干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
干细胞之家 - 中国干细胞行业门户第一站 干细胞之家论坛 干细胞文献资源库 藏经阁 Mesenchymal stem cells within tumour stroma promote ...
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 502278|回复: 242
go

Mesenchymal stem cells within tumour stroma promote breast cancer metastasis [复制链接]

Rank: 1

积分
威望
0  
包包
8  
楼主
发表于 2012-5-17 17:15 |只看该作者 |倒序浏览 |打印
Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the: b, Y7 e$ S" m" o9 ?
tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour
0 p1 |! J1 e# [7 P7 K2 Lpathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived humanmesenchymal stem cells,
* K( Z; `: {: iwhen mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their
+ w4 v. F* {" [& x3 Wmetastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour7 _. a/ R" z) G( }1 i2 }* A- E0 o9 k! G/ n
xenograft. The breast cancer cells stimulate de novo secretion of the chemokine CCL5 (also called RANTES) from
. s2 t* w$ T. r2 v3 u% y6 n8 q* J5 }mesenchymal stem cells, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and" b3 d' l4 R. a; P. U* s! Y: l
metastasis. This enhanced metastatic ability is reversible and is dependent on CCL5 signalling through the chemokine0 W4 E6 j, i, ?# R8 h
receptor CCR5. Collectively, these data demonstrate that the tumour microenvironment facilitates metastatic spread by; f, ?' {* O) z
eliciting reversible changes in the phenotype of cancer cells.
" V% _- W- Y3 k9 V7 D3 H; D( tThe origins of the invasive and metastatic phenotypes of carcinoma3 I- j" _! [+ E( j0 P1 V* `8 ?
cells have been the subjects of intense investigation. Whereas some) E* I  u, R: r; h, S. P
current models depict these phenotypes as cell-autonomous alterations
6 `7 S9 s- b8 s& H, f- l: ^0 rspecified by the genomes of cancer cells, alternative views propose
. f/ ]/ W; m: H) Dthat metastatic traits are acquired through exposure of epithelial% V: ]+ j1 I3 ~- [4 e- g
cancer cells to paracrine signals that they receive from mesenchymal9 r0 @! f, |: X: R
cell types within the tumour-associated stroma. Although several" }& ?$ d* {9 K3 j) A
lines of evidence demonstrate the contributions of stromal cells to
5 d; P  U- R& Tprimary tumour growth1, direct experimental demonstration of the1 k& |2 d3 V8 r2 ?/ ?' [# g. Q/ h5 g
influence of these various cells on the metastatic abilities of cancer' i$ z, I3 A* z5 ]
cells has been difficult to obtain. This is due, in part, to the complexity5 s( m4 v* k" B  ?1 ]; c0 K! \
of the mesenchymal cell types that are recruited into the stroma, and' d. w5 X1 H: T7 y2 A
to the elusive nature of the putative paracrine signals that are9 P3 y4 g- x5 s9 F( L
exchanged between the mesenchymal and epithelial compartments. @, M1 w3 N" C! @  O% U
of a tumour. Recent reports proposed that the bone-marrow-derived6 X1 s, t5 x- W7 S1 O# S4 f& R
mesenchymal stem cell (MSC) is a cell type that is recruited in large% ^& h6 [; K3 c, x1 C) a
numbers to the stroma of developing tumours2. To characterize better
, D2 M+ R  E' K- W3 c7 A+ gthe role of this stromal cell in tumorigenesis, we set out to determine
# R( l0 S! f9 X, x4 Swhether MSCs could supply contextual signals that serve to4 a1 `4 p9 ~5 X% y6 y9 h5 {# Z
promote cancer metastasis.8 d# d! ?2 B5 U/ \8 j" ~
Mesenchymal stem cells are pluripotent progenitor cells that contribute( o; n9 q9 @: q0 U& Q
to the maintenance and regeneration of a variety of connective
1 S0 @6 v/ j% ~$ t0 _( W# atissues, including bone, adipose, cartilage and muscle3. Although% n3 ~; ^4 x5 D6 d8 v9 Z! P
MSCs reside predominantly in the bone marrow, they are also distributed
* o3 y1 j* g! w$ m! e/ nthroughout many other tissues, where they are thought to- z5 b) K3 t$ t8 `* S
serve as local sources of dormant stem cells4,5. The contributions of
0 @" z; t' L/ A. M" d$ |MSCs to tissue formation become apparent only in cases of tissue1 O1 r! _& y9 T$ K) Y8 ]
remodelling after injury or chronic inflammation. These conditions
" l$ J% \# r$ S2 }8 ^) j# oare typically accompanied by the release of specific endocrinal signals
! v+ F$ F7 C! R8 A3 ^% r% gfrom the injured or inflamed tissue that are then transmitted to the3 S( X4 |, O" [# v: q- u; Z: B6 Y
bone marrow, leading to the mobilization of multi-potent MSCs and
: U/ t( u" w5 s+ J( Jtheir subsequent recruitment to the damage site6. For example, MSCs
9 g% @& x& E2 T0 P4 u8 E! ~have been shown to contribute to the formation of fibrous scars after* w3 t4 x! F* S! {$ \
injury7.
+ e, C) Z* ^* A. B4 HThe formation of breast carcinomas is often accompanied by a- f0 v* W; v' `) n8 ?8 D) h5 j, X
well-orchestrated desmoplastic reaction, which involves the recruitment
( L* E0 c- J# d3 J+ Qof a variety of stromal cells with both pro- and anti-tumorigenic
, z) \* M' A$ q. R2 Z, ?) t8 v) U' vactivities1. Such response closely resembles wound healing and scar
* p- ]1 K4 k& O9 D5 }% y6 Jformation, and entails the constant deposition of growth factors,. g+ u" K; q$ m3 l% {
cytokines and matrix-remodelling proteins that render the tumour4 V4 U, H, F3 S8 O
site a ‘wound that never heals’8. This suggests that, similar to sites of9 X1 H) u9 G% l$ l
injury, actively growing tumours recruit MSCs through the release of
7 J7 I# o8 [) Vvarious endocrine and paracrine signals. Indeed, as we have found,
7 X. f% ~0 Q9 s# j$ y9 ?: P# Cmouse stroma prepared from developing human MCF7/Ras or
4 U  T8 _* R5 }MDA-MB-231 breast cancer xenografts is rich in cells with an ability: B  v2 ^9 z- R; M5 O
to generate fibroblastoid colony-forming units (CFU-F) in vitro3 s; D- K! B5 u6 S' j
(Supplementary Fig. 1a), a hallmark of MSCs3. The absence of such1 u0 c# f! V' r6 {( c, d2 [2 S
colonies from control Matrigel plugs or from neighbouring tissues. }3 G$ j8 v" J1 e5 _- _. @
(negative control; Supplementary Fig. 1a) suggested that endogenous7 q: [4 H$ z6 Q5 w2 V$ t" |+ J
murine MSCs localize specifically to sites of neoplasia.
$ h. b" U: R" e) Q- dTo investigate whether human breast cancer cells also have the
+ @+ ?6 ?! T8 B; o; }4 @ability to attract human MSCs, we established a transwell assay+ \( \. Q7 O- D  G  h* v& n
in which bone-marrow-derived human MSCs were allowed to! ^! y- n2 H0 r0 E
migrate towards media derived from MCF7/Ras or MDA-MB-231
) i" _9 _( ?! y' `4 J# d( E, Gcultures. We found that human MSCs migrated much more avidly4 r7 i0 q1 _4 F9 C# H( `
(,11-fold more) towards media derived from these cancer cells
. P( J8 _6 D; _3 \than towards control media (Supplementary Fig. 1b). More importantly,
5 f* H5 r" F$ jgreen fluorescent protein (GFP)-labelled human MSCs
# l6 }1 r0 N" R/ iinfused into the venous circulation of mice bearing MCF7/Ras$ M1 Q8 i1 a0 i4 r/ a" Z- D3 S
or MDA-MB-231 human breast cancer xenografts localized specifically# `. Y4 V9 _; }( x: _- j) k/ O2 a
to the developing tumours, with no observable accumulation
5 D! H  Y) D5 E! ^/ Y- win other tissues, such as the kidneys (Supplementary Fig. 1c), liver7 a2 l8 Y( Q3 T
and spleen (data not shown). Such findings indicated that MSCs
1 w+ O" V: F  B' q6 C; bare specifically recruited by subcutaneous breast xenografts, and corroborated$ }, C: o/ L0 X; G
recent studies that described the localization of systemically5 s* N# o& x6 x, p& U4 }6 E
infused MSCs to other types of malignancy, such as gliomas9,10,0 @$ `2 g' Z1 u
colon carcinomas11,12, ovarian carcinomas13, Kaposi’s sarcomas14 and
0 _2 J" O6 j9 V7 s# |0 ~* Lmelanomas15.MSCs enhance breast cancer metastasis
$ E+ _' o4 y  U+ J; y/ MTo investigate the functional consequences of the heterotypic interactions
6 ]- a1 k* ^3 A# r3 c  f: Sbetween MSCs and mammary carcinoma cells, we established3 [" ~/ f% M' F  Y' x
a xenograft model in which GFP-labelled MCF7/Ras, MDA-MB-231," d$ m; H! ^5 w/ A* K0 ], R
MDA-MB-435 and HMLER (see Methods) human breast cancer
, O5 [: W& U5 n, g$ b7 |. O9 zcells (BCCs) were mixed with bone-marrow-derived human MSCs
  O& _; z# e5 k# s# m- B% T7 ?(hereafter referred to as MSCs) and injected subcutaneously into
5 y8 m+ ?' M$ A. R9 i% m8 |) Y* qimmunocompromised mice. The growth kinetics of the MSCcontaining1 A0 g5 R. B, Q6 T. n$ Y) A
tumours (BCCs plus MSCs) were compared to those of
: a' O$ g8 k, \' R/ B: CBCCs injected alone (BCCs) over the subsequent 8–12 weeks, after
- h& n7 ]$ H3 r9 ?% ]0 E9 x. U# Q  ~which the histopathology of the resulting tumours was studied.1 b: [5 `, Y! ]8 Y
We found that MSCs accelerated the growth of MCF7/Ras
" C* W+ F  x: \tumours without affecting the kinetics of MDA-MB-231-, MDAMB-7 s. @2 d: @' ^5 p) A6 O$ R3 g( X% }8 F. c1 Q
435- or HMLER-containing tumours (Fig. 1a). More importantly,
( O1 V/ P8 m: b' I; P4 {$ wwhereas mice carrying tumours composed only of BCCs; q6 X( }! R, p
exhibited few microscopic metastases in the lungs (Fig. 1b, d), mice# r& @. J, x" e. F3 l
bearing the mixed MCF7/Ras1MSC, MDA-MB-2311MSC, MDAMB-  O# w/ _' d) H
4351MSC and HMLER1MSC tumours displayed a marked
4 b8 `, ~, E' z! \' w, ^increase in the numbers of micro- and macroscopic lung metastases: h7 p4 U7 h. z/ \
(Fig. 1b, d). Normalized counts of the metastatic nodules in the lungs
& H$ ^) g' F0 e6 G4 W7 L. a  u; }' Oof BCC1MSC-bearing mice compared to their BCC-control littermates; O/ G9 d) {- X" w" k+ J; B) e
revealed two-, three-, four- and sevenfold enhancements in, }9 {! }  Y3 W# s5 F9 [
the overall numbers of detectable HMLER, MDA-MB-435, MCF7/( |8 x# R" {& X/ v. D8 I
Ras and MDA-MB-231 metastatic deposits, respectively (Fig. 1c).
( w& K1 }" |3 i  P8 F# H4 kFurthermore, in contrast to the MDA-MB-231-bearing mice, the% _' z  U+ k" x0 A+ @3 y& H
MDA-MB-2311MSC-bearing mice showed metastases to various
! d: y9 x6 ]3 ]% t4 n  _other tissues, including the mammary glands (Supplementary
# R( x! e; V8 n: HTable 1). Although all four of the tested cell lines exhibited enhanced1 a4 y  S& m7 H; c" k
metastatic potential after admixture of MSCs, we chose to focus3 i. R9 l4 v" y* p
further analysis on the MDA-MB-231 tumour model, because it
, K; d* P! t! x: ?" mdisplayed the greatest relative increase in MSC-induced metastasis. |4 d5 B/ w# p' R5 H; Q
without any concomitant effect on either tumour cell proliferation
% D4 e$ ?- U6 ~6 A3 W3 N+ {(as revealed by Ki67 staining; Supplementary Fig. 2) or overall primary
! Z) j$ M3 X, l/ g& htumour growth kinetics.1 j6 |$ m7 W0 ]! r) f' W( b
We note that admixture of other types of mesenchymal cells—8 ~" C8 m5 R; f4 t# @5 n6 H1 t
specifically WI-38 or BJ human fibroblasts (Supplementary Fig. 39 a+ F9 }+ l# {/ Z
and data not shown)—to MDA-MB-231 cancer cells before injection, {1 J4 O" P' [
into host mice did not result in either enhanced growth kinetics
! A' l% u$ |: }  v" @, {7 [(Supplementary Fig. 3a, b) or increased numbers of lung metastases
  G* a: ^3 {: R: w. \, }1 x(Supplementary Fig. 3c, d). Taken together, these observations indicated
" R' p; C4 m. |3 qthat the metastasis-enhancing powers were a specific property9 R; d* `2 R9 L. a0 Q( k- c& h
of admixed MSCs or derivatives thereof.
+ f5 Z6 O* L" l. c. o. aReversible metastasis  l  }+ V" C4 B/ |
Implantation of MSCs either contralaterally to MDA-MB-231 cells or3 l/ Y5 J) o  N* K5 O7 y2 `+ z
in nearby separate sites of injection did not affect the metastatic
0 w, Q$ \2 `& T  g6 d4 U" p. opotential of the resulting primary tumours (data not shown), indicating
; K1 M: R8 F1 B4 Jthat MSCs could enhance cancer metastasis only when they
. [6 \+ X$ V0 n! }1 cwere in close proximity to the engrafted BCCs. This influence might
2 V3 }  G- x5 [5 z+ Z  n1 A6 |8 _be ascribed to various effects that MSCs exert on the commingled; p, n0 G1 R! {; {
carcinoma cells. Thus, the MSCs might favour the outgrowth of rare9 ^! V9 e) b" {  F
variants within the MDA-MB-231 cell populations that exhibit3 z, k+ n+ C+ z% L  H0 y) v
unusually high metastatic powers. Alternatively, the MSCs might3 b, \& }' M+ U, B2 h# @5 n
cause otherwise weakly metastatic MDA-MB-231 cells to acquire
3 L* A) B& z! R3 C0 T* M* _" kenhanced metastatic abilities. This latter mechanism suggests the' c3 W( g8 E( s  I% L
possibility that the acquisition of the metastatic phenotype might
2 e# s6 l7 F5 A$ C# obe reversible, in that carcinoma cells might revert to a lower metastatic
9 O; V" |# f5 e) l9 @state once they were no longer in close contact with MSCs.
2 \% D+ s$ G; j" K1 r& ATo resolve between these two mechanisms, explants of MDA-MB-
! {3 t, ~5 ]9 |) B231 cells were prepared from BCC plus MSC primary tumours (Texplants)
* I; O: ]" u7 Q4 O6 S! N' d8 A% r* eas well as from their derived lung metastases (L-explants),, o/ i# l/ v+ h9 W
expanded in vitro, cleared from contaminating stromal components,$ P) C  x! C8 Q, ]; y8 @
and then re-injected into subcutaneous sites in host mice in order' y/ D+ B2 l/ C( W( O5 o: ?9 k! f1 X
to evaluate their respective metastatic powers (Fig. 2a). Although
9 K4 P1 g* l3 x0 bthe growth rate of the resulting L-explant primary tumours was
' c# S3 x* v5 j+ P, A% \marginally enhanced compared to their T-explant counterparts
. g5 u6 o6 \6 @0 n(Fig. 2b, c), these L-explant cells were no more metastatic than the
+ b3 u9 X9 O) v3 fparental T-explant cancer cells (Fig. 2d). This suggested that the" @4 F9 I8 T- N; L6 w
a
4 V6 e. y- Q! a- n+ h* Sc d  u* P1 D: C. R! U% p5 S% b: a& s
Days after injection
6 @) i3 @- V! S8 i% mTumour volume (mm3)
0 y: U9 n# l1 B) x+ z  s8 J10 17 24 31 38 46 72 80 89 13 19 26 33 40 47 54 61 68 75 81 10 19 24 31 38 46( q0 a4 W/ J( G8 w  P( d
b
* H& {: g" h# T1 mm 1 mm& _! W4 Q5 b- c, B' N4 ~3 {. d
1 mm 1 mm
0 h& w  r1 Q# m300 μm1 ]8 x  V5 }* V% i
HMLER HMLER+MSC
4 l0 f2 H  j9 u. t2 J' RMDA-MB-231 MDA-MB-231+MSC
/ {& Z7 q1 [( HMDA-MB-435 MDA-MB-435+MSC
$ {5 V$ O" d2 i% gMCF7/Ras MCF7/Ras+MSC4 C: c. d# h- t2 d5 O
100 μm, q4 H9 n* k4 _, ^% o0 l8 h$ f: `( a& @
300 μm
- E; y) K7 D$ v; k9 Y! D/ A100 μm
. v, H* o2 o) F5 z, z) N+ @. N" xMDA-MB-231% u2 x) w# M  Q7 w. ~) I4 b  P7 T7 g
MDA-MB-435
' m+ G7 S, h1 P7 V7 o  \  b* O" NMCF7/Ras
" }# W) @! V/ v/ \, r2 o* W**
  T/ S2 c' v  S, h, h2 fMetastasis index (fold)
' R# H8 K3 E: d/ v, ^- W05 I0 A0 ~7 c8 l! i) ?$ {% Z7 M  v
1) n* E/ i8 [  K) t# U+ o. K+ k6 Z
2% u7 f# p9 F9 ~. Z: N
3) c* C9 ~7 m/ l; x: }# J8 u0 x
4
. g8 B; k" w& d0 X) Z) S$ E52 d" s  ~) [3 d+ i) Y# b
6. a/ B' t5 h" S5 x; a  N6 n
7) h, V7 x. e& y0 M5 |  f
8( s! y5 g$ p4 `- J7 }- G1 P
9
- |3 T9 j$ [9 m, l- ^# E*
6 P9 H" R4 n! l8 L& x0 D( B- u7 {**
& w/ X* R: E+ T4 t0 Z# z! O' E6 E**! I  o4 T& p$ v- X/ y4 _
MSC – + – + – + – +' M" b/ u+ P' `+ P( d
*/ |9 S1 @8 \& Z0 D$ i
HMLER! y9 ?% T) y) R2 K! ~' ~$ v+ j
700 1,200; q9 S& u# R# ~
1,000/ d: q; D, e) R  r7 A' i
800
  R" K" q- d3 k' |( l: O600  `: I- v7 L3 F' W
400% N# e5 k# T8 f9 p- F
200
2 G& G. ^$ U% S( B0
! C5 E3 i5 Z* t' t800
) C/ m' |( r+ @& @, A7 Q700
+ X, F( l' p4 M! }, S600
5 G6 G* ^: i$ L+ w3 v. K4 D500: Q, U! x1 |) B5 C6 ^/ d( s
400
; ~$ ^+ z  ]+ d300
0 Y: {; k: h7 X' P200
5 u4 d4 u4 X1 R3 p5 P1 a100, M1 {8 V0 Y5 P
0
  a1 b0 }6 s, D2 c2 b" n3,500
. R4 R- ~4 H/ O/ d0 I0
6 s3 c& M6 O  J# @% S8 G500- i$ n* z' }2 T) s. G: i' R
1,000+ v4 C! X: ~6 E4 ]1 R
1,500
5 A) R" C4 h; J2,000) R5 }$ b5 T9 x6 C4 `5 Q
2,500
; Z/ C) u1 F! [& Z& L600 3,000/ w( o  z$ R# i- g  o# q7 |7 G) i
500
! u, }- v8 P. [) o" t/ m400
' z6 q: e( I. ]+ W) e4 p3009 A# A' a* D2 V: h) ^+ P* U
200
2 s, H: s: k( [! A  c  S, b$ a/ N100% f; z- J7 U2 O+ z# F2 M9 R' U
0
! x* @" g8 O5 X2 ^, C/ h( s0 21 31 38 49 56 63 70 78: A8 v. F9 ~" ?
MCF7/Ras alone
$ `- T8 S/ ]' xMCF7/Ras+MSC
# u, A$ A) u7 {* aMDA-MB-231 alone
) B! b) Q- o/ V/ x5 ZMDA-MB-231+MSC+ G# v+ X  L. {$ ?$ G
MDA-MB-435 alone% e* u. S! q1 _, ~
MDA-MB-435+MSC$ b6 _- a8 F2 D+ }; J
HMLER alone1 z0 }# a& ^1 F  F! i2 F5 W
HMLER+MSC
  A# U" ^; H# s5 X* R" VHMLER HMLER+MSC
" Q( w4 d. f" CMCF7/Ras MCF7/Ras+MSC
- [% n; u/ ?# v& F% u5 L1 d7 _MDA-MB-231 MDA-MB-231+MSC
! B4 v- V# l; ?! t, ]( C. rMDA-MB-435 MDA-MB-435+MSC3 V  B( t& a; Z( v
Figure 1 | MSCs promote breast cancer metastasis. a, Tumour volume. B( Z0 Y3 f' q# q. ]4 |+ W7 o! J
measurements (mean6s.e.m.) of 500,000 GFP-labelled BCCs injected( V: |& o6 a* e
subcutaneously into nude mice with or without 1.53106 MSCs.
" ]/ c7 t  `3 E- {! T1 S! v1 LRepresentative data from multiple experiments are shown. Diamonds, BCCs! H  O& ?, S+ h
alone, n55–7 mice per group; squares, BCCs plus MSCs, n55–8 mice per
) e4 z/ y! {; ~& L% s+ z$ ?4 |# Ngroup. b, Representative bright-field/fluorescence images of lungs of mice
/ q, o6 p6 j5 g3 J  rbearing the indicated tumours. Cancer colonies are in green. MCF7/Rasbearing4 C* ?2 Y7 B4 J7 j
mice were killed at approximately day 150 to allow these tumours to; |- Y6 H, m! t- S- z8 @
grow to comparable sizes to their MCF7/Ras1MSC counterparts. c, The: [% h4 X/ C& f/ ~4 m5 W
lung metastasis indices pooled within each cohort of mice in a are expressed# j1 I( T/ a  \' r: |
as fold increase (6s.e.m.) over controls. Data shown are representative of
7 ?7 _# l3 `2 P3 Emultiple repeats. Asterisk, P,0.01, double asterisk, P,0.05 using onetailed9 `9 ?3 ^& `: z. I, r& s. `! X' Q. F
Student’s t-test. d, Representative haematoxylin-and-eosin-stained
2 {8 Q3 u; n" R9 |2 M" B7 F* t6 Ksections of lungs of mice bearing the indicated tumours. Metastases are( r5 S# z8 v+ B- w5 t5 k
delineated by a dashed line.MSC-induced metastatic powers reflected a reversibly induced trait
) v* F) R" g: K. M, vof the MDA-MB-231 cells, and that the ability of these cells to metastasize8 E+ i9 ]% y% }0 t) c  F0 x
to the lungs was a consequence of their ‘education’ by MSCs in
+ K- X5 m" K- W9 G" V6 Ithe primary tumour rather than the selection of rare variants of
2 Z. g# ?" F& _$ R/ c. IMDA-MB-231 cells that display elevated metastatic potency in a. {, ?$ Y4 o6 H* I' C) u9 S
stable fashion.
8 p) x# |' l9 w! R) V" a+ @% TThe effects that the MSCs exerted on the BCCs might have$ S8 q. X% E* V
occurred within the site of primary tumour formation. Alternatively,$ y4 c# {/ G; ]+ z- C
the MSCs might have accompanied the metastasizing BCCs
& f! E( U. [5 j  |' m$ c9 mto sites of metastasis formation. To distinguish between these two  f3 w1 q5 `) N8 D
possibilities, we admixed ds-red-labelled MSCs to GFP-labelled" ~6 C# s3 c( Z
MDA-MB-231 cells and implanted the mixture subcutaneously in
; [/ `6 c5 Z: K1 R% T7 xhost mice. We found that the tumour-derived lung metastases contained' J1 v6 V0 C, }- m+ {& I. j! K
green-labelled MDA-MB-231 cells but no detectable redlabelled
" U! W6 ^; ^  C9 KMSCs (or their derivatives; Supplementary Fig. 4a) when: I1 [" R8 n) m$ [
scored 4, 5 or 6 weeks after primary tumour implantation. The; k( Z. T( _# }! G6 S! c2 t6 o" p
absence of red-labelled MSCs from the lung metastatic sites cannot
$ C; v) P  ]1 D, X! x, [* \1 Vbe ascribed to an inhospitable lung parenchyma, as MSCs that lodge
, z1 N$ K$ y, g8 F# |in the lungs of recipient animals after tail-vein infusion survive in that- X$ {% D: ?/ B8 l; k
environment for ,6 weeks after injection (Supplementary Fig. 4b).
% C) v7 V' T0 A5 iHence, it appeared that the admixed MSCs do not migrate in large
( A2 i) D" A$ O/ t/ g; l) knumbers to the sites of metastasis, and that they exerted their prometastatic
5 p( D, _* y8 F* u; b& K  ^' leffects on BCCs in the context of primary tumours.
8 i$ B( }! R8 D" U- UCCL5 in MSC-induced metastasis
# g$ |; T! {6 P' N9 X9 WThe aforementioned observations indicate that MSCs supply locally
9 J9 }* u. a* b3 @: yacting paracrine cues that induce BCCs within primary tumours to% ~8 y$ o$ o- w/ D: T- c$ E
metastasize. To understand this crosstalk better, in vitro co-cultures
8 v4 j: T* b3 E6 `. |( Sof MDA-MB-231 breast cancer cells and MSCs were established and
0 K  C" z) a2 {3 d: g7 dtheir conditioned media were screened for the levels of various cytokines,7 ]# ]; {$ i' E  d0 c. Y: q
chemokines and growth factors using the Luminex-based Bio-
4 l  q2 O3 q9 a6 X. FPlex suspension array system (Fig. 3a). In some cases, the resulting3 t, Z3 @2 ]) {  U
a
' W# H: y7 A+ ?; `. A) h1 rb c d2 G0 f1 h8 k0 Z& U
Days after injection
' U9 u1 W/ Z8 H7 q2 ]Tumour volume: l' l( m3 H, T+ M
(× 100 mm3)) o6 J) l/ o: _/ {* ^1 k0 m" N
09 y! _9 Y9 z4 h+ a
52 ?" V8 o4 T% F- \; x
10* n5 s' P, s; f3 L
153 a: U5 [8 H8 z* q9 A8 g0 W% N! Q
20
$ @0 B1 k) R! k( F25
! g6 |  Q' d6 u) Q1 ~& c$ `- Y5 n14 17 21 24 28 31 34 38 42 45 48 66 71 77
9 q2 M, `0 E  GPrimary tumour explants# o8 ~/ N! `& K8 s
Lung explants
: f' R! D7 K8 G8 TMDA-MB-231
2 u9 S! S/ K( ~1 H/ ^MSC
) s. o" l! f1 t8 R2 B" M+
, j& y. t8 M. d- _Lung explants
6 v  P/ p6 m9 I6 C. APrimary tumour
9 _4 v: l* h0 ?0 I/ y' @+ K( Zexplants; R: b7 {' U2 ~+ v
Antibiotic% Z! I0 T/ A" W( T; g' [
BCC selection
4 J( W& K2 r* ~0 bT-explant
1 B  q2 S4 |& _- I% L; \7 wL-explant
/ k- ~" Z! M$ b: Z# P+ a7 u" iT-explant
# \+ z6 W# L3 a: K" tL-explant4 L1 Z- A, `$ Q
Tumour mass (g)
: }9 ^) a9 d1 v& ^1 q! G7 ?3 @$ m3.0& i8 O/ L9 K- K! K
2.00 _' M4 s, W: {% m# Q' j4 _0 _6 t
1.0. @) [+ I9 W3 F9 |( ^+ F$ R7 y
0 0
* S  K! s+ p( J  A) s& o0.4, {) J* \/ [$ v" I; e7 C
0.8) P3 ]. m0 B' S. Q5 g1 A
1.2
; S2 ^0 N( j( l3 v1.6. A  D$ E# ~; G! L" G) V
2.0* x8 u' z# ?: e& }( G/ ^. z& f1 t! z
#
: W% u% h1 F1 {, ^# D$ sMetastasis index (fold)9 w. P' T, [. N
##, h1 O5 ]8 B( g+ _! Z* o
Figure 2 | MSC-induced increase in the metastasis of MDA-MB-231 cells
' @$ P; n7 z( t1 i; f* @7 Dinvolves reversible mechanisms. a, BCCs were recovered from lung or. E9 }) u, U2 K8 ]5 m/ l
primary tumour tissues, cleared of stromal contaminants by culture in
" o5 K  J* U9 I+ v+ W' a' bblasticidin-containing media (5 mgml21), and re-injected as primary+ c% C3 ]$ R5 {# J7 l, c
subcutaneous tumours in recipient animals. b, Tumour growth+ Z, J0 R1 H8 Y  l9 K- p
(means6s.e.m.) of 500,000GFP-labelled lung-derived (L-explant) or primary
/ D, X5 K2 i0 F7 O8 W, `tumour-derived (T-explant) MDA-MB-231 cells inoculated subcutaneously.
, g+ p" T+ X  n9 w, s; SData shown are representative ofmultiple independent experiments in which
4 N: U4 A- Z5 z) ifour different paired batches of L-explant and T-explant cultures were assayed; w8 W& Y  B  [9 w
in parallel. MDA-MB-231-T-explant (n58 mice); MDA-MB-231-L-explant
1 x: J+ [7 s3 U) _, k(n510mice). c,Masses (means6s.e.m.) of tumours in b.Hash,P.0.4 using
! m5 ^7 m" X6 @3 none-tailed Student’s t-test and indicates no statistical significance. d, Lung
7 b9 W$ z) g. r6 v3 c/ t9 m" w; |metastasis index of mice in c. Doublehash, P.0.3 using one-tailed Student’s
4 f- m  g3 w1 ^" T2 Q4 V6 E; E- [t-test and indicates no statistical significance., `# m" f/ E- Y
a
- e  E" F  n8 V6 j2 ~6 Q4 T* cCCL4
) h- k4 J9 J2 }0 lbFGF
) }3 h, ?5 O2 D' `0 qVEGF+ L# \2 f* H9 D% N
IFN-γ
. {' \% ?  O, g8 L$ H/ ATNF-α
% {6 D- v. {' w0 Z4 ~' hG-CSF8 v- p0 |3 T4 x2 Q
GM-CSF6 |; I0 S5 j0 _0 j4 J
CCL3$ Q" D0 T: X7 q
CCL59 Z! X/ @4 S& E6 b) x$ U/ Y8 W
MMP17 m; c! g4 J0 h* @4 @
MMP3. i- A5 M$ |- _7 k2 |4 q. K' G9 e) w
MMP9
4 H+ ]2 k9 n8 i# }- P) D  \; k& `MMP13
# U3 e1 |7 z: C+ SIL-1α
3 `7 j2 ?+ h' s# m7 n/ f: rIL-1β3 y$ U% E' r0 H6 M: B/ W
IL-4
+ R1 p' E3 c3 n) D7 lIL-55 P4 X# I6 |. U1 x0 x
IL-6
: N1 r2 w* C* G5 h3 V0 d0 R+ _IL-7
% i) [$ Y4 L& f- d) o% c* o! I0 fIL-88 R! R6 k) A- J1 `, B: A% Q9 \( Q
IL-10
. }" m9 E; f; i# I+ uIL-120 t5 w9 {: d3 D3 n
IL-13
" X# O& E0 W; b6 G' u1 K4 yIL-17
! v9 G* Q6 A4 T6 P7 AIL-2- w. n+ }  ]$ h; O" S
TGF-β
3 S2 Y. g8 C; |5 Y% \9 B5 k! RFold induction) K* F* v+ y+ P
MSC alone
3 m  D8 k! P: J* BMDA alone
2 f" Q6 H3 i# A) T4 W. v* v% OMDA+MSC (2:1 ratio)
5 b  |! z6 T, N$ U+ h% r3 I6 X1 * * * * * * * * *
0 J- u, ~. z+ \" V7 s9 \1 @3 K2 d- @3
, V+ u0 u, ?' @- ~8 H5. ^! e$ I/ `1 k' ?$ v( w2 S
70 V/ u" a( O* T5 c: W2 ^" e0 O
9; h9 u. I7 D# b2 K4 ^6 p
11+ `  h& r; ]/ D6 A8 E8 ]
13
5 l, `3 @8 C0 ^- L; p6 ^1 S* ~1 S  A60
7 ~) Z5 j  u& n0 A. yb c0 t; D+ l/ @/ R0 g" r5 D
0.4 μm
- i$ R+ y5 f$ L- R2.0& u' c' j  x3 C1 i
1.8) {# O/ ]) `, I; B! t0 N0 R/ O
1.67 j/ `* ]0 l% V6 B; [
1.4) w9 Z/ @- g  f
1.2
+ h/ W9 u# C9 g" E5 b- B$ Z1.09 z3 m- \# }& Q  q) u# j. B6 i
0.8
. r/ h1 t2 H2 s! C# U2 W5 p( Z+ L" W0.6
3 m! d' z: D; }6 n$ b0.4
% I; M; B1 M" Y/ m+ H+ r8 k& V) i1 L0.2& J, N' e+ G  d2 M+ Y& h
0 0
+ d8 x9 Q0 w, y1 p+ H8 t54 e0 [, }1 v! k! D
10
3 o) y9 J) l* m" q) d0 _15
" E/ c$ G! y0 a" w200 c$ W9 o% Y" t
25
5 k- V5 M! f1 }; Z30/ F  Q  d! v* Z: N
35
# O) m2 ^8 u' P, ~1 }40
# E0 |" M& W. D" F% \. L. H45+ K0 ?. e# p/ Q7 k" l2 i
50* T3 S6 n4 `, t' w% ~/ {# a
d1 d2 d3 d4
) \1 k% R5 s3 I  E/ `9 O$ IMDA alone
4 r/ Q, B. T# B- u1 l1 `- nMSC alone0 I- A% n0 {8 B3 ^9 M
MDA+MSC
7 t1 h" K  {" O$ B! O# ~9 n$ pCCL5 levels (pg ml–1)9 L: _- l' y& }4 f3 P6 R
Co-culture
& T4 H. v) J% ]) _Fold CCL5 induction
' T3 l5 ?9 g1 V- ZMDA alone
  ^4 Q' T- V9 HMSC alone3 E9 u! T9 j9 t1 e
MDA+MSC
5 {5 `& y5 G- Sd
* W- C  X2 |4 D% Z2 k5 N. tCCL5 (A.U. × 100)
- p4 S; J! c0 u30' A0 m! R' M5 R7 M: v( J
25
4 J- L2 Q. e& ^) J4 o20( N8 w5 s/ t7 c& F4 g% R- S5 O2 W
15
, E: q3 O6 h8 ^6 B5 O10
% I5 f4 R0 O/ E. d" a5
, I$ ?# h  F4 U/ [/ u! |! `8 M( l0
7 F' P& _& Y. W# ~- r+& [2 T$ U# H, N9 ^! f
MSC.c
/ O/ ~% |% C  c5 a5 {' {4 H# k+
5 s+ `* |5 q( u0 w+ ^9 j- HMSC.18 E* X* g- U+ P7 B' h
+- K. H9 s" ?% s' A% Y  t  l* N
MSC.5( |; k& Y- o9 T* \) I& u
MDA
4 N9 |9 B% b7 _+ R9 C$ j& v* LMSC) V" [; Q$ Q8 R; |! {9 d
MDA.1
7 X/ T5 o3 [8 i$ P. W1 s8 ]8 {' |/ o+ NMDA.c
) C' }$ f/ F! k" b% s' z: AMDA.55 D4 C; n' |7 t8 ^7 S0 L1 k" `% y
TC-MSC
+ }. N, n9 @+ E' K( T6 BMSC (from MDA tumour)
; D) W/ i7 t4 ]BCC (from MDA tumour)! R0 x0 _5 P0 H' @" v
Control (MDA/CCL5)2 F$ ~" C4 z# ]  R( }
CCL5
' y) L$ w5 \+ L+ D! t! dGAPDH
* o* a+ _# i& T1 e/ Ve5 @  K  d2 c, _9 C' n4 H7 y( C
Figure 3 | The interaction of BCCs with MSCs causes a rise in the levels of
$ H, B4 v3 X) Q! l$ H; RCCL5. a, MDA-MB-231, MSCs, or MDA-MB-2311MSCs were cultured in
) ~. y9 ^2 y! b( Zcompletemedia for 3 days. The levels of various factors in the cell-free culture% m* C5 C2 g5 I5 x6 B+ x0 t
supernatants were measured by xMAP Bio-Plex cytokine arrays at day 3, and# m# T6 a: E# o/ f3 `
were normalized to the levels observed in the media of BCCs cultured alone." }& @  x$ Z& p6 m! u
Data are expressed as fold induction6s.d. of triplicates. Asterisk indicates
1 [7 b' k1 L9 T6 T1 xundetectable levels. b, CCL5 ELISA on the media of MDA-MB-231,MSCs, or
9 J7 p: R6 l0 n+ FMDA-MB-2311MSCcultures (1:3MDA:MSCs) at the indicated time points.
: e- n# a% I& X2 n- V5 D2 B  _Data points representmeans6s.d. of quadruplicates. c,BCCs were separated" }" _; V3 ]9 v5 [& B( J
from co-cultured MSCs by a 0.4-mmmembrane. CCL5 levels were probed by% {6 _; n9 G, ?* E4 P
ELISA on the culture supernatants. Data are expressed as fold induction over/ W) }3 p* ]! ^$ Y
levels seen inMDA-MB-231 culture supernatants (mean6s.d. of triplicates).
6 Q7 G+ q! w& h) Q) N" \d, CCL5 ELISA on the supernatants of MSC-siluc (MSC.c), MSC-siCCL5.10 P! W/ ?; u& ~
(MSC.1) and MSC-siCCL5.5 (MSC.5) co-cultured with MDA-MB-231-siluc  O: R4 k0 x& I- |+ E* h
(MDA.c), MDA-MB-231-siCCL5.1 (MDA.1), or MDA-MB-231-siCCL5.5
. l7 P9 F+ A2 K(MDA.5). Data are expressed as means6s.d. of triplicates in arbitrary units; P) `5 @, I1 L
(A.U.). e, RT–PCR analyses of CCL5 in MSCs and BCCs sorted from
6 |4 S2 g3 c9 `- h+ MGFP–MSC1MDA-MB-231 tumours (3:1 ratio) 4 weeks after tumour( X! m' Y4 t! W! |- i
implantation. Tissue-cultured MSCs (TC-MSC) and MDA-MB-231/CCL5
7 B5 w6 H2 J# C7 @* q5 qcells were used as controls. GAPDH was used for equal loading.levels of certain released factors (for example, interferon-c or6 ?6 T# }3 r! Q7 S/ ?% u
tumour-necrosis factor-a) reflected the additive contributions of
" }3 O( M5 W1 f2 ithe two cell types when cultured on their own. Notably, the levels
) F! T2 q( f; N% Q: Vof only one cytokine, CCL5, reflected a synergistic interaction& x, E5 E  o3 ?, J/ y
between the MSCs and BCCs, as it accumulated to levels ,60-fold! @% m0 |6 c  J$ O: y5 k  \
higher than those produced by pure BCC cultures (Fig. 3a). This
, B( M7 f) t% vcooperative induction of CCL5 was proportional to the numbers of4 }! R2 O9 U) H# h5 B( F- X1 Z
MSCs mixed with the BCCs (Supplementary Fig. 5a), and was apparent
% d, b7 s2 }5 h! _# ~as early as the third day of co-culture (Fig. 3b). Moreover, this
+ W, z: {) r9 l$ F' z8 Uinduction required close physical contact between MSCs and cancer4 F& Q; A8 i0 z6 r& E  C7 c
cells, because it failed to occur when the two cell populations were
1 R/ ~& j4 Z8 Tseparated by a permeable membrane (Fig. 3c).
0 w# w3 J7 P, N3 ^We undertook to determine the source of the CCL5 produced) R2 a; H% X7 Q5 I8 g# m
under conditions of co-culture. To do so, we stably reduced the
! o% g0 \0 ?0 {, ~0 V7 b2 `" m  Uexpression of CCL5 in MDA-MB-231 cells by.80% using short
8 _; P# ?1 N  Ghairpin (sh)RNA (variant siCCL5.1; Supplementary Fig. 6). Importantly,. ^( ?; h+ Z! w2 t/ J8 Q. @$ f' C
however, subsequent co-culture of these MDA-MB-231.1 cells4 a  i8 P6 T' D0 B! y
with MSCs continued to allow accumulation of CCL5 in the culture
* m; R+ s* D) L7 l) ksupernatants to levels that were comparable to those observed in the% @$ Y8 A% N/ e( B$ O# b
co-cultures of MSCs and control cancer cells (Fig. 3d). This suggested- l; n3 m6 U) Q3 G, X+ b
that the source of CCL5 was the admixed neighbouring MSCs.( N  r& _; x$ W9 M. }  K
Indeed, inhibition of CCL5 protein expression in MSCs using the2 R9 E  l) B+ w$ ?: N
same shRNA hairpin vector (MSC.1; Fig. 3d) resulted in more than
# W1 Q) Y$ l& c( D5 Q: S! c. a75% reduction of CCL5 protein levels in the co-cultures, indicating
- c+ [5 A4 c% w9 Xthat the MSCs were the major source of the CCL5 observed on coculture
6 m" T. x8 R. h& t  @of the two cell types. In support of this conclusion, analysis of6 H1 t& e5 N) D& ]9 O
CCL5 levels in the media of MSCs or MDA-MB-231 cells separated
7 @4 y: G# I) a; V8 Tfrom one another after 3 days of co-culture indicated a strong induction
. ?' a2 C/ E! n0 mof CCL5 in the culture of MSCs, but not that of BCCs (Supplementary
: {9 m& O  {7 J' Z/ w2 U: dFig. 5b). Finally, polymerase chain reaction with reverse
& a( f: q- K7 y- Wtranscription (RT–PCR) analysis of the RNA prepared from these coculture-
7 a. Q- F( k' T9 |derived MSCs (Supplementary Fig. 5c), as well as from the6 ~. n/ l. T, j% R3 _* d
MSCs isolated from MDA-MB-2311MSC tumours ,4 weeks after" J$ s' }- R) B% @$ z
tumour implantation (Fig. 3e), indicated a strong accumulation of
7 P' L+ M. ~! g% r+ eCCL5 messenger RNA, suggesting that an active signal transduction
8 B* T  P4 C6 }pathway is triggered in MSCs by the nearby BCCs.
! L% a# q4 ?. k( jA series of observations has linked CCL5 signalling and cancer. For
: w& ]7 e+ w% O9 ~7 mexample, CCL5 levels in the plasma of breast cancer patients have/ o2 t! |: {- @- K# p* F
been correlated with the severity of the disease, and localized CCL5# `, a3 P) w* `* Q6 o8 g7 O
protein expression was found to be elevated in invasive tumours
9 E0 t% D) i3 n- ^) F+ C7 Swhen compared to in situ ductal tumours or benign lesions16,17.
, n4 x0 Y" u& {* x$ D2 C$ W; uHowever, the precise contributions of CCL5 to cancer development
) J) k7 X- T2 U8 m- qand progression are poorly understood. To investigate further the
3 C5 i( A0 A( s3 k9 N4 lpossible causal role of CCL5 in cancer cell metastasis, we overexpressed
) Y/ M# C+ F% S5 V$ pthis chemokine in the MDA-MB-231 BCCs (Supplementary
+ l5 M/ n0 A7 Q) u& ]Fig. 7a) and analysed its effects on cancer cell growth and" K# M8 Z6 d( s9 ?0 C0 R; n
tumorigenesis. The overexpressed CCL5 did not confer any proliferative
, \3 b: u5 `% U6 I& N$ jadvantage on cultured cancer cells when compared with% d. {# c3 W6 o+ E  j( f: V
those lacking such overexpression (Supplementary Fig. 7b), and had
5 N* E2 P! M! |/ t" @, l/ _6 sno effect on the ability of BCCs either to grow in an anchorageindependent
' C* F0 f; n- v0 H8 Y+ V  P5 wfashion in vitro (Supplementary Fig. 7c), or to form% E* V" k. f8 D: O3 Q( T' G
primary subcutaneous tumours in immunocompromised mice (Fig.4 N. e' r7 A6 [; Z+ C
4a). However, these tumours exhibited a ,5-fold enhancement in
5 N: Y( N1 d6 N7 C$ g6 m5 \their metastatic potential when compared with control tumours* _* n) F: n. l' n8 p& E% A7 y
lacking ectopic CCL5 (Fig. 4a). Similarly, overexpression of CCL5- r3 L! i+ N  f- J+ y" k1 f! u. S
in WI-38 fibroblasts sufficed to enable these cells to promote the5 t& I! O: w6 u6 Y( O1 g9 _
metastasis of admixed MDA-MB-231 BCCs (Fig. 4b), indicating that& ~: ^+ Z1 P) w: i" F
the actions ofCCL5 are responsible formuch, if not all, of the observed# |! x5 l# F; X2 D3 \
MSC-induced metastasis by the BCCs.) U" v+ q, b# z# F. t/ J# X
CCL5 promotes lung colonization, G8 c& I- g0 q& [/ S* R% k3 k
Previous reports have described an important role for CCL5 as a
% E1 N& H3 B6 D  ?2 Tchemoattractant for stromal cells, such as macrophages, that express
) f: F5 I4 t% B) H* Sone of the receptors for CCL5, CCR5 (refs 18, 19). Furthermore,+ p' t+ k5 P/ X! j
CCL5 expression has been associated with increased tumour neovascularization,0 z9 H. y; C! t
suggesting that endothelial cells, which express a variety
$ A/ {$ V4 z4 {  _* r+ jof chemokine receptors, may also be attracted by CCL5 to sites of/ g4 ~0 O4 b6 T- h
tumour formation, thereby enhancing tumour angiogenesis20. Such  [2 `8 ?* b" T8 }9 |
observations suggest that CCL5 may contribute to breast cancer6 f  T7 E* d0 m
metastasis through the recruitment of a number of stromal cell types
8 e0 g% U* q/ }+ s# w1 oto sites of primary tumour growth.: b3 }$ t& k* h+ s7 y2 W
However, immunohistochemical analyses indicated that the8 o7 {5 R! r* k( _
MDA-MB-231 control and CCL5-overexpressing MDA-MB-231& ]- i# q" G+ D+ d  [* C, N
(MDA-MB-231/CCL5) tumours exhibited comparable numbers of* C/ L! [& ?% C" @
tumour-infiltrating macrophages and had similar vessel densities (as
& I% {; x! S; g" k* h$ Pevident by F4/80 and MECA-32 staining for macrophages and. W8 }! p7 {6 }% f& M7 W2 }4 z+ o
endothelial cells, respectively; Supplementary Fig. 8). In addition,: [/ ]! D2 S) {( e$ Q
we found that ectopicCCL5 expression did not cause an accumulation: I) [% o8 m3 G0 B) N; a1 {2 B
of other stromal cells, such as SMA-positive cells, in the examined
' L7 R4 b' u9 L& ztumours (Supplementary Fig. 8a). Together, these data indicated that4 D9 z, S9 Q4 t, t' D/ P
the observed CCL5-induced metastasis could not be attributed to
4 F' C6 J4 s, L3 Ssignificant effects on the numbers of the major constituents of the
  s& s3 R& G5 ~& E7 Y* E, c2 T  zstroma or to the vascularity of these tumour xenografts.
. }; ~: d, p# \' sInvasion and metastatic dissemination of carcinoma cells are often6 b) K1 Y* c: i3 v# T. [, m1 }* p
facilitated by their transdifferentiation through the process termed
4 J+ D3 E" U) _$ l5 P4 v! fd f
7 B8 S% q! ?7 r- G  P# |4 ?8 f5 aBcl-XL
% P/ x( L' D& M# @  k2 G* s" A! cBcl-2
  V; O. a" n9 t1 b, s  qβ-Actin) p) ~/ b( [  x1 K
S473-Akt
! J5 T. ^! j$ R. ^5 M, ~Motility
) [: P# A) x! C0 f/ a! [0.5%→10%
& v0 ~' R7 R" W2 p+ U) X9 HLY – – + +# q4 f, x7 Z) n' e: f" ^
g
* e1 N( b: l9 B8 u( bExtravasated clusters (mean)7 B; t# N: x& g; e4 l
Migration (fold)
' y) A. q# v1 r; A5 Q0 `. m2 D*
7 K: M/ [8 ?# U8 Ue( C- G& W9 k5 L2 L
0
' O8 t0 `+ j8 ^/ p* [) t: QMDA/vector& o7 O8 }% z" Z
MDA/CCL5
8 G9 @$ _3 |2 C; C***
4 P  u, l) F: u/ w4 R2 U: z' PInvasion
2 @% Z8 f/ i* b" X, M$ A, m; p10%→10%
8 Y% d: k8 v! s* Z% J" gInvasion( p$ o- ]: `7 Y; p* r; I! S/ c
0.5%→10%
' M# R5 y2 q, G1 l( @( y3 x  D. P# C9 eMigration (fold)
- x; t/ G6 N$ K- i2 C" @7 J1 Y4 q" I**
0 U+ P3 O; w4 v# T% a' I  q0; h1 h: T4 h6 r* P1 @
0.52 y3 |6 X! B! o5 A2 q" s
1.06 B7 @  x) O& x. \( [) \" ^
1.5- M* b( g. k: C# i
2.08 _9 {+ I1 P# s" E! F& b
2.5
& b" `0 J/ L7 T3.00 @$ j3 n3 T8 a5 g6 P
3.5
! X/ C# b) v0 \4 ~6 K2 @*
# U% u; R* r- M- Y9 kMDA/vector
. e" Y+ l, Y1 CMDA/CCL5) e  m3 H6 {7 @7 J1 ~; H
a b
1 t' a0 t) d1 U+ j# d9 W*5 a* S1 X- U0 R
Nodules per lung (mean): k: H& ~7 \6 P1 z+ _, ^! A
c. }8 l: J0 _9 A6 {1 ?5 L
30' V) G* t! G" V+ N
252 {: \$ f# S! F
20' v: x1 t' g. x
15
$ k' d4 X0 I& |) `+ ?2 c/ A" f10- F/ \0 D; F% Y
5) S! h( T. m6 i* y6 \  a" A
00 q& I. w- ~4 j
Tumour mass (mg)
/ w' I1 }, [2 e2 M; V! d30
- g; ?9 w2 B  M8 D25
. u+ Q  |  R# z( i! t- d* D20
) g7 r& P  N2 W7 T. P; c/ X15
1 |0 w. o& G* g. i. Q8 c% u103 K! }$ [6 n8 c' t, h
5+ R5 s  ?- C! B( R8 j
0 0. ?* }: l4 p' G
50
6 {  O* a5 y: h( |/ V/ V7 R3 ?100' d% K1 \2 _* ^
150
: Z+ p! G. e; z' y  e0 J& U/ y2006 v4 x/ v7 j  j" h8 u; {3 _7 k+ d
250
3 @+ G5 h& G6 c  L! z& w) a, }1 T0
' h- c# B+ [/ p  a  L50# x. G9 F6 I' [' A
100
5 D7 D1 l$ u/ J6 A3 g* p  S- ~150
7 F( n: `4 S8 F  T  E+ ]0 h7 D; Z200
- p; r8 l! N( F7 }250
# l9 c* S+ _" f0 L" Y300
1 U2 k$ _* k& v) K3508 }4 |2 R- S9 W. s/ Q, ^3 v
Tumour mass (mg)) Z0 k' J: M- @1 f4 V) ~
Ctrl( W+ ~0 G1 O% z
CCL56 F" K  D9 F; C) ?" ^
Ctrl
& p% y8 \- I$ h. LCCL5
! G" t  o" ?& h+ \Ctrl
+ d% H: ?# }7 T8 K3 OCCL5
/ s$ ?4 C* n) p9 z7 c& ?$ m- F6 X3 IMetastasis index (fold)7 M$ t' N! H* V  W) L
Metastasis index (fold)
6 @/ `! X5 Z3 w! C" A" p03 _$ j4 p# d5 u
19 x3 K9 P5 O) }7 x
2
: K% I: z! Z  {8 ^9 F$ d3
. w9 [( R! }3 D4$ f; h8 L" f8 `( G, E, V0 }
5. X' T. A! H  o3 o; m
* 6
& K5 }3 `" f8 {/ B6 a0! d9 k* ~+ A% T
1! x' u& ^0 m" N- K6 `3 S6 Y4 ^
2' ?2 s, o  Z- y  ~# p8 }6 {+ X9 K; A
3. n! o" `( V9 o; f: M3 b
4
4 n# b6 ^4 Q! b- O6 Z5
  X3 I( Z* w( |. H6 |' d: F. @5 y9 p6' x$ f9 m. W& H& [
7
: }. }2 Y) W7 g# i7 s* 8& a* q* e" W4 P* w2 I' y' r
MDA/vector
0 s8 p9 M& C; D5 U1 XMDA/CCL5; f8 M7 M* H9 @$ ^; I* `0 h) A2 A: j
MDA+WI-38/vector
. [# u' C' E3 }& RMDA+WI-38/CCL5
7 A7 K$ I! H* V! J9 D. j5 e10 z. t: F7 x/ ?0 [$ E5 W( p3 |
2
  X: j3 T1 a' f3
: \$ H* {: M# q+ i4/ v0 x/ b8 y: p* V. q
*
6 H3 l' a6 T' F3 S5 W$ JFigure 4 | CCL5 enhances breast cancer cell migration, invasion and- C' n1 i$ [% ~
metastasis. a, A total of 500,000 MDA-MB-231/vector (ctrl) or MDA-MB-1 O: Q) m: l9 o) u# R
231/CCL5 cells were injected subcutaneously in NOD/SCID mice. Tumour6 E$ I) X8 O/ Y7 i+ g" N8 E' l
masses (mean6s.e.m., n56 each group) were taken at 10 weeks. Lung
0 g, K9 U" \5 y  Cmetastasis indices are expressed as fold increase (6s.e.m.) over controls. Data. H* e3 P4 w* F3 x4 n- }( ~
shown are representative of multiple repeats. Asterisk, P,0.01 in one-tailed
9 r: r0 y2 f1 C& CStudent’s t-test. b, A total of 500,000 MDA-MB-231 cells were admixed to
* v2 _/ n  c. V& c1 Y) @250,000WI-38 fibroblast controls (WI-38/vector) or WI-38 fibroblasts
+ C1 u' z3 M- x) Q& Toverexpressing CCL5 (WI-38/CCL5) and were injected subcutaneously in
( S7 g* A( [( h# @- s' Z" [NOD/SCID mice. Tumours (n55 per group) were excised and weighed at
3 t: a8 {- b+ e6 J1 r12weeks. Masses shown represent mean6s.e.m. Lung metastasis indices are
+ c  q, i- c3 D/ E1 W+ Aexpressed as fold increase (6s.e.m.) over controls. Asterisk, P,0.01 in onetailed0 a3 s; M/ B3 m& E6 H
Student’s t-test. c, A total of 800,000 indicated BCCs were introduced# Z% Z# V& b+ A( L, \
into the circulation of NOD/SCID hosts. GFP-positive cancer colonies in the: Z3 D- B( }% A
lungs were counted 6.5weeks later. Bars representmeans6s.e.m. (MDA-MB-
, d6 ^4 i( S9 I0 m( P231 controls, n516 mice; MDA-MB-231/CCL5, n518 mice). Asterisk,- M1 A( o; q1 K# ^3 n7 B* z' R; o
P,0.01 in one-tailed Student’s t-test. d, Western blot analysis of lysates of: S% C3 U& k4 s* n
MDA-MB-231 control or MDA-MB-231/CCL5 cells. b-Actin was used as a
0 r& i; o% X" u7 [loading control. e, Transwell migration orMatrigel invasion assays on 50,000" N- V: n5 B# g8 K* ]' ]
MDA-MB-231 control orMDA-MB-231/CCL5 cells.Data are representative of  y6 M4 F: k0 j4 {; `4 D
multiple independent experiments and are expressed asmeans6s.d. Asterisk,
' R4 J! \5 ?9 p9 QP,0.05; double asterisk, P,0.05; triple asterisk, P,0.01 in one-tailed1 `! T) s0 p! v" l) k* J" x
Student’s t-test. f, One million GFP-labelled BCCs were injected into the tail/ o$ }1 J$ w7 O0 \' _8 H
vein of NOD/SCID mice. Lungs were processed 48 h later and examined for
( {' U; U+ W$ c" J' w5 q8 c- zextravasated cells. Bars represent means6s.e.m. (MDA-MB-231 cells, n57" b  C! i5 c. M% V8 U* F5 J' V
mice; MDA-MB-231/CCL5, n510 mice). Asterisk, P,0.01 in one-tailed. A2 N/ ~* Z/ [/ O
Student’s t-test. g, Transwellmigrationassays on50,000MDA-MB-231 control8 O3 z+ i' R& F" q3 w! j2 c; a
orMDA-MB-231/CCL5 cells plated with or without the phosphatidylinositol-
3 X; |3 d% Y1 R8 D4 e8 r" l9 g3-OH kinase inhibitor LY290042 (0.5 mM); representative experiment shown;$ D( n# j# Q( n- H$ i
asterisk, P,0.01 in one-tailed Student’s t-test.the epithelial-to-mesenchymal transition (EMT), in which cells shed
) Z( [* B5 N5 |" z& B1 |% n9 Atheir epithelial characteristics and acquire instead a series of mesenchymal
! _7 ^0 {) a4 H) ?# r# xmarkers that enable their invasiveness and intravasation21.% F$ e' j4 _8 V0 ~+ d% S4 k# F' R' F: F
Despite their lack of E-cadherin and their expression of detectable levels
; ?$ H$ r% ?8 E+ h7 dof mesenchymal markers such as fibronectin (data not shown), the
9 U" `5 e7 s$ ^" iMDA-MB-231 cells studied here exist in an intermediary phenotypic4 v) I- [4 r2 {8 S4 T& @6 R
state of ‘partial EMT’, as they retain a distinctive epithelialmorphology1 ~# P1 I5 W1 W, l* I
in vitro and are still responsive to EMT-inducing stimuli in culture. In0 k% {* K6 Q5 e: l% C% e% M5 o, {
fact, we observed that ectopic CCL5 expression did not cause MDAMB-8 R( x  @3 M) F' k- q# x) ?
231 cells to undergo themorphological changes usually associated. z0 P2 B7 W" [1 X* O
with an EMT(Supplementary Fig. 9a), did not cause rearrangement of
/ K, i0 Z: [/ d, utheir actin cytoskeleton (Supplementary Fig. 9b), and had no impact on$ n2 J0 o% O+ `2 X: n% K
the expression of mesenchymal markers closely associated with the9 y" t4 ~' e4 C+ t/ r* P
EMT process, namely vimentin, N-cadherin (Supplementary Fig. 9c)+ i) n- p! e5 C$ B; `
and fibronectin (data not shown). These data suggested thatCCL5 does
: p  P7 m! j# R" F& P# k: h: Q: jnot directly promote the EMT programme of MDA-MB-231 cells.* ~0 [2 C0 E- f2 e  H
We proceeded to explore an alternative possibility: that CCL5
4 `/ F  D$ I/ z5 ^7 rexpression affected some of the later, critical steps of the invasion–
$ x. l! f# c: R& j& \( d3 vmetastasis cascade, namely the lodging of cancer cells in secondary. R- U6 {' b# g; T& O. T
organs and the subsequent step of colonization. For that purpose,2 x2 Z+ `4 C5 b& p& R
MDA-MB-231/CCL5 cells were injected intravenously into host
7 w3 h' x+ q) x% u2 Q% l$ gmice, and the lungs of these hosts were examined ,6 weeks later
5 p" m$ v/ }) {4 |+ b  d4 I0 Fusing fluorescence microscopy. These experiments revealed that- L& L( o. W  }$ K
CCL5-overexpressing cells indeed had a significant ,1.8-fold
" ]. S5 {* r% kadvantage over their control counterparts in colonizing the lungs
% Y5 w, S3 `/ V; u8 r(Fig. 4c), suggesting that CCL5 exposure has effects on later steps: r" h' A# H7 X: b
of the invasion–metastasis cascade. We note once again that this
/ Z$ v: I" ]4 j* Q0 Uenhanced tissue-colonizing ability was not due to CCL5’s effects on5 b3 H: A: T0 O! q
cellular proliferation measured either in vitro (Supplementary Fig.5 [( w" \" y- K5 `1 V6 S
7b) or in vivo (Supplementary Fig. 7g, Ki67 staining).
# T+ \+ M& c7 ]& x' @Because improved colonization can be due to enhanced cellular; j. c/ e% C) }" N5 x
survival, we tested whether CCL5 protects against apoptosis.
8 I3 Q  u2 f) _% BNotably, we found that MDA-MB-231/CCL5 cells exhibited higher3 ]) Y& @2 \* D& b* o4 t  Z/ v
levels of the Ser 473-phosphorylated, activated form of Akt, but
# l1 v7 ?; y. K* c* D% Kexhibited no difference in the levels of other pro-survival proteins,
8 Z2 a. T3 ?, e1 \  Q4 H5 Hsuch as Bcl-XL or Bcl-2 (Fig. 4d), or a reduction in the levels of& _$ J9 B' U* h( F$ S7 I
pro-apoptotic molecules such as BAX or BAD (data not shown).# b/ S7 y0 h& {3 M" y6 G! `2 f
Moreover, we found that overexpression of CCL5 had no effect on
  ~& j( u9 G5 H3 j: Tthe ability of MDA-MB-231 cells to withstand serum deprivation3 k. n% R& V+ n: s$ P( r
(Supplementary Fig. 7b), loss of substrate anchorage (Supplementary3 V4 Z  A9 b) d6 {% |9 h
Fig. 7d), or hyperoxia (data not shown). We also observed that) [* W* L5 J7 s3 v- Y
ectopic CCL5 expression did not protect MDA-MB-231 cells from
& u! I0 w* J- l6 I# f' |$ ndoxorubicin-induced apoptosis monitored using western blots for
/ Z; l. g0 W* w) f+ f, g6 U3 e  Fcleaved caspase-3 (CC3) and cleaved PARP (as markers of apoptosis;/ b$ z' ]- l! Q
Supplementary Fig. 7e), or TdT-mediated dUTP nick end labelling2 Z$ r6 s8 a3 z
(TUNEL) assays (Supplementary Fig. 7f). Finally, immunohistochemical
8 ^! L2 p& _6 l+ j! y1 \  eanalyses on control and CCL5-overexpressing tumours3 |$ \: z. T3 \; V# w- N$ V
revealed only minor differences in the levels of apoptotic CC3-1 O6 y8 I+ Q' r6 v: Q
positive cancer cells among the examined groups (Supplementary
% _5 M0 j3 `9 s8 f5 L. J4 s7 _- u2 _- YFig. 7g, h). Together, these observations suggested that CCL5 does
( f; g! f9 ^" b9 d2 Q3 cnot exert any detectable pro-survival functions in vitro or in vivo, and: ?2 `1 k7 `# k; O/ B
that the observed enhancement of lung colonization was not a consequence6 X6 d/ P% z0 l
of significant anti-apoptotic activities of CCL5.
( o0 ~2 S' S" q5 H; M" iAkt serves as a key relay switch for upstream signals that promote
6 K! e) V' [$ m- i& M3 ~$ n5 yboth cell survival as well as cellular motility22. Because CCL5-induced
0 V( J. f& l! v$ h2 n- b" EAkt phosphorylation did not correlate with enhanced protection
: G6 Q; Q# l% B) k7 Yagainst apoptosis, we tested whether the CCL5-enhanced lung colonization7 `- O4 c. r: o$ w/ [# i8 ?
could be due to an increased ability of MDA-MB-231/  u/ W$ D* V( v. e4 W2 L6 |
CCL5 cells to invade from the microvasculature into the lung. T/ D6 y! u/ I  K4 B4 V
parenchyma through the process of extravasation. Indeed, ectopic/ }4 |# y" N, _% {; d
expression of CCL5 enhanced the motility of MDA-MB-231 cells
% B* y( N& ?# v3 Vthrough permeable Boyden chamber membranes by,1.5-fold as well
+ q+ n8 x6 e# j* p% bas the invasion of these cells through Matrigel layers by,1.6 or,2.5-
' C, t- R0 p! r9 `fold in either high or low serum conditions, respectively (Fig. 4e).; M' e3 @4 U  R4 \5 N
Notably, when we flushed the lungs of mice 48 h after BCC tail-vein( k: G8 L6 m2 e& o7 P. }  `
injection—in order to remove most cells that remained within the
! }% L2 a" w" X2 [microvasculature of the lungs and thus had not extravasated—we- G" K. Q* \. I. s9 J
found twice as many deposits in the MDA-MB-231/CCL5-injected
9 t5 b1 X$ o# [* ggroup than their control-injected littermates (Fig. 4f). This indicates a, L/ [3 j  r) J% E0 H6 N- n' {. N9 a
clear effect of CCL5 on cancer cell extravasation.
7 Z1 z& T" [. }$ P& UFinally, we investigated the role of Akt in mediating the actions of
' a3 U. ]- @% K; ]/ V: ?CCL5 on cellular motility by using the phosphatidylinositol-3-OH& c% U5 Y+ b# \5 ^/ L  Z( H
b silacZ
# f3 P/ f1 H- [, |silacZ( ]- a9 _3 g1 j
si809
0 ]# h& N2 X, L2 P* c* F! R- wsi809
- z. J$ X3 k5 U/ psi186# q- {, ~- N) Q! |( W: \
si186
& p  n8 F: D; o; UCCR5
/ U, z7 k8 n7 t- ~- |β-Actin$ S9 i( [# N- O& Y
a d
- h0 s* |% Y' E% T& }M
: i3 H' F. v7 x+0 d& p9 s6 M# q9 x. }+ a3 D0 \
MDA+MSC
. ~' n- @" n+ n& W8 ?, E; E+ IgG' q. r) t+ y# E, u7 ^( j& e6 f
+Anti-CCL5 Ab$ O0 r% W1 W2 z4 K  ], a5 l" j
MDA
7 p7 o: ?$ L5 d$ ^. W( C: w+Anti-CCL5 Ab
! [8 Q0 e% m* X+ f& V3 M  y, wMDA+MSC' j: c- u  L# m. S- j
MDA3 n: q$ Y* u$ T2 y
IgG: N4 d+ L5 }4 ~( t$ [. A
<: q6 n  I, M& m: E" H8 Z* i
<
' H1 V. `6 G% ~+ b! A) a5 C) n; ?<
2 H$ R7 f6 T! h5 K; q9 b) T" }<
" q, s; u" u3 ^5 n4 B4 g<# |  ?4 o; J- C  N2 s
DAPI
- J* w, l& \4 S0 ZCCR52 n' V1 _% A7 M5 H, ^- a7 j7 {% X
MSCs MDA MDA+MSC
& }# F4 j+ z5 q7 y4 cDAPI DAPI
' A& F; ?" w6 \& R# _CCR5 CCR5
2 l& y" m6 T9 s5 ?$ J+ q- KMSCs MDA MDA+MSC
7 \! Z* [4 X$ H5 i! }1 ?4 J' m*
/ p' h2 _# [" Sc) G  z# ~, N- R( T9 u' Y7 `! k5 y* K
Metastasis index (fold)
8 |: H/ U' |1 h* h- Q2 d. ^Metastasis index (fold)/ D2 {+ T$ F) l: j4 e
*
* S0 `: d# @9 U6 VControl siCCR5/ m, H- K2 I0 @% j; k
MSC – + + +0 \- p; i) b* }$ W# m
0
% N/ B0 E7 @1 E. i7 l2 `+ H1
1 Q" A2 t2 T3 |2 y% ~) h7 Y2
7 h; m/ l. t3 a7 g1 V3. r- z. D' K' C7 F& |  ~3 f
4
7 \2 W/ T2 Y7 r+ C: z3 r. I5 e4 Q) [8 l6 V/ ~4 B( q. Q  |" y
+ + – –
$ ]" ?9 [' t" e9 m, q/ QAnti-CCL5
2 T& Z5 J/ ^, J, T! G9 l& E, w+ E0
/ E8 V. V' f2 u! T19 V) t7 v9 a5 Y0 m7 {/ N
2, Y0 M# y# P3 i+ a
3
2 Y) I) d2 P& }% ]; p. q4
/ v! b1 X$ g( b- P3 R/ N5
" y3 d! W; [8 l+ e2 k6
, P  W+ T9 b" N% U) k( \0 I2 j– – + +
9 J% b8 U9 m. n# i/ i$ AIgG
# y2 y' J% f( N5 h" n3 J: r7 lMDA
- W% L+ d! A* u5 oMDA+MSC
* @' U/ [9 c2 W* g<
5 w+ ~! W9 Q: _! F) C& x6 v5 [Figure 5 | CCL5–CCR5 interaction is essential
% f9 e  e' ^# ~7 a. N) Qfor the MSC-induced metastasis.( v) G/ l; D4 D2 |. X5 R$ U
a, Immunofluorescence analysis of CCR5/ `4 I6 k! O- s. \
distribution in MDA-MB-231 cells cultured with
& k4 b* [5 m8 k# f3 S# aMSCs. DAPI (for nuclei staining) is in blue;) T3 u* w" C* t! b* k) O  q
CCR5 detected in green. Arrowheads denote* B/ S: V. ~4 z) l; J3 _& U
MSCs. b, Western blot analysis showing CCR5
0 H5 \. t" T3 uexpression in MDA-MB-231/silacZ, MDA-MB-
( a1 \2 n  j0 K- S* o% z231/siCCR5(809) and MDA-MB-231/) Q/ f0 M9 n6 ]$ M
siCCR5(186) lysates. b-Actin was used as a4 \# ]* L5 q* a* Q/ j. O  i! L
loading control. c, A total of 500,000 cells of the
% L8 K4 F( x; C3 VMDA-MB-231 variants in b were co-mixed with' p1 E' l" p. A( k
1.53106 MSCs and injected subcutaneously into
5 Y+ e: Y- [" R+ r0 V! enude mice. Mice were killed when tumours9 R8 u% z* F$ k. G
reached 1 cm in diameter and the metastasis, W- d" _8 m9 j; Y
index was calculated for each cohort (n55 per+ ?$ C) S8 ^' ?; h. f# ^8 x
group). Results represent means6s.e.m.;; _; j( _, ^' o
asterisk, P,0.05 using one-tailed Student’s, J, ]6 Y% J6 ~0 Q" v
t-test. d, Anti-CCL5 neutralizing antibody or) {3 l+ l7 \( U% R) O
control IgG was administered intraperitoneally
8 z! U9 `% u# R5 O- ]8 Xtwice weekly in SCID mice bearing MDA-MB-231' u' N) b5 k+ n0 @$ q, f
(n59) or MDA-MB-2311MSC tumours
0 h& ]0 I0 m+ x1 j# @2 }( H(n511). Representative lung pictures of the
, u- S: b( r/ L5 @0 P& t1 uindicated cohorts are shown. e, Lung metastasis
0 A3 W8 S3 v9 T! n" d& pindices of mice in d. Data shown are% m# U8 ?6 ^5 E: Y- o/ V
representative of means6s.e.m. Asterisk,
+ T* [0 o; z3 y+ dP,0.05 in one-tailed Student’s t-test., m/ R3 s; k& S. l
kinase inhibitor LY294002. Drug concentrations that did not inhibit
3 ?# b: |$ K" ~( ?4 ]the basal motility levels of MDA-MB-231 cells blocked the elevation* C8 \0 y+ \2 V4 R8 T5 N5 ?6 A0 S
of motility induced by ectopic CCL5 expression (Fig. 4g). These
  T3 H! p1 |: i$ p2 i1 xresults, when taken together, suggest that the observed CCL5-  R/ D, D* _& K. m/ a+ w; G
enhanced lung colonization could be ascribed, in significant part,
" w% J  B9 V' g5 ~" Nto its ability to promote extravasation and/or motility of cancer cells
- R& E! o- ]! Nat sites of dissemination rather than promoting the survival and/or
2 M; ~1 G8 y! `: R) Dproliferation of these cells.0 k0 E8 |3 m# j% d
Essential role for the CCL5–CCR5 loop6 E. l! b7 Z2 [6 c; |
CCL5 acts through three G-protein-coupled receptors, termed
+ q9 J0 [! K8 x" h3 KCCR1, CCR3 and CCR5 (ref. 23). CCR5 has been determined to be) c# M4 Q0 g* c6 x6 e% d- d
the main receptor for CCL5 in MDA-MB-231 cells, as inhibition of its
+ z2 `% h7 \/ s! J' h9 D4 E  bsurface expression through dominant-negative mutants abrogated% n! U5 V5 p9 @4 M- B9 G! P
the ability of these cells to respond to CCL5 chemotaxis24. We therefore
$ R4 Y# |* w( D' t/ |, cfocused our efforts on evaluating the importance of the CCL5–; ^1 y" Y- j) o: ]& l; g
CCR5 interactions in MSC-induced metastasis.
0 X# }+ m6 U; T! GWe confirmed that CCR5 is expressed by MDA-MB-231 cells and* j/ s% R$ S& f7 K" U" Q, `
not by MSCs (Fig. 5a), supporting the notion that MSC-derived
. ~1 u2 \; e- j% x& e! RCCL5 acts primarily in a paracrine fashion on MDA-MB-231 cells8 [3 j& F! i( D4 Y
in the BCC and MSC mixed cell populations described above. To: _! ]8 E8 t) w( \! v
probe whether the observed MSC-induced metastasis required$ G# _: q7 M# d8 W3 R
CCL5–CCR5 interactions, we inhibited CCR5 expression in MDAMB-
' H8 Z$ j1 N6 G: t* y% }231 cells by more than 85% through shRNA knockdown (ref. 25$ r7 l  a, T; c4 {: S# f
and Fig. 5b), and mixed these cells with MSCs before implantation
# O9 S, w& i& B9 f0 p0 Ointo host mice. Indeed, inhibition of CCR5 expression in the BCCs,5 a$ M( n+ _& E
achieved using either of two different shRNA constructs, abrogated
  |, D7 T1 q3 E% c% y: a$ v5 Cthe ability of MSCs to enhance the metastasis of MDA-MB-231 cells
, N( J3 f! Z1 E% j/ U(Fig. 5c). Furthermore, neutralization of CCL5 protein using intraperitoneal
. C# r' M* `; \5 minjections of an anti-human CCL5 monoclonal antibody
$ _" m+ `, i) v- C# a2 t+ W& kalso abrogated the MSC-induced metastasis by MDA-MB-231 cells8 V& _+ b) B2 W! s. ~% ^) P, u) d
(Fig. 5d, e). In addition, MSCs in which CCL5 expression was inhibited* H0 w$ k# Y. X/ z: V7 s  J+ q
by shRNA knockdown failed to promote metastasis of the% e, E2 V; ]6 F+ |
admixed MDA-MB-231 cells (data not shown). Taken together, these
7 `& t" c! i; ?  T/ R9 M# Aresults underscore the critical importance of the CCL5–CCR5 paracrine
( j& Z3 A0 v9 x5 f/ cinteractions in enabling MSCs to induce metastasis of the9 [  f  t- X0 w) u& _7 h
MDA-MB-231 cells.
* \- G/ }) S' Z2 h' G& PDiscussion" K) y) a* q( C6 k3 m# d4 n2 L
Certain models of metastatic progression propose that cancer cell9 l* y4 P9 T; ]' V& f
invasion and metastasis from the primary tumour site are strongly
+ n6 ^% ^: m2 Z. Jinfluenced by contextual signals emanating from the stroma of the' \& G2 y# ]2 G( ]
primary tumour. It follows that if carcinoma cells are subsequently
2 V( Q- n3 o% E; Pdeprived of such signals, they may revert to an earlier phenotypic8 b% D2 D) R: A& \
state in which they no longer display the traits of high-grade malignancy.
- X8 ^# ]# V. d) x4 q$ t# k& _3 F: U" CIndeed, such a model has been proposed previously by others
: W; {$ J: U: [: F# uon the basis of indirect evidence21. Here, we demonstrate that at least
. n) \" M" u& N5 `, `# e8 P8 cone mesenchymal cell type, the MSC, can expedite tumour metastasis,- o- z5 {/ n; [0 z
and suggest that after primary human carcinomas recruit MSC3 T' I9 q8 h( K; _/ s+ y  g
populations into their midst, subsequent interactions between the- j7 X5 T" O2 j% g9 \6 j
MSCs (or their derivatives) and the BCCs endow the latter with
) Z( y/ @& \6 \$ a, `+ ~invasive and metastatic properties.( [" S5 F/ ^0 c0 N" m
Although the recruitment of labelled MSCs to tumour xenografts
9 J/ S; n) G2 H0 q& chas been established in a variety of experimental models of tumorigenesis,
% ^5 i( x( \: w( d+ Z7 Lthere is currently no available way to quantify with any accuracy+ Y. h. D* A1 n- q& k
the number ofMSCs in actual human tumours, in part because no set; i: k- l( H9 {1 d2 w$ Q: J# Z5 l" k/ G
of markers has been identified that can uniquely stain these cells without* O9 h+ }4 h$ e  E- Q
concomitantly staining other mesenchymal types in the tumourassociated
8 _$ q$ T- [# v( }stroma6. Our demonstration that the stroma derived from
) S/ q1 d! B: b. q" i8 ntumour xenografts contained appreciable numbers of murine MSCs% v. P2 p" h& a5 v4 T6 N- b
indicates that significant steady-state levels of these cells aremaintained
' F0 n2 R$ m& [3 A8 r! F0 Hin developing tumours. Interestingly, the use of CD10—one of the
9 L  s; F7 W$ i+ P5 v7 bmarkers associated withhumanMSCs—to purify cells fromthe stroma  U( o: r9 v" r" R4 H$ A& d" \9 h
of human primary invasive breast carcinomas yielded a population of
9 n+ s1 z7 f" \" r& Mcells that expresses a number of other markers collectively used to
: Q: N3 i/ [& s* O7 Ycharacterize human MSCs (for example, CD44, CD105 and CD106;- }( C( b$ m- ]% O0 V! }" b3 A# M
Fig. 6a). This suggested that, similar to tumour xenografts, human5 S# ?5 y% T8 D" _0 O2 {
carcinomas also acquire significant numbers of MSCs. Furthermore,
+ E1 o! U# A+ e5 Q+ T$ j7 V: ]we note that CCL5, which is prominent in the stromal gene expression
$ w1 |4 Y& [% _. u# f4 V* asignature associated with poor prognosis of breast cancers26 (SFT;3 D' K7 g1 y2 q. c! Q6 N! z. k
Fig. 6b, c), is also enriched in the leukocyte- and endothelial cell-free: M; m3 j: U3 c7 ^
stroma of primary invasive ductal carcinomas (Fig. 6d), specifically in0 g- ^6 o$ A5 ~$ l: l$ t$ a
the CD10-positive compartment27 (Fig. 6e). Collectively, these observations
/ H8 y2 Q5 H9 O/ N, c! dargue strongly for a significant association between stromal6 C8 \3 y6 E5 d: L* C. _
CCL5 levels, MSCs and human invasive breast cancers.
1 Y* S$ o6 O2 A0 R7 }0 H. cc
8 M6 O3 Q' h) b! x3 ]STT1969B9 {# B8 \& L3 j8 {3 j- H- u% G1 _
STT31268 [- u! s- }( @' Y. u- Q- [
STT3124- J4 B! w' r; N8 I2 ]
STT656B
2 C& Z+ N8 `+ W$ c6 U- aSTT1968B  L6 w7 Q( V. X% M0 @5 ~
STT3122* t: n% p6 X5 H  T  I% T6 k
STT3053
0 r! v# |# c- @! Y3 mSTT1986B: u; @& o' F) d. p/ D0 k
STT8543 K/ @$ V" Q6 G" }
STT3125
' l! T/ W. ^8 a" PSTT1975
( m5 T4 H6 x( Z  vSTT1987B
1 U3 A" t" H( K9 C" f: C+ SSTT1079. J/ |/ Y1 X8 y" b
STT638
: ?; G8 @6 C: M8 Q6 F8 `% HSTT1774- W0 Y/ v/ z# o& Z2 P
STT1984# ~4 y6 Z/ H% ^3 b0 U* B
STT1737C
1 q+ i* ^* n7 `4 KSTT3068
! h0 z) P0 A- i( \5 sSTT3120, L# q. j, @( }$ s
STT850/ p2 }: R0 z) c) u0 v7 W
STT417B/ e0 v5 Y6 ]0 e  Z. P
STT31198 ^& B* E1 Y: L( h, c
STT1776( Y4 j1 Z. q7 q: ?& O% A5 G; ~( ]8 I
STT1777B
( c  E+ e7 {' N" ?0 eSTT689B1 Y; o# `+ k) S/ W2 n
STT1971; K) [4 ?' B3 H1 k+ v8 n" O
STT5976 Y1 K/ \" m/ _$ N; j! \' }6 K
STT626
  R% M- b* @1 D2 JSTT154
6 A+ q8 v  e5 qSTT2774
, I9 z$ t, F/ U. @7 f5 ASTT1966
( E% Z5 r2 ]4 p  h$ M; LSTT27761 t) @: O/ I$ y/ ]
STT2775! ^( g" _  _' V+ c8 G  x
STT27722 G8 c7 E2 s/ A+ m$ H2 x( ]2 i- j
STT1637; Y/ ^$ P( N4 b/ a& f% r6 N& j; I  q
STT1220C) E9 @1 S4 M+ a  Y
STT-094B-1
! b8 z' ]7 |( Q5 h1 \1 ESTT6758 |+ V( x$ e9 x' J
STT2770
: U# b/ ^6 r+ |$ l& j0 J! y+ vSTT695B% ]# P4 n0 V5 G; ^5 ]8 f: f! M! x: @
STT1771) O0 r+ H0 W- u' O7 t
STT17784 \% c' B/ o3 [# ]4 r& I
STT491
  J8 f) L. Q8 {! g2 jSTT1823
5 i5 k5 X9 [& M) N, o4 ^, `+ O5 I9 `STT200C. T. E. k3 c' M
STT741B
- k. y; Y7 m0 w/ O( JSTT335C# ^9 H  P) B2 A/ B* ~
STT709B
2 s1 o7 @: _6 Z8 l. I2 qSTT516D
, a/ ]7 N6 S$ a5 ?STT607B; P8 O$ ^; }" g% j+ O7 m  f% j$ X
STT680B7 f. S* L7 B7 O; S: F* ^
STT1148B
( u/ k: p; v. Q- Y& V5 eSTT523B
; D" b8 @7 P! O0 w" t0 CSTT526E5 @" J" T7 {8 n# |8 L" D
STT742F
! L9 x' F7 E7 j5 _, `# Re
3 _7 P/ W$ R* A# C$ CCD132 L: f+ I" O. K' @. J
CD29
2 _- _! ?* ]' y% \: WCD44+ F2 G9 w8 M6 c; A* T0 ^/ A
CD49e; c4 a; f1 N2 w8 F, A3 B* Z
CD54$ ]- {8 l7 e, K; D( }! c3 r
CD59
+ D, c6 h# X, o9 r* F. L9 YCD63
. Y5 o1 L2 V- J4 A( b$ t/ }4 CCD105
" I4 }$ R/ I0 rCD106
1 R; M0 u" \% G0 s- KNestin+ k; \1 u/ T! D7 s: {8 x
HAS2
2 Z+ g$ _$ o; V$ J; N9 eIGF2( F: w' x' D$ G, `) O  a7 V9 g; v8 i
PLAU
$ [. X! o9 C% K' STIMP15 y1 O. Q' C( ]  D
CAV1# w' v" b, Y  f# @7 q, g
IDC-7
$ n+ ^! d0 y8 dT1126031 h2 b1 `* h2 C$ ^
T392303
  c/ d8 Q% L+ Z7 ]. A9 R% G! xNormal Invasive
0 f4 `$ j. Z% }) V2 w8 n- w) P, zCCL5% o# D, J4 N# S4 X. F* W5 B$ J
log2 ratios3 Q6 L, T: O+ a+ J+ C, g. A
–2.0 –1.4 –0.9 –0.3 0.3 0.9 1.4 2.0- H/ h6 A0 y6 u# W
log2 ratios- B4 o* c- _4 y% g9 t. o" B
d
' N1 |8 I' y" F–2
* V. h9 W" \1 V4 Q5 S# h: [–18 z( H- s3 \" h5 v- d4 f
0 1 2
& ^. k# d/ x' N& {9 R( a$ D–2.0
+ i8 ?0 k. b& z* p–1.5$ A9 l: v, @( B/ y
–1.0# B5 B# R! r8 V" ~, v7 K
–0.5
! x  _7 s3 p. H" T2 d0.0
$ u& ~% x) a) \! W% ^DTF SFT
8 A) F8 _$ Y9 f2 wDTF  O) F$ t" r" N3 u2 n8 r3 ^2 x, e; q. p* Z
SFT8 |: S/ m  k5 B$ {+ P. X; v5 M0 O+ B0 I
a b
2 v8 o3 R1 U, c+ Q; }F8 \( C: f: o% q8 R' `6 b0 Z  k/ b: q
Figure 6 | Stromal fibroblastic cells of human invasive ductal carcinomas are4 m9 o' d% y4 z$ c+ a  p
rich in MSC markers and overexpress CCL5. a, SAGE TreeView display of
2 E- a; A) ?0 }* M# z. bMSC markers expressed in stromal CD10-positive cells from invasive6 Q0 l# q  O" X# c& L! w
tumours27. b, Soft-tissue tumourswere ranked byCCL5 expression26, fromlow
7 J# v* @% i/ H- M2 {5 ]; {(green) to high (red). Wide blocks indicate expression ratios of tumours
8 K+ }8 }% z) P3 wclassified as desmoid-type fibromatosis (DTF; yellow outline, n510) or
9 D+ A( S! C0 T, Y  T/ nsolitary fibrous tumours (SFT; blue outline, n513); narrow blocks are other
6 F% m2 d1 d* esoft-tissue tumours (n532). c, Box plot showing that CCL5 expression is& o% K. f. f% b( N
higher (P50.004) in SFT than inDTF. The difference in log2 expression ratios
6 u7 _2 e" a8 M( p2 i, obetween SFT and DTF was tested with the Welch’s test. d, CCL5 Affymetrix" `5 ?4 ^* O5 A& Q: d" k
gene expression in the stroma of human invasive ductal cancers compared to$ E: W* b* c* z1 _
that in normal cancer-free breast tissue (indicated as ‘Normal’; see Methods).
' `3 y! f4 I8 ]0 D- J5 Fe, CCL5 expression is mostly restricted to the CD10-positive fibroblastic cells- C! Q" b* L# ?, y4 g) v- Z- f; G8 A
derived from invasive ductal cancers. The heatmap shown is a cluster of  n# R/ V, E8 R- W3 O- _
CCL5.genelist obtained as in a.Details of thepurificationmethodologies of the, |; _8 m, z2 ^5 j# T0 |: h
various groups indicated in a, d and e are found in ref. 27.Although we have focused here on CCL5 in the MSC–MDA-MB-8 M- ~7 {( V9 t
231 cell interactions, CCL5 seems to have an equally critical involvement$ E. y; x2 m! [6 J1 J$ f& `6 h
in the functional interaction of MSCs with MDA-MB-435) N: L: \7 d" M2 V! n, i
human BCCs. CCL5 levels accumulate synergistically when the two7 G% x; N- `0 K( w
cell types are co-cultured together (Supplementary Fig. 10a), and% d! w- g% ~; v# F3 _. e
MSCs in which CCL5 expression was compromised by shRNA knockdown1 k0 j1 @  r* c% l
failed to promote metastasis by MDA-MB-435 cells to which/ q( S% @' d& ]9 a$ F% ?( f/ o
theywere admixed (Supplementary Fig. 10b).With these facts in mind,
3 \5 A4 a+ h9 I$ V5 \7 Wwe point out that CCL5 does not seemto be involved in regulating the
9 I4 m0 c* _# U3 N" R; lMSC-induced metastasis of MCF7/Ras or HMLER cells, which may  t9 W* Z  I' L# S
depend on other paracrine factors such as VEGF and interleukin-8.+ _% P. N+ K! ^5 H7 V
Nevertheless, our observations highlight the recently discovered critical
( r0 C* Z* Y% a, ^* croles of chemokine networks in malignant progression28,29 and suggest  ^& t2 ?$ q9 h
the possible utility of a variety of CCL5 analogues and CCR5 antagonists
) D8 R- c8 N" w* R# }' v2 \currentlyused in anti-HIVtherapy30 in treatingmetastatic disease." M6 \, e$ F, n4 U& i" i5 c
Notably, we have observed that MSCs induce the metastasis of cells
  {2 y; c, x: `$ c" Gto the lung that are, on isolation and re-injection into recipient mice,
& t$ ^" S0 W: g% a& A5 u( j% rno more metastatic than their predecessors in the primary tumour+ n  \3 g  u& }- ^* R* p$ u
(Fig. 2e). This indicated that acquisition of increased metastatic5 ], D# y, o; r* D" r6 }
powers by these tumour cells was reversible, and suggested that the+ E6 m8 ~8 P2 Q1 q& P  V/ ]$ a
maintenance of this phenotype depends on continuing contact with: E/ J9 t3 r0 R+ M% ~5 b- ~: g
stromal cells. If extended to other tumour types, the present results7 l1 B- a1 E: w
hold important implications for the molecular analysis of malignant
" h/ j3 c. c8 y- e$ m* O6 W& Tprogression. They suggest that many of the cellular functions associated
: |, V: f+ H) k' e7 |- ]0 B5 ~with invasion and metastasis are often not expressed constitutively
% U9 O$ ~- i' j0 g$ M$ U" K# sby carcinoma cells, but rather only transiently in response to8 a6 x5 l- m3 q% I- w
contextual signals that tumour cells receive from their stromal microenvironment.
8 O8 [) Z. h  i5 A- U, h6 M. eIf so, analysis of the gene expression patterns of bulk
$ N( a  }& Y$ m' Z9 v7 W! b7 Z, c5 eprimary tumour populations may fail to detect the expression of key- c- t# K( v5 D/ C! B+ c0 l
genes mediating invasiveness and metastasis, if only because they are
: G3 i% |6 m8 f6 C3 T: s. tbeing transiently expressed in minor subpopulations of cells within. L, b' y8 T" Y1 [( n
such tumours. Additionally, attempts at determining the metastatic
9 j6 o% d9 E/ l" ]' Bpropensities of tumours may need to be focused on the genes and
/ i* n* P: a" c- p, A( y. N4 d2 ?proteins that confer responsiveness of primary tumour cells to stromal
; C/ Q: o, q9 @6 {; T) t7 gsignals, rather than on the genes and proteins that directly mediate. X! w3 B3 U4 r( p/ W" H: S0 j1 `
the cellular phenotypes of invasion and metastasis.
$ d) t! o& [* e% w' L( }& }4 b* ^% e# DMETHODS SUMMARY2 [( Z! b2 \6 x4 c7 A9 U! h
Cells labelled with GFP or ds-red, or harbouring various overexpression or
( K. y: H2 T, ]0 D. EshRNA constructs, were generated by viral transduction followed by FACS
& [. {  x, n/ ~7 Q+ Oenrichment or antibiotic selection. Xenograft experiments were conducted in
  j+ T2 Q. m3 Anude or NOD/SCID mice and metastasis was estimated using fluorescence
! [: e% q0 Y. M: Xmicroscopy. The levels of cytokines, growth factors and chemokines were
4 V! W4 b. Z- g5 Q) w" M- K% B0 B: oassessed by immunoassays. Migration and invasion assays were conducted using* l/ m3 B' v- ^# K
transwell chambers. Antibody treatment of tumour-bearing mice was conducted( {0 e9 Y4 W% N  P
by intraperitoneal injections. See Methods for detailed information regarding4 k# B4 y  J, B2 Q& X  _6 R
cell culture, viral infections, in vivo colonization and extravasation assays, RT–
1 i- O( J0 @+ i6 |- @. ]7 mPCR, TUNEL and anoikis assays, immunohistochemical and immunofluorescence: g! L" ]- y1 f
determinations, western blotting, and antibodies used.
9 \" v# k2 o3 e) ^) L: l# X8 O! }0 kFull Methods and any associated references are available in the online version of
; }$ m& j2 H  |7 Nthe paper at www.nature.com/nature.

Rank: 2

积分
97 
威望
97  
包包
1738  
沙发
发表于 2015-5-24 16:27 |只看该作者
好啊,,不错、、、、  

Rank: 2

积分
79 
威望
79  
包包
1769  
藤椅
发表于 2015-5-27 19:54 |只看该作者
我起来了 哈哈 刚才迷了会  

Rank: 2

积分
166 
威望
166  
包包
1997  
板凳
发表于 2015-6-18 17:42 |只看该作者
干细胞之家微信公众号
设置阅读啊  

Rank: 2

积分
98 
威望
98  
包包
1756  
报纸
发表于 2015-7-9 11:27 |只看该作者
这个贴不错!!!!!看了之后就要回复贴子,呵呵  

Rank: 2

积分
79 
威望
79  
包包
1769  
地板
发表于 2015-7-13 17:10 |只看该作者
任何的限制,都是从自己的内心开始的。  

Rank: 2

积分
101 
威望
101  
包包
1951  
7
发表于 2015-7-15 19:35 |只看该作者
好 好帖 很好帖 确实好帖 少见的好帖  

Rank: 2

积分
104 
威望
104  
包包
1772  
8
发表于 2015-7-24 22:53 |只看该作者
dddddddddddddd  

Rank: 2

积分
75 
威望
75  
包包
2118  
9
发表于 2015-7-29 10:27 |只看该作者
努力,努力,再努力!!!!!!!!!!!  

Rank: 2

积分
77 
威望
77  
包包
1964  
10
发表于 2015-8-13 18:10 |只看该作者
对不起,我走错地方了,呵呵  
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2025-5-14 08:11

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.