots representing the set of control genes with retroviral integration in HeLa cells, median signal intensity was 31,164. In the subset of 117 spots on the microarray representing ESTs with retroviral integration in SRCs, the median signal intensity was 51,701. One-sided t-test of log10 values of signal intensity demonstrated that signal intensity was significantly higher in genes targeted in SRCs as compared with all ESTs on the array (p = 2.6 x 10–9), as well as in comparison with genes that were targeted in HeLa cells (p = 1.9 x 10–3). Thus, genes with retroviral integration in repopulating hematopoietic cells correlate with transcriptional activity in CD34 /CD38– cells rather than genes with integration in nonhematopoietic HeLa cells (Fig. 2A). Analysis of retroviral integration sites located upstream of a gene revealed that integration occurred preferentially near the transcription start of genes and these insertions also correlate with higher expression data (median signal intensity 39,609; p = 9.6 x 10–3; Fig. 2B).% s$ @+ E" n0 w

6 J( \& z0 I( l8 Q/ mFigure 2. Retroviral integration occurs preferentially in genes that are strongly expressed in CD34 /CD38– cells. Average signal intensity in cDNA spots on the microarray was determined of four cohybridization datasets with CD34 /CD38– cells. (A): Distribution of signal intensity (log10) of all ESTs of the UnigeneSet RZPD3 is demonstrated in the histogram (n = 51,143). By analogy, distribution of signal intensity is presented for the subset of genes with retroviral vector integration sites in HeLa cells (n = 446) and for the subset of genes that were targeted in SRCs (n = 117). Mean signal intensity was significantly higher in the set of genes with integration in SRCs, indicating that integration is favored in actively transcribed genes. (B): Signal intensity of cDNA spots was then analyzed in relation to distance of retroviral integration to transcription start. Retroviral integration occurred preferentially near the transcription start of genes. Signal intensity in microarray data was higher in genes in which integrations occurred in the transcribed region (median signal intensity = 51,701) and in which retroviral integrations were located upstream of the transcription start (distance in base pairs  indicated in negative numbers; median signal intensity = 39,609). The gray dashed line indicates the median signal intensity of 20,569 of all genes on the microarray. Abbreviations: EST, expressed sequence tag; SRC, severe combined immunodeficient repopulating cell.( v4 v. m% k: v8 a: x$ @
) X: H! m  d4 m" K
We subsequently analyzed if retroviral integration in SRCs occurred preferably in genes with a higher differential expression in more primitive fractions of hematopoietic progenitor cells (CD34 /CD38– or SDF) as compared with the more committed progenitor cells (CD34 /CD38  or FDF). Differential expression ratios (log2 ratios) of all ESTs of the UnigeneSet RZPD3 revealed a symmetric Gaussian distribution in the two comparisons (CD34 /CD38– versus CD34 /CD38 : mean log2 ratio = 0.007, SD = 0.346; SDF versus FDF: mean log2 ratio = –0.011, SD = 0.418) (Fig. 3). In contrast, the set of ESTs representing genes with retroviral vector integration sites in repopulating hematopoietic cells revealed higher expression in the CD34 /CD38– fraction (CD34 /CD38– versus CD34 /CD38 : mean log2 ratio = 0.076, SD = 0.333) and in the SDF (SDF versus FDF: mean log2 ratio = 0.171, SD = 0.532; Table 1). Statistical analysis showed a significantly higher expression of genes that were targeted in SRCs in these fractions that are enriched in primitive HSCs as compared with all ESTs on the array (CD34 /CD38–: p = .0043; SDF: p = .0002).3 L' }8 q- E3 |+ @8 l
4 r$ X: k. P& A% [/ l0 T
Figure 3. Retroviral vector integration is favored in genes upregulated in primitive fractions of hematopoietic cells (CD34 /CD38–; SDF). Differential expression (log2 ratio) of two microarray experiments is presented: (A) CD34 /CD38– versus CD34 /CD38  and (B) SDF versus FDF. Analysis of all ESTs of the UnigeneSet RZPD3 reveals a symmetric Gaussian distribution of differential expression (mean is presented as gray). In contrast, the set of 117 cDNA clones representing genes with retroviral vector integration in SRCs revealed a higher expression in the stem cell fractions (CD34 /CD38– cells and SDF; mean is presented as black dashed line). On average, genes with retroviral vector integration sites in SRCs were significantly higher expressed in the fractions enriched in HSCs (* p = .0043, ** p = .0002). Abbreviations: EST, expressed sequence tag; FDF, fast dividing fraction; HSC, hematopoietic stem cell; SDF, slow dividing fraction of CD34 /CD38– cells; SRC, severe combined immunodeficient repopulating cell.: z6 G: x* w1 O4 y9 `
% L! i0 @+ ^& r, m: b; `
DISCUSSION" D& m  ?0 p3 H; F& g

0 M  v; H1 {& {$ V- JWe wish to thank Wilhelm Ansorge, Alexandra Ansorge, and Ute Wirkner for providing the Human Genome Microarray and for their help in the microarray experiments. The technical assistance of Bernhard Berkus, Hans Jürgen Engel, Sigrid Heil, and Katrin Miesala and the support of the animal facility team of the German Cancer Research Center are gratefully acknowledged. We thank Klaus Kuehlcke and Sonja Naundorf for transduction of CD34  cells (Fresenius-Biotech, Idar-Oberstein, Germany, http://www.fresenius-ag.com). We are grateful to Christopher Baum (Hannover Medical School, Hannover, Germany) for providing the SF91m3 vector. This work was supported by Deutsche Forschungsgemeinschaft (DFG) HO 914/2-3, Bundesministerium für Bil-dung und Forschung (BMBF) 01GN0107, NGFN2 EP-S19T01 and Siebeneicher Stiftung, Germany and in part by grant I0-2089-FlI of the Deutsche Krebshilfe and by grant M 20.4 of the H.W. & J. Hector-Stiftung. W.W. and S.L. contributed equally to this study.6 C" U; l% A$ h- X- v& b4 V6 g) g) ~
7 D/ j: V7 Z' j" f6 r( V
REFERENCES3 D0 b! H$ X% S0 E* J3 y, f! W: ]
/ s/ [6 {3 Y$ B0 s( _+ q$ ~
Ho AD, Punzel M. Hematopoietic stem cells: can old cells learn new tricks? J Leukoc Biol 2003;73:547–555.: i9 Z1 w3 w( J$ v: e
- B$ `* C2 r; o) T! y8 ^' n
Bonnet D. Haematopoietic stem cells. J Pathol 2002;197:430–440.
; ?3 Z% y  v" W- x& m3 P
+ k+ \$ V2 o1 n2 nIshikawa F, Livingston AG, Minamiguchi H et al. Human cord blood long-term engrafting cells are CD34  CD38–. Leukemia 2003;17:960–964.. x7 j$ T9 Z) l" a7 [# J

0 Y: p; ^& }, E6 GHuang S, Law P, Young D et al. Candidate hematopoietic stem cells from fetal tissues, umbilical cord blood vs. adult bone marrow and mobilized peripheral blood. Exp Hematol 1998;26:1162–1171.
/ }5 i( X+ a# Q: w
3 Y. ]( e1 e6 d$ P; J4 P  yHuang S, Law P, Francis K et al. Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules. Blood 1999;94:2595–2604., [( |2 f" a- e8 }  r
" R' N0 m9 L/ S6 [( l
Civin CI, Ameida-Porada G, Lee MJ et al. Sustained, retransplantable, multilineage engraftment of highly purified adult human bone marrow stem cells in vivo. Blood 1996;88:4102–4109.
4 R9 x* j7 M1 z
, g3 f# ?7 A6 u' c( s$ S* ~% _$ g. vBrummendorf TH, Dragowska W, Zijlmans JMJM et al. Asymmetric cell divisions sustain long-term hematopoiesis from single-sorted human fetal liver cells. J Exp Med 1998;188:1117–1124.) y/ s2 E2 ~2 o$ C" [! I: b% w: E: ]
/ S+ N7 s' B. v  G8 W1 }
Punzel M, Zhang T, Liu D et al. Functional analysis of initial cell divisions defines the subsequent fate of individual human CD34( )CD38(–) cells. Exp Hematol 2002;30:464–472.& @0 U1 T7 [% F0 Y5 Z7 O1 ]

0 q/ K: y- B5 x$ r- z! F. B1 WMahmud N, Devine SM, Weller KP et al. The relative quiescence of hematopoietic stem cells in nonhuman primates. Blood 2001;97:3061–3068.
# t2 z' L9 }+ l9 Y( k: _( ?( o: T+ G, Z" j4 f  `" S
Cheng T, Rodrigues N, Shen H et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000;287:1804–1808.
: Z2 b2 v: v% u
# N4 I  m1 h$ g5 p7 _8 V% f, W) \8 yReems JA, Torok-Storb B. Cell cycle and functional differences between CD34 /CD38hi and CD34 /38lo human marrow cells after in vitro cytokine exposure. Blood 1995;85:1480–1487.5 [- A- }6 ?( ^  ~

6 T  Q7 j7 V5 W: OLi L, Akashi K. Unraveling the molecular components and genetic blueprints of stem cells. Biotechniques 2003;35:1233–1239.+ U; o( f+ y9 N" E+ w! I+ X0 R7 f) p

- V4 {  e1 B" L' N- l$ O1 xIvanova NB, Dimos JT, Schaniel C et al. A stem cell molecular signature. Science 2002;298:601–604.
# `: Y6 b: i6 m4 V. b1 r. E- A
" N! o) d2 h, O+ H: H* [* XRamalho-Santos M, Yoon S, Matsuzaki Y et al. "Stemness": transcriptional profiling of embryonic and adult stem cells. Science 2002;298:597–600.% {3 U) H( Z6 K6 z' l  y

0 Y) ?, Z& ?9 g! sPark IK, He Y, Lin F et al. Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 2002;99:488–498.
' ?# r8 y2 ?# r8 C: F% P  E
* e' n2 ?# `) I5 LPhillips RL, Ernst RE, Brunk B et al. The genetic program of hematopoietic stem cells. Science 2000;288:1635–1640.) X3 o/ y6 b1 `. U. ~
& c' l" ~2 N$ n. J/ v; L
Wagner W, Ansorge A, Wirkner U et al. Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood 2004;104:675–686.. p) D2 O) n4 ~' u& N' X" g

% u6 O$ H0 q7 r( S2 |; J  `" [Terskikh AV, Miyamoto T, Chang C et al. Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood 2003;102:94–101.5 ~9 P7 j& p, _- @4 U

0 ^6 \( F; O. ]1 k" G& }- jFruehauf S, Breems DA, Knaan-Shanzer S et al. Frequency analysis of multidrug resistance-1 gene transfer into human primitive hematopoietic progenitor cells using the cobblestone area-forming cell assay and detection of vector-mediated P-glycoprotein expression by rhodamine-123. Hum Gene Ther 1996;7:1219–1231.# A4 P1 [! s. q1 `8 V7 \0 y, g
4 r4 o  z4 x9 m' E8 y' G
Schiedlmeier B, Schilz AJ, Kuhlcke K et al. Multidrug resistance 1 gene transfer can confer chemoprotection to human peripheral blood progenitor cells engrafted in immunodeficient mice. Hum Gene Ther 2002;13:233–242.# z1 Q, Y  ~7 U- d  q

- S5 n! _9 N5 R, U- {Cavazzana-Calvo M, Hacein-Bey S, de Saint BG et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000;288:669–672.
0 C$ O( R# @% D! E/ A
9 _  c; s) t  m  wBonetta L. Leukemia case triggers tighter gene-therapy controls. Nat Med 2002;8:1189.
, c  a" E- ?# m# Y! N- G3 l1 U5 R# S$ O/ M. z3 S. t
Cowan KH, Moscow JA, Huang H et al. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin Cancer Res 1999;5:1619–1628.
: d3 Y0 n0 c8 R0 s
* U: e" w' b" B2 KAbonour R, Williams DA, Einhorn L et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat Med 2000;6:652–658.
2 H* ?& x- U# o) a7 H8 c1 i0 s5 K! V7 {6 E
Hematti P, Hong BK, Ferguson C et al. Distinct genomic integration of MLV and SIV vectors in primate hematopoietic stem and progenitor cells. PLoS Biol 2004;2:e423.: c" `" @0 K! Z) x% }; w" V
) n5 x1 Z  H2 L; f/ e* B
Bushman FD. Targeting survival: integration site selection by retroviruses and LTR-retrotransposons. Cell 2003;115:135–138.
4 @1 ^" a" K3 R/ T; }
$ X$ Y7 ]8 a/ W  p& ]8 C: oMitchell R, Chiang CY, Berry C et al. Global analysis of cellular transcription following infection with an HIV-based vector. Mol Ther 2003;8:674–687.9 ~. M0 n- X' Z& T0 A" {6 N# f$ E

) W. X' [" @7 v, CLaufs S, Gentner B, Nagy KZ et al. Retroviral vector integration occurs in preferred genomic targets of human bone marrow-repopulating cells. Blood 2003;101:2191–2198.  t  R, l7 e8 o2 W
9 R, j+ r! p4 c9 h- G
Schroder AR, Shinn P, Chen H et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002;110:521–529.
; J1 ]/ W4 w" ?" q0 Q: K9 _& X% P" n5 E: g2 W( q  S
Mooslehner K, Karls U, Harbers K. Retroviral integration sites in transgenic Mov mice frequently map in the vicinity of transcribed DNA regions. J Virol 1990;64:3056–3058.3 k8 H: e; c) V( ~4 d( v& b  T: g

( @# u" H1 \, TScherdin U, Rhodes K, Breindl M. Transcriptionally active genome regions are preferred targets for retrovirus integration. J Virol 1990;64:907–912.: U+ t, `% j& u/ ^: c
- y& ~3 h' Y& n, \$ B/ D
Mitchell RS, Beitzel BF, Schroder AR et al. Retroviral DNA Integration: ASLV, HIV, and MLV Show Distinct Target Site Preferences. PLoS Biol 2004;2:E234., [# M8 q1 R/ J( x
* `  D& ?1 F7 O$ j- d  v* p
Laufs S, Nagy KZ, Giordano F et al. Insertion of retroviral vectors in NOD/SCID repopulating human peripheral blood progenitor cells occurs preferentially in the vicinity of transcription start regions and in introns. Mol Ther 2004;10:874–881.) C/ D+ _0 d& y5 E2 Q
- }3 [# ~2 ~( J( i  g" Y
Schilz AJ, Schiedlmeier B, Kuhlcke K et al. MDR1 gene expression in NOD/SCID repopulating cells after retroviral gene transfer under clinically relevant conditions. Mol Ther 2000;2:609–618.
8 P. t# S4 z* l, P1 G
4 G; a( o- u4 T0 S, @. `' TEckert HG, Kuhlcke K, Schilz AJ et al. Clinical scale production of an improved retroviral vector expressing the human multidrug resistance 1 gene (MDR1). Bone Marrow Transplant 2000;25(suppl 2):S114–S117.
) ~+ n% r- V' L6 ?- Y
  N3 A8 E) W! G' [1 USchiedlmeier B, Kuhlcke K, Eckert HG et al. Quantitative assessment of retroviral transfer of the human multidrug resistance 1 gene to human mobilized peripheral blood progenitor cells engrafted in nonobese diabetic/severe combined immunodeficient mice. Blood 2000;95:1237–1248.- t* H  n- y0 M
  w( F6 h8 m. Z$ I! s+ t( A5 T
Pruitt KD, Maglott DR. RefSeq and LocusLink: NCBI gene-centered resources. Nucleic Acids Res 2001;29:137–140.; k  e; a4 J. C+ m

4 c9 D/ s( J5 N, y2 K' X8 `9 sWu X, Li Y, Crise B et al. Transcription start regions in the human genome are favored targets for MLV integration. Science 2003;300:1749–1751.
8 d2 r& j+ B" L$ @6 s4 f0 g9 }6 A3 ^2 s2 ~3 ~# r2 ?7 x+ a
Ishii M, Hashimoto S, Tsutsumi S et al. Direct comparison of GeneChip and SAGE on the quantitative accuracy in transcript profiling analysis. Genomics 2000;68:136–143.7 F. x9 ]! v6 F& |/ E: u" r

5 h1 B2 ^3 v. l4 X/ NKim HL. Comparison of oligonucleotide-microarray and serial analysis of gene expression (SAGE) in transcript profiling analysis of megakaryocytes derived from CD34  cells. Exp Mol Med 2003;35:460–466.3 I% a1 R. ^5 N+ |6 b, e* q- s
* W4 v; i3 z6 b- P2 h" V
Pipia GG, Long MW. Human hematopoietic progenitor cell isolation based on galactose-specific cell surface binding. Nat Biotechnol 1997;15:1007–1011.5 H, [; |* U1 H1 s% O" b7 S0 ?

$ a$ j8 M# e  z: cOritani K, Kincade PW. Identification of stromal cell products that interact with pre-B cells. J Cell Biol 1996;134:771–782.
- Z  a$ r/ a1 K- c5 n
, w8 D# q2 V2 l# H6 _, w& gMurray LJ, Bruno E, Uchida N et al. CD109 is expressed on a subpopulation of CD34  cells enriched in hematopoietic stem and progenitor cells. Exp Hematol 1999;27:1282–1294.3 {- M. ?6 w0 k4 m

* o) R3 S+ Q, u4 N! @Saito T, Chiba S, Ichikawa M et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 2003;18:675–685.! R) d# @% [$ z% e* }4 P0 m

% }" E& u# p/ o3 ?5 G0 U) [9 gMaillard I, Weng AP, Carpenter AC et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 2004;104:1696–1702.
! ^* A& p2 x$ ?! Y- U% I% X% H) g* ~9 d& W( O
Gray GE, Mann RS, Mitsiadis E et al. Human ligands of the Notch receptor. Am J Pathol 1999;154:785–794.; u7 T2 T& l9 h1 S
3 g* F3 y' v  ~* D
Bond HM, Mesuraca M, Carbone E et al. Early hematopoietic zinc finger protein (EHZF), the human homolog to mouse Evi3, is highly expressed in primitive human hematopoietic cells. Blood 2004;103:2062–2070.2 ]4 b9 d4 |# k2 n& u

3 p/ M7 q, Q) ?! Y- A+ @Abramovich C, Shen WF, Pineault N et al. Functional cloning and characterization of a novel nonhomeodomain protein that inhibits the binding of PBX1-HOX complexes to DNA. J Biol Chem 2000;275:26172–26177.
& V8 x  e7 w" e8 K* `& o
& [9 {+ a  f; qMiddendorp S, Dingjan GM, Hendriks RW. Impaired precursor B cell differentiation in Bruton’s tyrosine kinase-deficient mice. J Immunol 2002;168:2695–2703.
' O8 r  w0 m6 y6 t  N  }) y& a6 L' ]5 {  G7 T, W
Guo B, Su TT, Rawlings DJ. Protein kinase C family functions in B-cell activation. Curr Opin Immunol 2004;16:367–373.(Wolfgang Wagnera, Stephan)
作者: 大小年    时间: 2015-5-23 13:54

世界上那些最容易的事情中,拖延时间最不费力。  
作者: nauticus    时间: 2015-7-18 13:28

今天无聊来逛逛  
作者: 我心飞翔    时间: 2015-7-21 11:38

谢谢分享了!   
作者: sky蓝    时间: 2015-7-27 14:18

我是来收集资料滴...  
作者: 泡泡鱼    时间: 2015-8-2 13:27

一定要回贴,因为我是文明人哦  
作者: nauticus    时间: 2015-8-16 20:43

不早了 各位晚安~~~~  
作者: txxxtyq    时间: 2015-8-23 19:09

谢谢哦  
作者: 我心飞翔    时间: 2015-9-11 00:18

干细胞行业  
作者: 舒思    时间: 2015-9-20 12:22

好人一生平安  
作者: 张佳    时间: 2015-9-29 21:10

每天到干细胞之家看看成了必做的事情
作者: awen    时间: 2015-10-15 16:10

问渠哪得清如许,为有源头活水来。  
作者: 榴榴莲    时间: 2015-10-29 22:56

继续查找干细胞研究资料
作者: 我心飞翔    时间: 2015-11-1 19:18

都是那么过来的  
作者: tuanzi    时间: 2015-11-21 11:43

在线等在线等  
作者: 陈晴    时间: 2015-12-14 16:08

风物长宜放眼量  
作者: MIYAGI    时间: 2015-12-23 15:35

哈哈,看的人少,回一下  
作者: 舒思    时间: 2016-1-20 16:18

哈哈 瞧你说的~~~  
作者: dypnr    时间: 2016-2-23 13:26

偶啥时才能熬出头啊.  
作者: ringsing    时间: 2016-3-11 23:00

要不我崇拜你?行吗?  
作者: s06806    时间: 2016-3-23 17:18

(*^__^*) 嘻嘻……  
作者: s06806    时间: 2016-3-28 10:18

不对,就是碗是铁的,里边没饭你吃啥去?  
作者: 分子工程师    时间: 2016-4-3 11:27

支持你加分  
作者: ikiss    时间: 2016-4-16 11:35

支持一下吧  
作者: xm19    时间: 2016-4-18 12:18

正好你开咯这样的帖  
作者: 小丑的哭泣    时间: 2016-5-1 21:07

真好。。。。。。。。。  
作者: vsill    时间: 2016-5-7 20:43

拿把椅子看表演
作者: 分子工程师    时间: 2016-5-8 15:11

这个贴不错!!!!!  
作者: 小倔驴    时间: 2016-5-19 14:01

干细胞治疗糖尿病  
作者: 未必温暖    时间: 2016-5-24 09:54

几头雾水…  
作者: 我心飞翔    时间: 2016-5-31 11:27

好贴子好多啊  
作者: 983abc    时间: 2016-6-8 16:43

每天早上起床都要看一遍“福布斯”富翁排行榜,如果上面没有我的名字,我就去上班……  
作者: 糊涂小蜗牛    时间: 2016-6-13 18:00

今天再看下  
作者: 一个平凡人    时间: 2016-7-22 21:52

这贴?不回都不行啊  
作者: hmhy    时间: 2016-7-27 10:54

顶也~  
作者: keanuc    时间: 2016-7-30 14:27

不错,看看。  
作者: 水木清华    时间: 2016-8-7 02:39

这贴子你会收藏吗  
作者: 某某人    时间: 2016-8-12 13:01

HOHO~~~~~~  
作者: tempo    时间: 2016-8-23 07:54

支持~~顶顶~~~  
作者: 小小C    时间: 2016-8-24 13:10

今天没事来逛逛,看了一下,感觉相当的不错。  
作者: dr_ji    时间: 2016-8-26 21:01

哈哈 瞧你说的~~~  
作者: Diary    时间: 2016-9-5 07:52

希望可以用些时间了~````  
作者: 石头111    时间: 2016-10-5 13:01

初来乍到,请多多关照。。。嘿嘿,回个贴表明我来过。  
作者: vsill    时间: 2016-11-3 09:35

回复一下  
作者: 3344555    时间: 2016-11-17 11:10

今天临床的资料更新很多呀
作者: 陈晴    时间: 2016-11-17 11:18

今天没事来逛逛  
作者: feixue66    时间: 2016-12-1 05:53

淋巴细胞
作者: netlover    时间: 2016-12-25 10:00

彪悍的人生不需要解释。  
作者: 求索迷茫    时间: 2016-12-26 02:54

拿分走人呵呵,楼下继续!
作者: 小倔驴    时间: 2017-1-10 02:17

爷爷都是从孙子走过来的。  
作者: pengzy    时间: 2017-1-31 14:54

这样的贴子,不顶说不过去啊  
作者: 老农爱科学    时间: 2017-2-9 22:43

干细胞研究还要面向临床
作者: tuting    时间: 2017-2-22 23:26

都是那么过来的  
作者: cjms    时间: 2017-3-2 01:42

顶也~  
作者: 小小C    时间: 2017-3-15 04:22

应该加分  
作者: 龙水生    时间: 2017-3-16 13:54

设置阅读啊  
作者: 生科院    时间: 2017-4-5 17:02

佩服佩服啊.  
作者: pcr    时间: 2017-4-9 10:43

不错的东西  持续关注  
作者: MIYAGI    时间: 2017-4-9 12:49

HOHO~~~~~~  
作者: 旅美学者    时间: 2017-4-18 23:17

似曾相识的感觉  
作者: tuting    时间: 2017-4-20 08:10

这样的贴子,不顶说不过去啊  
作者: hmhy    时间: 2017-4-21 20:32

厉害!强~~~~没的说了!  
作者: 苹果天堂    时间: 2017-4-28 08:54

强人,佩服死了。呵呵,不错啊  
作者: changfeng    时间: 2017-5-1 21:31

ips是诱导多能干细胞induced pluripotent stem cells iPS
作者: Diary    时间: 2017-5-15 20:33

家财万贯还得回很多贴哦  
作者: 8666sea    时间: 2017-5-17 04:51

干细胞之家
作者: highlight    时间: 2017-6-14 21:07

嘿嘿......哈哈......呵呵.....哟~呼  
作者: 修复者    时间: 2017-6-15 08:43

干细胞研究人员的天堂
作者: doc2005    时间: 2017-6-25 05:29

呵呵 都没人想我~~  
作者: 安安    时间: 2017-7-3 23:31

哈哈,看的人少,回一下  
作者: 三好学生    时间: 2017-7-8 06:13

干细胞之家是国内最好的干细胞网站了
作者: 旅美学者    时间: 2017-7-11 10:54

干细胞之家是国内最好的干细胞网站了
作者: mk990    时间: 2017-8-10 11:10

人之所以能,是相信能。  
作者: 三好学生    时间: 2017-8-19 01:14

知道了 不错~~~  
作者: dglove    时间: 2017-8-20 12:35

今天的干细胞研究资料更新很多呀
作者: dongmei    时间: 2017-8-30 03:25

干细胞库  
作者: foxok    时间: 2017-9-3 15:54

又看了一次  
作者: 小敏    时间: 2017-9-15 04:38

设置阅读啊  
作者: Whole    时间: 2017-9-28 04:28

楼上的稍等啦  
作者: 红旗    时间: 2017-10-18 07:33

这样的贴子,不顶说不过去啊  
作者: chinagalaxy    时间: 2017-10-23 13:10

干细胞之家是国内最好的干细胞网站了
作者: nosoho    时间: 2017-10-26 08:01

@,@..是什么意思呀?  
作者: 多来咪    时间: 2017-10-29 05:08

神经干细胞
作者: IPS干细胞    时间: 2017-11-19 20:04

做对的事情比把事情做对重要。  
作者: s06806    时间: 2017-11-22 06:28

应该加分  
作者: leeking    时间: 2017-11-23 06:31

感谢党和人民的关爱~~~  
作者: lab2010    时间: 2017-11-29 02:39

希望大家帮我把这个帖发给你身边的人,谢谢!  
作者: 甘泉    时间: 2017-12-19 22:09

既然来了,就留个脚印  
作者: apple0    时间: 2017-12-25 22:18

貌似我真的很笨????哎  
作者: ikiss    时间: 2017-12-27 02:59

正好你开咯这样的帖  
作者: apple0    时间: 2018-1-28 03:18

正好你开咯这样的帖  
作者: qibaobao    时间: 2018-2-7 05:26

鉴定完毕.!  
作者: 咖啡功夫猫    时间: 2018-2-15 05:22

好人一生平安  
作者: 榴榴莲    时间: 2018-3-2 06:41

顶的就是你  
作者: 杏花    时间: 2018-3-4 05:07

@,@..是什么意思呀?  
作者: 三星    时间: 2018-3-10 09:35

家财万贯还得回很多贴哦  
作者: tuting    时间: 2018-4-6 17:34

干细胞研究非常有前途
作者: 糊涂小蜗牛    时间: 2018-4-28 03:14

真是佩服得六体投地啊  
作者: 干细胞2014    时间: 2018-5-5 18:19

不错啊! 一个字牛啊!  
作者: tempo    时间: 2018-5-16 09:18

21世纪,什么最重要——我!  




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5