干细胞之家 - 中国干细胞行业门户第一站

标题: Published 23 July 2001. doi:10.1083/jcb.200106124 [打印本页]

作者: 杨柳    时间: 2009-3-5 23:34     标题: Published 23 July 2001. doi:10.1083/jcb.200106124

Abstract$ a3 n6 l% [. w$ H, q* Z+ T4 a
2 k* z) e8 k+ i
PDF (Full Text)/ H2 h% m% y* n, N

: `% Z  V/ u9 d/ N2 AAlert me when this article is cited
! J2 U8 Z! K. K- N6 L# }
& r8 _+ H5 ?; R# Q0 ~- S2 a* C2 NCitation Map; Z' G$ {& U. x% [$ Z

- @; m) o% I* s0 Q. R# e! pServices
/ B1 ~; a* O2 D4 a* w: a+ G1 o  q% y4 n' O" e9 [2 B
Alert me to new content in the JCB
( \6 t$ B* \/ s* g
5 ]7 F* m( p6 I2 \1 f9 uDownload to citation manager, R4 l% [# w% d( D7 }

$ T" t, H. p6 O2 Y; l" fCited by other online articles) C6 [) R% C( ~3 F7 R1 R  F

& D  i- P4 {/ J3 f. v9 CGoogle Scholar
) ?+ S$ O) M: v* B! g' H3 N; ^# n0 V) x& `9 \( d* Q* m% f+ D
Articles by Miner, J. H., |( ~0 ~( L1 ^& B9 [7 E- }
3 t; m( ]% m, k+ u& R+ i
Articles citing this Article
5 K9 k6 n$ Y8 r$ D
* a4 w9 v6 A  M& _PubMed
- e) @3 E3 t" ^* A7 E
' o- M2 y4 P& R5 H8 H9 I8 w2 g4 mPubMed Citation; l. S% x% d* D& y, l/ _: J
* U  W; R. q, v! ?( W+ W8 x' \
Articles by Miner, J. H.- J" t# u6 ?! W: ~2 w
; Y# \' L  j6 c. U
Pubmed/NCBI databasesGene GEO Profiles
9 i8 ^) `5 B* V1 G
+ M+ s- P- n# e1 u, ^2 \Nucleotide Protein0 e0 |7 J8 t3 w# l0 H
, {3 F7 h- B/ M
UniGene
$ b2 l- }( w7 Z
( z2 P& [* f3 y$ Y5 g? The Rockefeller University Press, 0021-9525/2001/7/257 $5.007 L: t5 t- p+ T# H5 N: S

  U/ w7 Y# Y5 H8 r$ ]The Journal of Cell Biology, Volume 154, Number 2, July 23, 2001 257-2608 X# F1 d$ C; w* R7 q$ \
0 {) T+ B+ l: U% h- h
Comment
0 n6 E5 [( c& y8 N4 B5 Z4 L2 `% L9 K/ X+ P- `
Mystery solved : discovery of a novel integrin ligand in the developing kidney& j. R+ E+ n+ ^4 A% V
- [5 g* k0 g3 t' I3 m5 P8 i5 H# V
Jeffrey H. Miner
; s+ q$ c- z0 }/ T1 Q, B0 x
4 ~& e* J2 s" hDepartment of Internal Medicine/Renal Division, and Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
+ G/ Y3 O1 _. ^& ?1 U6 K& S' A8 T  a+ P$ B/ K
Address correspondence to Jeffrey H. Miner, Washington University School of Medicine, Renal Division, Box 8126, 660 South Euclid Ave., St. Louis, MO 63110. Tel.: (314) 362-8235. Fax: (314) 362-8237. E-mail: minerj@pcg.wustl.edu( o5 ^1 I9 M) v" n! s, Y
* {- C( b$ G+ O2 P
Abstract! P) F- u6 ?0 Y, h- q

' ^* {( Z- a# sMutant mice lacking the integrin 8 subunit exhibit variable defects in kidney development with most mutants missing both kidneys. Several lines of evidence indicate that the known extracellular matrix ligands for integrin 8?1 are either dispensable for or not involved in 8?1 signaling during kidney development. This suggests the presence of an unknown ligand. A novel 8?1 ligand, nephronectin, has now been identified. Nephronectin is a new extracellular matrix protein associated with the Wolffian duct and the ureteric bud, epithelial structures with well-defined roles in kidney development.
/ r  _$ z& M& q9 n% P
0 n/ m& N+ u# Y% `4 e+ k7 aCongenital abnormalities of the kidney and urinary tract are relatively common in the human population, affecting 0.5% of pregnancies. The most severe congenital defects, such as bilateral renal agenesis (absence of both kidneys), result in death shortly after birth, whereas the more common milder anomalies result in dysplasia, cysts, stone formation, vesicoureteral reflux, and sometimes renal failure (Pope et al., 1999; Glassock and Massry, 2001). A better understanding of the mechanisms which regulate both kidney and ureter development at the molecular level is essential for effective treatment and prevention of these congenital disorders. In this issue, Brandenberger et al. (2001) report the identification of nephronectin, a novel extracellular matrix molecule likely to have an important role in kidney development. Understanding the biology of nephronectin should improve prospects for elucidating the causes of congenital kidney malformations.
7 b( J) C0 Z& J+ Z  f; |. ^  j
' B4 ^5 {- h( i9 j: a0 T) cThe developing kidney continues to be an excellent model system for investigating the inter- and intracellular signals involved in branching morphogenesis, mesenchyme to epithelium transitions, vasculogenesis, and cell type-specific gene expression. In the mouse, kidney development begins on the eleventh day of gestation when the ureteric bud, an outgrowth of the Wolffian duct, is induced to grow towards and invade the metanephric mesenchyme (MM)* (Fig. 1) . The MM is a distinct population of loosely arranged mesoderm-derived cells that are determined to form nephrons, the individual filtration units of the definitive (metanephric) kidney. When the ureteric bud invades the MM, it induces condensation, epithelialization, and nephron formation in a subset of the MM. In turn, signals from the MM induce the ureteric bud to branch and grow (Fig. 1), whereupon a new population of MM is induced to form nephrons. This cycle of reciprocal interactions between the ureteric bud and the MM continues throughout gestation and for several weeks postnatally to eventually form 1,500 nephrons per kidney in the mouse (Saxen, 1987; for review see Davies and Bard, 1998).$ R9 G9 c" U$ m/ U4 P  U6 ?3 F

2 h$ }& r& F( m2 @+ }Figure 1. Schematic representation of early kidney development with known and hypothesized locations of nephronectin (yellow) and integrin 8 (red) indicated. The interaction of integrin 8-expressing mesenchymal cells with nephronectin in the ureteric bud basement membrane is critical for normal ureteric bud outgrowth and branching. (A) Embryonic day (e) 10.5. The ureteric bud (UB) has just begun to bud from the Wolffian duct (WD). Nephronectin is associated with the Wolffian duct and ureteric bud basement membranes. Integrin 8 is present on the mesenchymal cells immediately adjacent to basement membranes and elsewhere in the urogenital ridge but not in the MM. (B) e11. The ureteric bud has invaded the MM. Integrin 8 now becomes detectable on the condensing cells in the MM near the tip of the bud. (C) e11.5. The MM has induced the ureteric bud to branch. Nephronectin is found throughout the ureteric bud basement membrane, and mesenchymal cells expressing integrin 8 are found both along the proximal stalk of the ureteric bud and adjacent to the branched ureteric bud.( n& O* L( X$ X& P

/ J0 s* Z. c) x8 X; p$ r) k" m0 A( PThe generation and analysis of mice bearing targeted mutations has been especially instrumental in defining the repertoire of proteins that play important roles in kidney development. Members of many well-known gene families involved in diverse biological pathways have been shown to be required for normal kidney development (for review see Kuure et al., 2000). These include the Wilms' tumor suppressor protein (WT-1), the receptor tyrosine kinase c-ret, its ligand, glial cell line–derived neurotrophic factor, Pax-2, Eya-1, Emx-2, BF-2, Pod1, Lmx1b, p53, BMPs, FGFs, Wnts, Hox proteins, cadherins, integrins, and laminins. In some cases, the mutated gene of interest was not known or predicted to be involved in kidney development. In one example, mice with a mutation in the gene encoding heparan sulfate 2–sulfotransferase, an enzyme involved in proteoglycan synthesis, exhibit renal agenesis due to failure of ureteric bud outgrowth (Bullock et al., 1998). This indicates an important role for one or more sulfated proteoglycans either in the extracellular matrix or on the cell surface. Similar scenarios will likely recur frequently as large scale mouse mutagenesis screens come to fruition.
+ e7 v2 T( T0 s+ A3 Y% _
: R7 S$ B8 l7 n( X# L/ @$ MOne such scenario transpired when a targeted mutation in the integrin 8 chain gene (Itga8) was generated (Muller et al., 1997). At the time, integrin 8 was known to be expressed on the surface of sensory, motor, and other neurons, especially at sites of apposition of their axons to basement membranes. Because 8?1 bound several matrix components, including fibronectin, vitronectin, and tenascin-C (Muller et al., 1995; Schnapp et al., 1995; Varnum-Finney et al., 1995), the expectation was that mutants would have defects in the nervous system, perhaps in outgrowth or pathfinding. Surprisingly, most Itga8-/- mice lacked kidneys and died shortly after birth. (Kidney function is not required in utero but is required postnatally.) However, 32% of homozygotes had at least one kidney, which was smaller than those observed in wild-type mice but nevertheless was functional in a subset of cases. This resulted in a cohort of Itga8-/- mice with one kidney that were viable and fertile. No neuronal defects have been reported in these mutants, but significant defects were found in a subset of vestibular hair cells (Littlewood Evans and Muller, 2000). Despite the presence of functional kidneys in some Itga8 mutants, these data showed that integrin 8 plays an important role in kidney development (Muller et al., 1997).- u/ D+ g) Y  n3 u
' W1 o7 Z4 L7 {
In an attempt to define the role of integrin 8 in kidney development, its expression patterns at early stages of metanephrogenesis in wild-type kidney were determined by immunohistochemistry (Muller et al., 1997). Integrin 8 was clearly expressed on the surface of the induced condensing MM and was also concentrated on the mesenchymal cells adjacent to proximal segments of the ureteric bud (Fig. 1, B and C). Once the condensed MM epithelialized, integrin 8 was no longer detectable. In addition, there was no evidence that the ureteric bud epithelial cells expressed integrin 8. The straightforward interpretation of these results is that binding of integrin 8 on the surface of cells in the MM to a ligand synthesized by the ureteric bud is critical for normal kidney development. The interaction may be necessary to induce or maintain signaling from the MM to the ureteric bud. Alternatively, the interaction itself may result in a conformational change in the ligand, perhaps altering its functional properties. This could affect ureteric bud outgrowth either directly via a different receptor or indirectly by increasing the concentration or accessibility of critical factors secreted by the MM such as glial cell line–derived neurotrophic factor." P2 C3 R; w( t" B

/ a& ?3 W. s+ k4 ?1 C4 \Although it is relatively simple to explain how an integrin on cells in the MM might influence ureteric bud branching and outgrowth within the metanephros, it is more difficult to understand how it could promote initial bud outgrowth from the Wolffian duct towards the MM, a process which is slowed in the Itga8 mutants. This difficulty arises because: (a) the MM is not in direct contact with the Wolffian duct and (b) uninduced MM does not even express integrin 8 (Muller et al., 1997). However, expression of integrin 8 by mesenchymal cells directly adjacent to the Wolffian duct and the nascent ureteric bud could promote bud outgrowth by the same mechanisms discussed above, assuming the ligand is present at early stages of bud outgrowth (and it appears to be; see below). Whatever the mechanism, in order to determine how integrin 8 acts the identity of the ligand needed to be determined.
) z0 U0 p' @7 `, C' G8 l7 j9 Q* ]5 c, h
Could it be one of the known 8?1 ligands? Three of the known ligands, fibronectin, vitronectin, and tenascin-C, were not deposited appropriately in the developing kidney to be considered likely candidates (Muller et al., 1997). A fourth ligand, osteopontin, was expressed in the developing kidney, but mutation of its gene showed that it was not required for kidney development in vivo (Denda et al., 1998; Liaw et al., 1998). By using a soluble alkaline phosphatase-tagged 8?1 dimer (8?1-AP), which presumably bound to the same ligand(s) as the endogenous 8?1, the putative ligand was localized in the developing kidney adjacent to the ureteric bud in a pattern consistent with its being present in the ureteric bud basement membrane (Muller et al., 1997). The putative ligand was therefore present exactly where it needed to be in order to interact with integrin 8?1 on the surface of mesenchymal cells. Furthermore, on a blot the soluble 8?1-AP bound in an arginine-glycine-aspartic acid (RGD)–dependent fashion to several proteins from embryonic kidney, including a major band at 60–90 kD, which did not correspond to the known ligands (Muller et al., 1997). This suggested that a novel ligand for 8?1 existed in developing kidney.
3 e* r0 g# A4 q% f6 y# C
9 t7 m8 h0 `& m; n+ }In this issue, Brandenberger et al. (2001) report the identification and characterization of this novel ligand, nephronectin. By using the soluble 8?1-AP as a specific probe, cDNAs encoding nephronectin were isolated from a bacteriophage expression library. Based on the deduced amino acid sequence, nephronectin is a novel secreted protein, which contains an RGD sequence, five epidermal growth factor–like repeats, and a COOH-terminal domain with homology to MAM repeats. Both epidermal growth factor–like and MAM repeats are thought to mediate protein–protein interactions, so nephronectin likely interacts with itself or with other proteins in the extracellular matrix.8 {+ I4 }+ D: S% f& T/ l- m% \, U

  Q- @1 f9 ?1 h+ D( n) T; EBy generating antisera to nephronectin, Brandenberger et al. (2001) show that it is deposited in the developing kidney in a pattern similar to that revealed by the 8?1-AP probe, primarily in the ureteric bud basement membrane but also in the Wolffian duct basement membrane (Fig. 1) and at low levels in primitive nephron structures. Surprisingly, nephronectin was detected strongly in the glomerular basement membrane of maturing glomeruli. The glomerulus is that part of the nephron where filtration occurs, and the glomerular basement membrane is one important component of the filtration barrier. Therefore, nephronectin may play a role in establishing or maintaining the filtration barrier. However, integrin 8 is not associated with glomerular cells at this stage (Muller et al., 1997). Thus, there may be a receptor other than integrin 8 on glomerular cells that mediates interactions with nephronectin. One possibility is integrin 3, which is expressed by podocytes (glomerular epithelial cells) and required for formation of the glomerular filtration barrier (Kreidberg et al., 1996). However, integrin 3?1-expressing cells did not adhere to an RGD-containing fragment of nephronectin (Brandenberger et al., 2001). Nevertheless, its binding site may be elsewhere in nephronectin, as 3?1 is not a classic RGD-binding integrin. Cells expressing V integrins did bind to the nephronectin fragment (Brandenberger et al., 2001), so it is possible that V integrins on glomerular endothelial cells mediate their binding to nephronectin in the glomerular basement membrane.
. I  m6 B8 W7 m4 Z( i: x8 B8 Q
! e! w, }5 ^  b# k0 B+ qThe expression pattern of nephronectin in the ureteric bud and Wolffian duct is similar to that of laminin-10, composed of the laminin 5, ?1, and 1 chains (Miner et al., 1997; Sorokin et al., 1997). Knockout mice lacking the laminin 5 chain have multiple defects in kidney development, including uni- or bilateral renal agenesis in 20% of mutant embryos. This was associated with defective ureteric bud outgrowth and branching (Miner and Li, 2000). As nephronectin and laminin-10 appear to be colocalized in the Wolffian duct and ureteric bud basement membranes, it is possible that they may interact with each other and/or cooperate to promote efficient ureteric bud outgrowth and branching, either through parallel or common pathways. Alternatively, they may work synergistically with the other matrix molecules and receptors known to be involved in kidney development (for review see Muller and Brandli, 1999).0 p( W3 O* P7 W: X4 r# I& I
/ {( b" U7 ^& F; j- V- k- P
Despite its nephro-centric moniker, nephronectin expression is not restricted to the kidney. Immunohistochemical assays demonstrate that it is widely expressed during development, in most cases associated with basement membranes (Brandenberger et al., 2001). Might nephronectin have a role in the development of other organs? A genetic analysis of nephronectin function will hopefully answer this question and further elucidate the role of the integrin 8?1–nephronectin interaction in ureteric bud outgrowth and nephrogenesis.% ]7 C2 r- Q7 B% @6 O3 n# w

$ N. S, x' q- x$ c. ?4 a/ y( o* pReferences
) Q) J/ k9 n( K: y
) t: C$ w6 ?0 ~0 S& J5 Y) ~Brandenberger, R., A. Schmidt, J. Linton, D. Wang, C. Backus, S. Denda, U. Muller, and L.F. Reichardt. 2001. Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin 8?1 in the embryonic kidney. J. Cell Biol. 154:447–458.1 S; M# O* V7 n% C9 J/ W! L
# q$ E% I/ W  l; O0 x6 V; V7 m, B( L
Bullock, S.L., J.M. Fletcher, R.S. Beddington, and V.A. Wilson. 1998. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12:1894–1906.
- B" K% d  Q3 x7 M4 X) W# V' Z* v  L7 o5 Z) k* M
Davies, J.A., and J.B.L. Bard. 1998. The development of the kidney. Curr. Topics Dev. Biol. 39:245–300.
2 b! s- x5 B- `( _" C! p# R2 x, M' q, B" _8 ?4 x& O/ ~
Denda, S., L.F. Reichardt, and U. Muller. 1998. Identification of osteopontin as a novel ligand for the integrin alpha8 beta1 and potential roles for this integrin-ligand interaction in kidney morphogenesis. Mol. Biol. Cell. 9:1425–1435.
2 m2 _- E8 n! N- j( b* [0 D/ x$ T# v- G
Glassock, R.J., and S.G. Massry. 2001. Other congenital disorders. Massry and Glassock's Textbook of Nephrology. S.G. Massry and R.J. Glassock, editors. Lippincott Williams & Wilkins, Philadelphia, PA. 865–868.
1 L% ~* `1 i+ T) f( h# d' \* N1 ?# L* ?# d1 t
Kreidberg, J.A., M.J. Donovan, S.L. Goldstein, H. Rennke, K. Shepherd, R.C. Jones, and R. Jaenisch. 1996. Alpha 3 beta 1 integrin has a crucial role in kidney and lung organogenesis. Development. 122:3537–3547.
0 G4 O7 J$ u# N) w/ y9 Y/ @2 m" J
1 J" l7 a, c3 z% nKuure, S., R. Vuolteenaho, and S. Vainio. 2000. Kidney morphogenesis: cellular and molecular regulation. Mech. Dev. 92:31–45.
) W1 a) H( k, ]% ?/ i' n" |% \; X5 u
Liaw, L., D.E. Birk, C.B. Ballas, J.S. Whitsitt, J.M. Davidson, and B.L. Hogan. 1998. Altered wound healing in mice lacking a functional osteopontin gene (spp1). J. Clin. Invest. 101:1468–1478.5 }7 }  f- u$ H. j9 {. ^% p

8 d- u/ w2 b! M% M+ lLittlewood Evans, A., and U. Muller. 2000. Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin alpha8beta1. Nat. Genet. 24:424–428.( r  |! I, ^+ R; x  |

1 B5 M/ }! K7 U& `Miner, J.H., and C. Li. 2000. Defective glomerulogenesis in the absence of laminin 5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev. Biol. 217:278–289.
" }. T; D7 n7 t+ l* w  l; p! r% z) H# I: N, s6 w7 Q4 }& U
Miner, J.H., B.L. Patton, S.I. Lentz, D.J. Gilbert, W.D. Snider, N.A. Jenkins, N.G. Copeland, and J.R. Sanes. 1997. The laminin  chains: expression, developmental transitions, and chromosomal locations of 1–5, identification of heterotrimeric laminins 8–11, and cloning of a novel 3 isoform. J. Cell Biol. 137:685–701.
6 N4 X, b4 R1 v0 O5 V
+ S: c' x/ x2 A$ Q* {8 BMuller, U., and A.W. Brandli. 1999. Cell adhesion molecules and extracellular-matrix constituents in kidney development and disease. J. Cell Sci. 112:3855–3867.$ ]1 ~4 d! @  v0 C
$ _) u  D% t- B. {$ B: s3 v
Muller, U., B. Bossy, K. Venstrom, and L.F. Reichardt. 1995. Integrin alpha 8 beta 1 promotes attachment, cell spreading, and neurite outgrowth on fibronectin. Mol. Biol. Cell. 6:433–448." H9 o. ~8 |9 q% A

$ N- t, ]; s' w) P& eMuller, U., D. Wang, S. Denda, J.J. Meneses, R.A. Pedersen, and L.F. Reichardt. 1997. Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell. 88:603–613.% `, w( V# I, D7 u7 `
5 d+ z0 T  J; S4 n
Pope, J.C., IV, J.W. Brock III, M.C. Adams, F.D. Stephens, and I. Ichikawa. 1999. How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J. Am. Soc. Nephrol. 10:2018–2028.
7 k7 l) ]* p8 l
, U0 J$ v; y) U9 E6 O1 {* ASaxen, L. 1987. Organogenesis of the kidney. Cambridge University Press, Cambridge, UK. 173 pp.3 l0 E' l. y0 M
8 C, t$ c- U& ^
Schnapp, L.M., N. Hatch, D.M. Ramos, I.V. Klimanskaya, D. Sheppard, and R. Pytela. 1995. The human integrin alpha 8 beta 1 functions as a receptor for tenascin, fibronectin, and vitronectin. J. Biol. Chem. 270:23196–23202.
- q+ \  q# [8 x1 p- m  B
% Q- ]  z" W9 p. r0 c' kSorokin, L.M., F. Pausch, M. Durbeej, and P. Ekblom. 1997. Differential expression of five laminin  (1-5) chains in developing and adult mouse kidney. Dev. Dyn. 210:446–462.
# t# I" w  C' u% n; x1 x8 \; |9 d. S* l3 K- v
Varnum-Finney, B., K. Venstrom, U. Muller, R. Kypta, C. Backus, M. Chiquet, and L.F. Reichardt. 1995. The integrin receptor alpha 8 beta 1 mediates interactions of embryonic chick motor and sensory neurons with tenascin-C. Neuron. 14:1213–1222.(This Article)
作者: bluesuns    时间: 2015-6-19 08:17

我来了~~~~~~~~~ 闪人~~~~~~~~~~~~~~~~  
作者: txxxtyq    时间: 2015-6-22 20:08

初来乍到,请多多关照。。。  
作者: biobio    时间: 2015-6-27 11:35

回帖是种美德.  
作者: 舒思    时间: 2015-6-30 14:27

似曾相识的感觉  
作者: haha3245    时间: 2015-7-10 11:10

慢慢来,呵呵  
作者: dypnr    时间: 2015-7-19 13:49

一个有信念者所开发出的力量,大于99个只有兴趣者。  
作者: tempo    时间: 2015-8-13 18:14

偶真幸运哦...  
作者: 橙味绿茶    时间: 2015-8-17 08:35

人气还要再提高  
作者: yukun    时间: 2015-8-21 12:16

支持~~顶顶~~~  
作者: laoli1999    时间: 2015-8-23 03:15

站个位在说  
作者: 榴榴莲    时间: 2015-8-25 21:54

厉害!强~~~~没的说了!  
作者: beautylive    时间: 2015-9-4 12:09

干细胞从业人员  
作者: nauticus    时间: 2015-9-11 10:44

我想要`~  
作者: 舒思    时间: 2015-9-14 21:01

免疫细胞疗法治疗肿瘤有效  
作者: 龙水生    时间: 2015-10-8 19:16

支持你加分  
作者: 依旧随遇而安    时间: 2015-10-19 15:27

今天的干细胞研究资料更新很多呀
作者: 龙水生    时间: 2015-10-20 12:42

我在顶贴~!~  
作者: 依旧随遇而安    时间: 2015-11-16 09:42

一楼的位置好啊..  
作者: MIYAGI    时间: 2015-12-8 16:27

我想要`~  
作者: nauticus    时间: 2016-2-3 22:43

不错,感谢楼主
作者: renee    时间: 2016-2-10 09:43

快毕业了 希望有个好工作 干细胞还是不错的方向
作者: tian2006    时间: 2016-3-3 11:18

干细胞研究还要面向临床
作者: netlover    时间: 2016-4-27 17:32

不错不错.,..我喜欢  
作者: 安安    时间: 2016-4-29 16:43

呵呵 那就好好玩吧~~~~  
作者: IPS干细胞    时间: 2016-5-16 15:02

病毒转染干细胞
作者: 安生    时间: 2016-5-19 18:43

我仅代表干细胞之家论坛前来支持,感谢楼主!  
作者: tempo    时间: 2016-5-24 18:34

谢谢哦  
作者: biopxl    时间: 2016-6-6 17:30

有才的不在少数啊  
作者: wq90    时间: 2016-6-28 19:17

朕要休息了..............  
作者: biopxl    时间: 2016-7-11 21:39

不错的东西  持续关注  
作者: foxok    时间: 2016-7-30 21:04

加油啊!偶一定会追随你左右,偶坚定此贴必然会起到抛砖引玉的作用~  
作者: 甘泉    时间: 2016-8-7 15:27

水至清则无鱼,人至贱则无敌!  
作者: 修复者    时间: 2016-8-14 21:35

呵呵,明白了  
作者: MIYAGI    时间: 2016-8-22 22:17

干细胞研究还要面向临床
作者: dypnr    时间: 2016-9-4 21:31

支持~~顶顶~~~  
作者: 昕昕    时间: 2016-9-7 10:17

这贴?不回都不行啊  
作者: 修复者    时间: 2016-9-8 11:43

文笔流畅,修辞得体,深得魏晋诸朝遗风,更将唐风宋骨发扬得入木三分,能在有生之年看见楼主的这个帖子。实在是我三生之幸啊。  
作者: 咖啡功夫猫    时间: 2016-11-3 16:01

你加油吧  
作者: 榴榴莲    时间: 2016-11-19 17:01

不错,看看。  
作者: 20130827    时间: 2016-11-24 21:41

先看看怎么样!  
作者: syt7000    时间: 2016-12-15 01:53

今天临床的资料更新很多呀
作者: 小小C    时间: 2016-12-18 15:36

非常感谢楼主,楼主万岁万岁万万岁!  
作者: tian2006    时间: 2016-12-28 09:43

加油啊!偶一定会追随你左右,偶坚定此贴必然会起到抛砖引玉的作用~  
作者: HongHong    时间: 2017-1-13 08:35

转基因动物
作者: dd赤焰    时间: 2017-1-15 01:55

文笔流畅,修辞得体,深得魏晋诸朝遗风,更将唐风宋骨发扬得入木三分,能在有生之年看见楼主的这个帖子。实在是我三生之幸啊。  
作者: 榴榴莲    时间: 2017-1-30 18:43

说的不错  
作者: 科研人    时间: 2017-2-2 08:35

我帮你 喝喝  
作者: tuting    时间: 2017-2-16 20:35

不错,看看。  
作者: xiaomage    时间: 2017-2-21 22:01

呵呵 哪天得看看 `~~~~  
作者: 丸子    时间: 2017-2-26 19:43

人气还要再提高  
作者: 石头111    时间: 2017-3-17 19:46

越办越好~~~~~~~~~`  
作者: biopxl    时间: 2017-3-31 10:27

我十目一行也还是看不懂啊  
作者: pcr    时间: 2017-4-3 05:20

文笔流畅,修辞得体,深得魏晋诸朝遗风,更将唐风宋骨发扬得入木三分,能在有生之年看见楼主的这个帖子。实在是我三生之幸啊。  
作者: DAIMAND    时间: 2017-4-9 11:17

dddddddddddddd  
作者: 3344555    时间: 2017-4-13 20:36

感谢党和人民的关爱~~~  
作者: pcr    时间: 2017-4-29 12:43

老大,我好崇拜你哟  
作者: na602    时间: 2017-5-4 15:59

神经干细胞
作者: doors    时间: 2017-5-7 09:10

说的真有道理啊!
作者: hmhy    时间: 2017-8-11 11:27

我来了~~~~~~~~~ 闪人~~~~~~~~~~~~~~~~  
作者: 黄山    时间: 2017-8-16 07:05

回复一下  
作者: 海小鱼    时间: 2017-8-18 09:27

干细胞我这辈子就是看好你
作者: www1202000    时间: 2017-8-21 17:38

这贴?不回都不行啊  
作者: 石头111    时间: 2017-9-2 20:08

我该不会是最后一个顶的吧  
作者: SCISCI    时间: 2017-9-7 13:42

干细胞分化技术
作者: leeking    时间: 2017-9-12 22:19

嘿嘿  
作者: 陈晴    时间: 2017-9-24 11:10

真好。。。。。。。。。  
作者: yunshu    时间: 2017-9-24 15:35

几头雾水…  
作者: 水木清华    时间: 2017-9-30 07:52

这个贴不错!!!!!看了之后就要回复贴子,呵呵  
作者: 三星    时间: 2017-9-30 13:01

我想要`~  
作者: doors    时间: 2017-10-5 05:23

呵呵 高高实在是高~~~~~  
作者: dongmei    时间: 2017-10-12 19:50

加油站加油  
作者: ines    时间: 2017-10-13 10:18

造血干细胞
作者: 龙水生    时间: 2017-11-27 08:01

干细胞治疗  
作者: xuguofeng    时间: 2017-12-2 06:48

非常感谢楼主,楼主万岁万岁万万岁!  
作者: 大小年    时间: 2017-12-12 13:53

我喜欢这个贴子  
作者: vsill    时间: 2017-12-16 14:27

怎么就没人拜我为偶像那?? ~  
作者: wq90    时间: 2017-12-31 01:35

感谢党和人民的关爱~~~  
作者: 蝶澈    时间: 2018-1-9 04:11

皮肤干细胞
作者: yunshu    时间: 2018-1-28 13:09

天啊. 很好的资源
作者: bluesuns    时间: 2018-2-2 06:28

今天临床的资料更新很多呀
作者: 知足常乐    时间: 2018-2-7 05:59

哦...............  
作者: chongchong    时间: 2018-3-5 03:06

神经干细胞
作者: xiaomage    时间: 2018-4-1 17:16

不对,就是碗是铁的,里边没饭你吃啥去?  
作者: abc987    时间: 2018-4-21 03:24

哈哈,有意思~顶顶 ,继续顶顶。继续顶哦  
作者: 小倔驴    时间: 2018-5-5 04:36

呵呵,找个机会...  
作者: www1202000    时间: 2018-5-28 19:07

是楼主原创吗  
作者: 小倔驴    时间: 2018-6-17 15:43

我仅代表干细胞之家论坛前来支持,感谢楼主!  
作者: 狂奔的蜗牛    时间: 2018-6-18 20:17

真是佩服得六体投地啊  
作者: 蚂蚁    时间: 2018-6-28 03:28

干细胞研究人员的天堂
作者: pcr    时间: 2018-7-17 02:30

支持你就顶你  
作者: 分子工程师    时间: 2018-8-7 16:35

我又回复了  
作者: frogsays    时间: 2018-8-15 19:47

ding   支持  
作者: 罗马星空    时间: 2018-8-16 03:51

我毫不犹豫地把楼主的这个帖子收藏了  
作者: 咖啡功夫猫    时间: 2018-8-27 05:47

不错不错.,..我喜欢  
作者: 旅美学者    时间: 2018-8-29 08:54

胚胎干细胞
作者: 初夏洒脱    时间: 2018-9-12 01:31

真是佩服得六体投地啊  
作者: 旅美学者    时间: 2018-9-22 16:18

我的啦嘿嘿  
作者: chinagalaxy    时间: 2018-10-15 12:25

我有家的感觉~~你知道吗  
作者: 初夏洒脱    时间: 2018-10-18 00:22

我顶啊。接着顶  




欢迎光临 干细胞之家 - 中国干细胞行业门户第一站 (http://www.stemcell8.cn/) Powered by Discuz! X1.5