干细胞之家 - 中国干细胞行业门户第一站

标题: Cripto as a Target for Improving Embryonic Stem Cell–Based Therapy in Parkinson* [打印本页]

作者: 江边孤钓    时间: 2009-3-5 10:51     标题: Cripto as a Target for Improving Embryonic Stem Cell–Based Therapy in Parkinson*

a Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden;8 h8 i& B' e; ]3 c" q+ ~8 B4 @

  A5 |0 J& X% j; _9 Qb Institute of Genetics and Biophysics "A. Buzzati-Traverso," CNR, Naples, Italy
+ j( [; D3 I1 B4 M, V0 x0 j
3 ~& P' b0 c2 a4 w$ C% m- |Key Words. Cripto ? Embryonic stem cells ? Tumor ? Parkinson’s disease ? Behavior
+ f  G9 @& O  V( {5 p
) a0 w- N4 U4 b( i5 w4 FCorrespondence: Gabriella Minchiotti, Ph.D., Institute of Genetics and Biophysics "A. Buzzati-Traverso," CNR, Naples, Italy. Telephone: 39-081613-2354; Fax: 39-081613-2595; e-mail: minchiot@igb.cnr.it2 F6 y+ ?4 M7 [( y& ~& |1 U8 j
4 n9 m5 y. J9 Y% `& y
ABSTRACT
' Z* z: w: N3 A( ?
7 L) I( S: J: Y% |+ uCell replacement therapies have focused mainly on the use of human fetal mesencephalic tissue transplantation in patients with Parkinson’s disease (PD). However, technical difficulties and ethical considerations have prevented the widespread development of this technique. On the contrary, embryonic stem (ES) cells have many characteristics required for an optimal cell source for cell replacement therapy in PD . However, the molecular mechanisms as well as the signaling pathways implicated in neural generation in the context of stem cells have not been extensively evaluated and need to be further characterized. Indeed, both the growth and the differentiation potential of ES cells need to be controlled, and the risk associated with the growth of non-neural tissues needs to be eliminated.; X$ j/ J' R: U

# y+ \/ Y9 N% jThe differentiation of mammalian ES cells in culture has been reported to follow the hierarchical set of signals that regulate embryonic development in the generation of the germ layers and specification of cell types. Moreover, mechanisms operating during neurogenesis in embryonic development are thought to dictate the neuronal population being generated from ES cells . For instance, dilution of ES cell concentration in vitro facilitates neural differentiation . Interestingly, this effect could be mimicked by bone morphogenetic factor inhibitors such as noggin  and Cerberus , as well as by using ES cells with a targeted mutation of Smad4 gene . According to the in vitro observations, the transplantation of low doses of ES cells in a Parkinson rat model resulted in neuronal dopamine(DA)–containing grafts, supporting the notion that establishment of neural identity from uncommitted mammalian ES cells occurs by default. However, these grafting experiments also showed that lack of engraftment due to insufficient cells or tumor formation accounted for 44% of the animals , indicating that the implementation of such strategy in therapeutics remains an obstacle.+ N& c; p" ]* l0 {7 z! a% F! m% q
& |8 X% ~" y! ]; R# l
Recent data have highlighted a key role of the GPI-anchored EGF-CFC Cripto protein in preventing neural differentiation of ES cells . Cripto is the original member of the EGF-CFC family defined by two conserved adjacent motifs: an epidermal growth factor (EGF)–like domain and a unique cysteine-rich domain, the CFC domain . Both genetic evidence and biochemical approaches demonstrate that Cripto acts as a coreceptor for the transforming growth factor ? ligand Nodal . Cripto-dependent Nodal signaling acts through the Activin type I serine/threonine kinase receptor (Alk4) and the type II receptor (ActRII) that, once activated, phosphorylates the downstream transcriptional coactivator Smad2 . Knockout mice for the cripto gene show early embryonic lethality due to gastrulation defects and are mostly constituted by anterior neuroectoderm . Furthermore, embryoid bodies (EBs) derived from Cripto-deficient (Cr–/–) ES cells selectively lose the ability to form beating cardiac myocytes in vitro and show an enhanced neural differentiation ability, thus suggesting that Cripto could represent a key molecule required for both induction of cardiomyocyte differentiation and repression of neural differentiation .
2 y7 s7 N0 H; @5 u# Z) G$ z* R) @- {) \2 L* r$ k4 B
Thus, it remains to be determined whether increased neural induction in Cr–/– ES cells may contribute to the generation of specific neuronal types such as dopaminergic neurons that could be used in therapeutic applications. Of significant concern regarding ES cell replacement therapy is the risk of teratoma formation. Worth noting, Cripto is also overexpressed in a wide range of epithelial cancers, including breast, pancreatic, ovarian, and colon carcinomas, and, more recently, antibody blockade of Cripto has been shown to suppress tumor cell growth . We therefore hypothesize that inhibition of Cripto signaling in Cr–/– ES cells, in addition to directing ES cells to increased neural commitment, may block teratoma formation, thus enhancing the therapeutic potential of ES cells.% S0 k: D6 b6 U2 V0 e% M& P: \

  y0 `) g( w3 NMETHODS+ g. i+ L2 _* c8 x

6 R3 l& R) W3 |' R8 j- G! vCripto–/– ES Cell Differentiation Increases DA Cells by Increasing Neuronal Precursors4 z) ^' ]1 r5 f: d6 j% ~
6 h/ s2 R$ z% m& c! F' Z' K
To establish whether Cr–/– cells have increased potential to give rise to dopaminergic cells, we first examined their differentiation potential in vitro in the presence of Shh and FGF-8, two factors important for the generation of ventral midbrain DA neurons. As previously reported , most (>70%) of Cr–/– ES cell–derived EBs showed regions of high Tuj1 labeling, which were also substantially greater than Cr /  EBs (Figs. 1C, 1G). Treatment of cultures with Shh and/or FGF-8 dramatically increased the proportion of EBs expressing Tuj1 and increased the proportion of the EBs showing immunoreactivity, particularly in Cr–/– cultures treated with Shh/FGF-8 (Figs. 1C–J). Examination of TH-ir cells within the cultures revealed that in the absence of cripto, cells more frequently differentiate into TH-ir cells (Figs. 1A, 1K). Indeed, Cr–/– showed a 24-fold increase in the number of TH cells compared with Cr /  ES cell cultures. In addition, the number of TH-ir cells could be additionally increased (up to 102%) by the addition of Shh or Shh plus FGF-8 (Figs. 1A, 1K–N).: [) L8 }, i) |6 g- H

/ X! q; I9 @* E/ ]& L# SFigure 1. In vitro differentiation of Cr–/– ES cells increases the number of dopamine cells by increasing neuronal precursors. (A): Number of TH-ir cells per square micrometer of EB revealed that Cr–/– ES cell cultures differentiate more preferentially into TH-ir cells than Cr /  and that these effects could be increased by addition of Shh and/or FGF-8 (mean ± SD; p
, J1 Z, W- t1 T6 T! g* V5 s4 a: a) m, F) E
RT-PCR confirmed the histochemical observations. mRNA levels for TH were greatly increased in Cr–/– cultures, with even greater levels seen in those cells treated with Shh. Furthermore, DA transporter (DAT) levels were increased in Cr–/– cells, with DAT being a marker turned on late in DA cell differentiation. Morphologically, the cells also showed a typical bipolar mature shape (Fig. 1), indicating that not only were these cultures rich in TH and DAT but that in fact the cells develop a mature phenotype. PCR also revealed increased mRNA levels of Wnt1 both in untreated and Shh-treated cultures. We recently showed that Wnt1 increases TH cell number by regulating Nurr1-ir precursor proliferation . These results suggest that suppression of Cripto not only increases the neuronal pool for differentiation into various neural subtypes but also has effects on Wnt1 expression levels, which may result in proliferation and differentiation of DA precursors into neurons. Finally, c-ret, the tyrosine kinase receptor for glial cell–derived neurotrophic factor that regulates DA neuron survival and differentiation, was also expressed at higher levels in Cr–/– ES cells. Thus, our results show that Cr–/– ES cells not only have increased capacity to generate neurons but can also generate increased numbers of TH-ir neurons.
1 M) B: D1 z) `# E9 Y: i2 L% T% E2 F. |# q$ k6 g1 @! `: T
Cripto–/– ES Cell Grafts Do Not Give Rise to Teratoma Formation in Parkinsonian Rats
: k* t' p# d$ s/ C5 @8 g( N
; i1 l3 |. V: j$ n& h- l- IOne of the greatest tribulations that exists for ES cell replacement therapy is the development of teratomas from undifferentiated ES cells present within the grafted population. In this regard, Cripto is known to be overexpressed in several tumors . We therefore wished to examine whether Cr–/– ES cell grafts formed teratomas in vivo with the hypothesis that suppression of the Cripto protein may result in reduced tumor formation. We noted that all Cr /  ES cell–grafted animals developed teratomas. Some tumors were small and surrounded with dense TH areas (Fig. 2A), whereas other tumors were extensive (Figs. 2B, 2C), invading forebrain, midbrain, and hindbrain structures. Surprisingly, none of the animals receiving Cr–/– ES cell grafts showed any tumor-like formations by 7 weeks after grafting (Fig. 2D).
4 H% m" j7 v3 m  a1 B$ w+ d% q
  Y" V! ?4 r0 X& i) H- b0 QFigure 2. Cr /  ES cell grafts result in teratoma formation in Parkinsonian rats. (A): A small tumor seen within the striatum of a Cr /  ES cell–grafted rat, surrounded by TH-ir dense region. (B): Large teratoma from a Cr /  ES cell–grafted rat. (C): One of many TH-ir dense regions seen within the tumor formation shown in (B). (D): Example of a Cr–/– ES cell–grafted striatum showing no tumor formation and extensive TH innervation. Abbreviations: Cr, Cripto; ES, embryonic stem; TH-ir, tyrosine hydroxylase immunoreactive.! O$ D9 t2 r1 ~  g

4 c- r, M; |" q1 b% D" P. \Several rodent studies have shown tumor formation after ES cell transplantation . The use of different ES differentiation protocols  and cell sorting  have reduced the risk of tumor formation after cell replacement therapy in Parkinsonian rodents; however, the use of ES cells for therapy is presently still unfeasible. Finding a gene that regulates proliferation and being able to manipulate cells before or after implantation with a "switch" to prevent tumor formation has become a key quest in the development of ES cell replacement therapies. The results shown here illustrate that gene knockout technology could be used to suppress teratoma formation and to enhance ES cell capacity to differentiate into neurons.. f) e  w  B7 a

" l3 J9 f8 i. O" x2 HCripto–/– ES Cell Grafts Result in Anatomical and Behavioral Improvements in Parkinsonian Rats
% y5 l/ o% h/ r2 K1 e+ [5 y; N1 r8 G& g( t! ~
Given the ability for Cripto-deficient ES cells to give rise to increased number of TH cells in vitro, we wished to assess the ability of Cr–/– ES cell transplants to restore function in Parkinsonian rats.
" U% d. R: O1 [+ |8 }5 y. G, U$ A6 ?4 r( }/ s
We created an animal model of PD by injecting the neurotoxin 6-OHDA into the right SNpc of rats to produce a complete lesion. The number of SNpc neurons was counted in untreated and 6-OHDA–treated rats to determine lesion size. In total, untreated Sprague-Dawley rats had 12,161 ± 780 SNpc cells. All lesioned animals showed between 87% and 100% loss of SNpc cells, with no significant difference seen between the lesioned groups (Fig. 3A), confirming our behavioral selection of animals for grafting.$ v& R5 t6 s/ l6 ~& h$ H
+ h6 g3 S/ u6 Z9 ]
Figure 3. Cr–/– ES cell grafts result in anatomical and behavioral improvements in Parkinsonian rats. (A): Total number of SNpc cells in untreated and 6-hydroxydopamine–lesioned animals, confirming that extensive lesions were created in all grafted animals, sham, Cr / , and Cr–/–. (B): Number of TH-ir cells seen within the striatum of sham, Cr / , and Cr–/–-grafted animals. (C–E): Photomicrographs of grafts from sham-operated, Cr / -grafted, and Cr–/–-grafted rats. Grafted tissue could be detected by M2-ir (green), a mouse-specific antibody, and TH-ir cells (red) could be seen throughout Cr /  and Cr–/– grafts. (F, H): High-power pictures of grafted cells stained with TH-ir, illustrating typical bipolar mature dopamine morphology with cells also making extensive connections. (G, H): An example of a smaller, more isolated graft seen in a Cr–/–animal,TH-ir.(I):Amphetamine-induced rotational behavior in sham, Cr / , and Cr–/– ES cell–grafted animals; note the behavioral improvements seen in ES cell–grafted animals compared with sham-operated animals. Data are mean ± SD. Abbreviations: Cr, Cripto; ES, embryonic stem; SNpc, substantia nigra pars compacta; TH-ir, tyrosine hydroxylase immunoreactive.2 q$ \. a# P" M) U2 y3 ~7 C" }; |; w

& m7 w+ o6 c; V. w, FStriatal examination revealed that grafts had survived in 80% of animals, shown by the presence of cells specifically stained with antibodies against mouse glia (M2). As expected, no M2-ir or TH-ir cells were observed within the striatum of sham-operated animals, with only a few remaining TH-ir fibers present (Fig. 3C). Total counts of TH-ir cells in ES cell–grafted animals showed no significant difference, with 9,918 ± 2,968 TH-ir cells found in Cr /  ES cell grafts and 8,467 ± 1,056 in Cr–/– grafts (Figs. 3B, 3D, 3E). In some instances, TH-ir cells were seen to be dispersed throughout the striatum (Figs. 3D, 3E), whereas other grafts showed pockets of TH-ir cells (Figs. 3G, 3H). These results showed that the grafts survived and had the ability to differentiate into TH-ir cells, as previously reported .  [0 ^+ T$ ^/ R1 @

4 Q9 _- |+ ~0 lWe finally wished to establish the functionality of these TH cells by assessing behavioral improvements in the ES cell–grafted Parkinsonian animals. Behavioral assessment of the animals revealed a nonsignificant improvement (17%) in sham-operated animals (Fig. 3I), which may be explained by modest compensatory mechanisms such as collateral sprouting and hypertrophy of remaining fibers. Conversely, both Cr /  and Cr–/– ES cell–grafted animals showed significant increases in behavior by 6 weeks (63% and 67%, respectively), and unlike Cr / -treated rats, Cr–/–-treated rats continued to improve, showing a 74% increase by 7 weeks. (Fig. 3I). It is worth mentioning that Cr /  cells, despite generating similar numbers of TH-ir cells as Cr–/– grafts, did not result in the same degree of functional recovery. The slow differentiation of Cr /  cells in vitro correlated well with the slow behavioral recovery of Cr / -grafted animals during the first 4 weeks compared with Cr–/– grafted animals. By weeks 5 to 6, the behavior of Cr /  was similar to Cr–/– grafted animals, suggesting that a significant number of dopamine-producing cells was generated. However, by week 7, the overgrowth of the tumors in these Cr / -grafted rats resulted in reduced behavioral recovery. Interestingly, those animals having the larger tumors showed the greatest deterioration in behavioral improvement, reflecting the damage caused by inflammation and compression of adjacent structures. We thus conclude that the beneficial effects of the TH  cells derived from the tumors are compromised by the growth of the tumor. This was clearly not the case for Cr–/– cells, which showed behavioral recovery in the absence of tumor formation. Overall, our results demonstrate that the striatal TH-ir cells observed within the Cr–/– grafts are functional, able to restore rotational behavior in Parkinsonian rats, and, more important, do not lead to the formation of teratomas.5 w% L& T" X! l: d
2 Z- G2 T4 _, m% J: Y' l8 h* C5 X5 n, _
CONCLUSIONS
0 w; ?/ V$ h, p- _4 {2 `& Q, A/ C! f0 A7 P
This study was supported by the Swedish Foundation for Strategic Research, Swedish Royal Academy of Sciences, Knut and Alice Wallenberg Foundation, European Commission (Euro Stem Cell Program), Juvenile Diabetes Research Foundation, Swedish MRC, and Karolinska Institutet (to E.A.), and the Associazione Italiana Ricerca sul Cancro (AIRC) (to G.M.), and Ministero Istruzione Universita’ e Ricerca (MIUR-progetto FIRB) (to M.G.P.). Clare L. Parish is a Human Frontiers Science Program Long-Term Fellow at Karolinska Institute. We thank Anna Aliperti for proofreading the manuscript. C.L.P. and S.P. contributed equally to this study as co-first authors; E.A. and G.M. contributed equally to this study as co-last authors./ ]+ R  `7 x& J6 L1 H* n0 O, w
( U2 Y* i1 d8 a5 Z0 K
REFERENCES! P7 {7 D; M( v6 P# s

. ^% S  K- s* t0 oSvendsen CN, Smith AG. New prospects for human stem-cell therapy in the nervous system. Trends Neurosci 1999;22:357–364.
% ?- f' j7 _  A$ s% o1 T8 ]% G
% P. g# q0 b, {$ N1 j4 [. g/ FIsacson O. The production and use of cells as therapeutic agents in neurodegenerative diseases. Lancet Neurol 2003;12:417–424.5 q- ]7 L$ S3 A/ K# ]6 w

$ E; _8 t+ {. `Arenas E. Stem cells in the treatment of Parkinson’s disease. Brain Res Bull 2002;57:795–808.8 e" a9 s# h8 {5 }: G1 o
2 y7 P/ N& _; d8 a# l' ^/ w# Y2 N
Munoz-Sanjuan I, Brivanlou AH. Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 2002;3:271–280.
1 L) a0 i0 H* @2 j* W  j# t/ Q" o$ V9 ?( |  N  m, ?
Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–1147.! L/ ?* k, U8 h* W

, o0 s) t" G9 XSchuldiner M, Yanuka O, Itskovitz-Eldor J et al. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2000;97:11307–11312.
4 ^9 R- z6 n3 R  D  T1 x7 X5 y8 H6 u7 D1 f- U
Tropepe V, Hitoshi S, Sirard C et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 2001;30:65–78.
0 g) d6 H% E' p! v7 [6 s/ z
( x! ^$ \8 p2 T- }: dSmith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 1992;70:829–840.# I9 H/ k, c: c, a8 N  c

2 h0 k4 A. P2 q. y3 @9 KPiccolo S, Agius E, Leyns L et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 1999;397:707–710.- c% T+ m1 ?& l

, r/ J' e' c& J4 v6 u+ {0 fBjorklund LM, Sanchez-Pernaute R, Chung S et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 2002;99:2344–2349.+ v8 R" ]1 S# X7 C' |& `* ~7 E/ P
8 o% J( _2 u/ @* p  Q
Parisi S, D’Andrea D, Lago CT et al. Nodal-dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells. J Cell Biol 2003;163:303–314.
+ k9 e4 l: }* D3 J  }% R  Z7 D0 a9 Y9 E5 J
Adamson ED, Minchiotti G, Salomon DS. Cripto: a tumor growth factor and more. J Cell Physiol 2002;190:267–278.
7 h$ }& E5 y5 L! X8 P5 z8 V7 m+ d6 b% m: A9 B
Gritsman K, Zhang J, Cheng S et al. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 1999;97:121–132." |  @, n% {' y5 ?& O: V5 W
1 ]' ]# ^$ B5 Z! G; ?
Shen MM. Decrypting the role of Cripto in tumorigenesis. J Clin Invest 2003;112:500–502.1 b5 v5 w6 R; ~- E$ b& H

  M7 r  r7 E+ H3 M1 j0 J# n' g; XReissmann E, Jornvall H, Blokzijl A et al. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev 2001;15:2010–2022.2 F# k3 t. r1 e0 c2 A% d& N
: A$ Y/ t0 _6 L8 w
Bianco C, Adkins HB, Wechselberger C et al. Cripto-1 activates nodal- and ALK4-dependent and -independent signaling pathways in mammary epithelial Cells. Mol Cell Biol 2002;22:2586–2597.0 n% ^8 x2 _2 B, R  z& l
& q. x  E; t+ F' i6 M3 k* c
Yeo C, Whitman M. Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol Cell 2001;7:949–957.
; E  \7 P$ F* N3 |
# t3 X) k; C/ Y' [7 e" C8 N7 I5 cDing J, Ning Q, Liu MF et al. Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 1998;395:702–707.. M( C# }; }$ y' `% E8 M9 B: ^, i
- O3 g7 r3 ~7 d: ?
Xu C, Liguori G, Adamson ED et al. Specific arrest of cardiogenesis in cultured embryonic stem cells lacking Cripto-1. Dev Biol 1998;196:237–247.
- `8 w( P) c  Y- Q$ W% m- D( L/ R% \( y2 o  x( U" ~2 \
Persico MG, Liguori GL, Parisi S et al. Cripto in tumors and embryo deveopment. Biochim Biophys Acta 2001;1552:87–93.
1 V: ~. c4 S$ K) j4 Y6 a! R# P5 b5 Q$ ~, W( c2 y" M
Adkins HB, Bianco C, Schiffer SG et al. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J Clin Invest 2003;112:575–587.
" l" r0 W( t, j# E2 S9 I
6 E! @7 p! V# {: g! \Rosa FM. Cripto, a multifunctional partner in signaling: molecular forms and activities. Sci STKE 2002;2002:PE47.
+ c& y8 E5 e4 Z% U. ~  v8 h7 g( `  |4 l  H9 K4 |7 S
Wobus AM, Wallukat G, Hescheler J. Pluripotent mouse embryonic stem cellsareabletodifferentiateintocardiomyocytesexpressingchronotropic responses to adrenergic and cholinergic agents and Ca2  channel blockers. Differentiation 1991;48:173–182.: s& X1 p# j. V: A

+ \( @. e$ J1 u9 r1 |0 m# @Maltsev VA, Rohwedel J, Hescheler J et al. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 1993;44:41–50.
$ }# k) Q- v) W) h$ k1 h: \, I& i
; x. w5 j  r& C, z9 j% j% v$ zBarberi T, Klivenyi P, Calingasan NY et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 2003;21:1200–1207.
& V7 ^. D5 a" V/ ^( _
; x3 B5 H- p- z0 z. X7 N' R) iFinkelstein DI, Stanic D, Parish CL et al. Axonal sprouting following lesions of the rat substantia nigra. Neuroscience 2000;97:99–112.3 l/ u' m% e' j+ Q

0 U2 @+ V) @8 I6 N2 `" jPaxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. Sydney: Academic Press, 1986.
* L- D( l; i. Z8 S9 e/ ~1 U2 A9 t8 z% r: Q
Castelo-Branco G, Wagner J, Rodriguez FJ et al. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci U S A 2003;100:12747–12752.6 E9 i- a& m! G8 g8 I- l

/ M7 A, K* r& M- E" I. hLee SH, Lumelsky N, Studer L et al. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000;18:675–679.: [, \& G' k# L0 Y' W

5 i% @1 U3 R* SKawasaki H, Mizuseki K, Nishikawa S et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000;28:31–40.8 I+ {4 W6 t# K0 W; S$ e

8 X$ `1 r  t! \2 EXu H, Fan X, Wu X et al. Neural precursor cells differentiated from mouse embryonic stem cells relieve symptomatic motor behavior in a rat model of Parkinson’s disease. Biochem Biophys Res Commun 2004;326:115–122.2 O+ y9 o0 k. D0 i
" C  ~9 L; D% H2 }0 ]) X% {
Kim JH, Auerbach JM, Rodriguez-Gomez JA et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson’s disease. Nature 2002;418:50–56.
' b0 J  _5 ?6 U0 \6 _& y3 ?3 i8 F* F: N# ~8 Z  `% F
Yoshizaki T, Inaji M, Kouike H et al. Isolation and transplantation of dopaminergic neurons generated from mouse embryonic stem cells. Neurosci Lett 2004;363:33–37.(Clare L. Parisha, Silvia )
作者: sky蓝    时间: 2015-6-6 14:27

祝干细胞之家 越办越好~~~~~~~~~`  
作者: MIYAGI    时间: 2015-8-7 09:52

呵呵,等着就等着....  
作者: 石头111    时间: 2015-8-14 18:42

不错,看看。  
作者: 杏花    时间: 2015-8-14 19:41

顶一个先  
作者: 剑啸寒    时间: 2015-8-21 09:36

写得好啊  
作者: 罗马星空    时间: 2015-8-26 13:54

声明一下:本人看贴和回贴的规则,好贴必看,精华贴必回。  
作者: tempo    时间: 2015-8-26 16:01

既然来了,就留个脚印  
作者: 石头111    时间: 2015-8-30 14:28

非常感谢楼主,楼主万岁万岁万万岁!  
作者: immail    时间: 2015-9-14 13:18

呵呵 高高实在是高~~~~~  
作者: aakkaa    时间: 2015-10-8 16:01

皮肤干细胞
作者: 依旧随遇而安    时间: 2015-10-29 11:43

鉴定完毕.!  
作者: MIYAGI    时间: 2015-11-1 02:26

心脏干细胞
作者: aakkaa    时间: 2015-12-20 12:53

干细胞库  
作者: 红旗    时间: 2016-1-27 13:00

风物长宜放眼量  
作者: 科研人    时间: 2016-2-17 13:35

不管你信不信,反正我信  
作者: nosoho    时间: 2016-2-25 16:00

厉害!强~~~~没的说了!  
作者: sky蓝    时间: 2016-3-18 15:35

谢谢楼主啊!
作者: netlover    时间: 2016-4-12 21:42

正好你开咯这样的帖  
作者: 水木清华    时间: 2016-4-13 07:27

拿分走人呵呵,楼下继续!
作者: xiao2014    时间: 2016-4-21 11:27

挺好啊  
作者: 蝶澈    时间: 2016-4-21 19:27

支持一下吧  
作者: 安安    时间: 2016-5-16 16:35

羊水干细胞
作者: 老农爱科学    时间: 2016-6-4 15:18

做一个,做好了,请看  
作者: 小敏    时间: 2016-6-7 20:10

非常感谢楼主,楼主万岁万岁万万岁!  
作者: 王者之道    时间: 2016-6-26 03:17

厉害!强~~~~没的说了!  
作者: doc2005    时间: 2016-7-15 15:43

支持你加分  
作者: 橙味绿茶    时间: 2016-7-19 18:48

每天早上起床都要看一遍“福布斯”富翁排行榜,如果上面没有我的名字,我就去上班……  
作者: 命运的宠儿    时间: 2016-7-27 10:19

彪悍的人生不需要解释。  
作者: immail    时间: 2016-8-7 06:25

好帖,有才  
作者: 石头111    时间: 2016-9-11 12:01

说的不错  
作者: 蝶澈    时间: 2016-9-12 16:18

转基因动物
作者: xm19    时间: 2016-10-7 13:17

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: 罗马星空    时间: 2016-10-20 21:43

谢谢哦  
作者: 糊涂小蜗牛    时间: 2016-10-29 14:52

哈哈,看的人少,回一下  
作者: 狂奔的蜗牛    时间: 2016-11-17 20:27

挤在北京,给首都添麻烦了……  
作者: 墨玉    时间: 2016-12-6 10:01

回个帖子支持一下!
作者: 海小鱼    时间: 2016-12-23 18:40

生殖干细胞
作者: Diary    时间: 2017-1-31 20:16

非常感谢楼主,楼主万岁万岁万万岁!  
作者: 张佳    时间: 2017-2-5 20:42

孜孜不倦, 吾等楷模 …………  
作者: 舒思    时间: 2017-2-17 03:49

好人一生平安  
作者: 昕昕    时间: 2017-2-27 06:23

帮顶  
作者: 干细胞2014    时间: 2017-3-2 01:35

一个人最大的破产是绝望,最大的资产是希望。  
作者: wq90    时间: 2017-4-17 13:18

皮肤干细胞
作者: 追风    时间: 2017-5-22 04:29

这个贴好像之前没见过  
作者: MIYAGI    时间: 2017-5-30 23:19

昨天没来看了 ~~  
作者: 罗马星空    时间: 2017-6-6 09:09

这个贴不错!!!!!看了之后就要回复贴子,呵呵  
作者: 一个平凡人    时间: 2017-6-6 13:54

想都不想,就支持一下  
作者: 天蓝色    时间: 2017-6-19 04:01

照你这么说真的有道理哦 呵呵 不进沙子馁~~~  
作者: 初夏洒脱    时间: 2017-6-28 12:54

好 好帖 很好帖 确实好帖 少见的好帖  
作者: highlight    时间: 2017-7-6 04:08

想都不想,就支持一下  
作者: 蝶澈    时间: 2017-7-18 09:43

干细胞美容
作者: ladybird    时间: 2017-7-20 02:55

家财万贯还得回很多贴哦  
作者: 安生    时间: 2017-7-26 03:07

支持一下吧  
作者: awen    时间: 2017-8-13 15:34

文笔流畅,修辞得体,深得魏晋诸朝遗风,更将唐风宋骨发扬得入木三分,能在有生之年看见楼主的这个帖子。实在是我三生之幸啊。  
作者: sshang    时间: 2017-8-28 15:01

非常感谢楼主,楼主万岁万岁万万岁!  
作者: popobird    时间: 2017-9-3 06:24

帮顶  
作者: 科研人    时间: 2017-9-3 10:10

dddddddddddddd  
作者: nauticus    时间: 2017-9-8 11:55

谁能送我几分啊  
作者: doors    时间: 2017-9-25 19:28

我也来顶一下..  
作者: 兔兔    时间: 2017-9-28 05:36

我也来顶一下..  
作者: abc987    时间: 2017-9-30 23:52

呵呵 高高实在是高~~~~~  
作者: highlight    时间: 2017-10-12 03:56

初来乍到,请多多关照。。。  
作者: foxok    时间: 2017-10-28 10:09

我的啦嘿嘿  
作者: renee    时间: 2017-10-29 13:53

做一个,做好了,请看  
作者: Kuo    时间: 2017-11-5 23:00

呵呵 高高实在是高~~~~~  
作者: 命运的宠儿    时间: 2017-11-8 17:52

帮你项项吧  
作者: ringsing    时间: 2017-11-14 19:34

真是佩服得六体投地啊  
作者: txxxtyq    时间: 2017-12-2 12:50

我好想升级  
作者: nosoho    时间: 2017-12-17 18:27

哈哈,看的人少,回一下  
作者: vsill    时间: 2018-1-26 21:00

一个子 没看懂  
作者: vsill    时间: 2018-1-27 00:49

希望大家帮我把这个帖发给你身边的人,谢谢!  
作者: txxxtyq    时间: 2018-1-28 12:10

干细胞疾病模型
作者: xuguofeng    时间: 2018-2-9 13:18

我帮你 喝喝  
作者: laoli1999    时间: 2018-2-27 09:43

看贴回复是好习惯  
作者: xiao2014    时间: 2018-3-19 01:34

世界上那些最容易的事情中,拖延时间最不费力。  
作者: sshang    时间: 2018-3-24 16:09

楼主也是博士后吗  
作者: hmhy    时间: 2018-3-26 22:18

谢谢分享了!   
作者: 修复者    时间: 2018-4-7 10:10

楼主福如东海,万寿无疆!  
作者: 安安    时间: 2018-4-10 00:16

初来乍到,请多多关照。。。  
作者: s06806    时间: 2018-5-13 23:27

希望可以用些时间了~````  
作者: 大小年    时间: 2018-5-25 14:54

感谢党和人民的关爱~~~  
作者: leeking    时间: 2018-6-4 06:54

顶你一下,好贴要顶!  
作者: 糊涂小蜗牛    时间: 2018-6-12 19:09

我的啦嘿嘿  
作者: 苹果天堂    时间: 2018-6-16 17:18

心脏干细胞
作者: www1202000    时间: 2018-7-24 04:09

牛牛牛牛  
作者: laoli1999    时间: 2018-8-1 03:57

太棒了!  
作者: 干细胞2014    时间: 2018-8-24 11:41

非常感谢楼主,楼主万岁万岁万万岁!  
作者: 锦锦乐道    时间: 2018-8-29 00:17

终于看完了~~~  
作者: 干细胞2014    时间: 2018-9-3 04:55

希望可以用些时间了~````  
作者: 陈晴    时间: 2018-9-24 20:28

心脏干细胞
作者: aliyun    时间: 2018-9-26 09:19

顶的就是你  
作者: netlover    时间: 2018-10-12 02:56

真是汗啊  我的家财好少啊  加油  
作者: 化药所    时间: 2018-10-16 19:15

留个脚印```````  
作者: kaikai    时间: 2018-10-19 15:34

哈哈 我支持你
作者: 生物小菜鸟    时间: 2018-10-21 11:54

怎么就没人拜我为偶像那?? ~  
作者: 榴榴莲    时间: 2018-10-29 06:54

站个位在说  
作者: 快乐小郎    时间: 2018-11-19 17:10

干细胞我这辈子就是看好你
作者: immail    时间: 2018-11-30 17:40

楼上的稍等啦  
作者: tuting    时间: 2018-12-5 01:57

好啊,谢楼主




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5