
- 积分
- 0
- 威望
- 0
- 包包
- 0
|
作者:David L. Vesely作者单位:Departments of Medicine, Physiology, and Biophysics, University of SouthFlorida Cardiac Hormone Center, and James A. Haley Veterans Medical Center,Tampa, Florida 33612 5 j% m, \1 ^0 {; ?- C
0 E( x9 E$ H* x/ I8 v, o
, w$ z3 o+ F+ D 9 | A- r/ l. ^1 O7 w
6 \% [; T- t# z
; O4 t, L! ^( L" L1 G. e $ q# A1 f+ h9 n% _% r8 _+ S6 Y
8 D; M$ y: c+ ~) T 1 n; J3 j' s8 E4 M
1 c( v* h/ }0 ^0 B4 J) {- W
- f( q( h/ e P7 {% n; N G 1 g1 f) t# {/ n5 u; ~
, M+ l, {. q; g+ S 【摘要】3 P# @2 W9 k @
Atrial natriuretic peptides (ANPs) are a family of peptide hormones, e.g.,ANP, long-acting natriuretic peptide, vessel dilator, and kaliuretic peptidesynthesized by the ANP gene. Brain natriuretic peptide (BNP) and C-typenatriuretic peptide are also members of this family but are synthesized byseparate genes. Within the kidney, the ANP prohormone's posttranslationalprocessing is different from that of other tissues, resulting in an additional four amino acids added to the NH 2 terminus of ANP (e.g.,urodilatin). Each of these natriuretic and diuretic peptides increases within the circulation with acute renal failure (ARF). Renal transplantation but nothemodialysis returns their circulating concentrations to those of healthyindividuals. BNP and adrenomedullin, a 52-amino acid natriuretic peptide, havebeneficial effects on glomerular hypertrophy and glomerular injury but do not improve tubular injury (i.e., acute tubular necrosis). Vessel dilatorameliorates acute tubular necrosis with regeneration of the brush borders ofproximal tubules. Vessel dilator decreases mortality in ARF from 88 to 14% at day 6 of ARF, even when given 2 days after renal failure has beenestablished. # |; w; N& u* ~: Q! m4 U
【关键词】 adrenomedullin atrial natriuretic peptide prohormone acute tubular necrosis transplantation hemodialysis
# c4 T# Y, d* L5 W: ^ ACUTE RENAL FAILURE ( ARF ) develops in 2-5% of all patients sent to tertiary-care hospitals( 125 ). In 60% of patients, the underlying cause is a renal insult [i.e., acute tubular necrosis (ATN)]( 39, 125 ). In the mid-1940s, whendialysis was introduced, the mortality from severe ARF was 50%( 39 ). This poor prognosis hasnot improved, and mortality now remains in the 40-80% range in oliguiricARF patients ( 4, 9, 22, 38, 39, 90, 125 ). The occurrence of ARFin the hospital increases the relative risk of dying by 6.2-fold and thelength of hospitalization by 10 days( 77 ). Thus ARF not only occurs with a high frequency but is also associated with high morbidity andmortality.
) x* f9 Z8 V% p, J
" ^+ |9 q8 a7 T4 y, qThe present review will concentrate on the atrial natriuretic peptides(ANPs), adrenomedullin (ADM), and urodilatin, their pathophysiological changeswith ARF, and their potential for the treatment of ARF. There are severalexcellent reviews on the biochemistry and molecular biology( 28, 32, 56, 69, 73, 83, 106 ) and the physiology( 7, 10, 36, 43, 54, 84, 86, 105, 119 ) of these natriureticpeptides so these aspects will not be reviewed in detail in the presentreview.9 d8 x$ W3 H9 [( T( ?7 d
% ]; R: @! k( V7 P! J4 sANPs& r6 T7 B% X1 X1 S$ `$ L
) {" ^* q9 T3 d: G5 Q& D: ?" b
ANPs consist of a family of peptides that are synthesized by threedifferent genes ( 28, 32, 56, 73, 83 ) and then stored as threedifferent prohormones [i.e., 126-amino acid (aa) ANP, 108-aa brain natriureticpeptide (BNP), and 126-aa C-type natriuretic peptide (CNP) prohormones]( 56, 104 ). In healthy adults, the ANP prohormone's main site of synthesis is the atrial myocyte, but it is alsosynthesized in a variety of other tissues, including the kidney( 31, 116 ). The sites of synthesisof the ANPs in the approximate order in which they contribute to the synthesis are listed in Table 1.6 i: K* l( ^2 ^' I: v
( T+ n5 c" ~3 h6 y9 z$ b' v9 p/ L
Table 1. Site(s) of synthesis, molecular weight, and hemodynamic and natriureticproperties of natriuretic peptides4 v, m5 c& J+ d# B( Y9 ^
" q; m$ n! k; ?4 S+ n
Peptide Hormones Originating From the ANP Prohormone
, e) f2 \4 b2 e5 f1 O p' ]1 T( `: I6 [5 \: u
Within the 126-aa ANP prohormone are four peptide hormones ( Fig. 1 ), with bloodpressure-lowering, natriuretic, diuretic, and/or kaliuretic (i.e.,potassium-excreting) properties in both animals( 8, 25, 26, 35, 37, 61, 113, 118, 127 ) and humans( 109 - 112 ).These peptide hormones, numbered by their aa sequences beginning at theNH 2 -terminal end of the ANP prohormone, consist of the first 30 aaof the prohormone [i.e., proANP-(1-30); long-acting natriuretic peptide (LANP)], aa 31-67 [i.e., proANP-(31-67); vessel dilator], aa79-98 [proANP-(79-98); kaliuretic peptide], and aa 99-126(ANP) ( Fig. 1 ). Each of these four peptide hormones circulates in healthy humans, with LANP and vesseldilator concentrations in plasma being 15- to 20-fold higher than ANP and100-fold higher than BNP ( 24, 29, 30, 41, 114, 123 ). More than one peptidehormone originating from the same prohormone is common with respect to thesynthesis of hormones ( 104 ).ACTH, for example, is derived from a prohormone that contains four knownpeptide hormones ( 104 ). TheBNP and CNP genes, on the other hand, appear to each synthesize only onepeptide hormone within their respective prohormones, i.e., BNP and CNP( 7, 28, 32, 54, 55, 73 ). The natriuretic effects of LANP, kaliuretic peptide, and vessel dilator have different mechanism(s) ofaction from ANP, in that they inhibit renal Na -K -ATPase secondarily to their ability to enhancethe synthesis of prostaglandin E 2, which ANP does not do( 18, 35 ). The effects of ANP, BNP,and CNP in the kidney are thought to be mediated by cGMP( 10, 36, 84, 104 ).
4 e# f% V \7 m6 t/ _2 f
: P5 m: A+ q& d2 o: ?7 {% XFig. 1. Structure of the atrial natriuretic peptide prohormone (proANP) gene. Fourpeptide hormones [e.g., atrial natriuretic peptide (ANP), long-actingnatriuretic peptide (LANP), vessel dilator, and kaliuretic peptide] aresynthesized by this gene. Each of these peptide hormones has biologicaleffects, e.g., natriuresis and diuresis, mediated via the kidney( 8, 25, 26, 35, 37, 61, 113, 118, 127 ). LANH, long-actingnatriuretic hormone (a different nomenclature for LANP); a.a., amino acids.Reprinted by permission (Pearson Education, Inc., 1992)( 104 ).1 m, e/ t. e7 E, \2 a5 ~
/ b Z j/ ~2 }' ~' {ANP has been found to be a potent in vivo and in vitro inhibitor ofaldosterone secretion via a direct effect on the adrenal ( 5, 14, 17, 23, 33, 51, 59 ) and indirectly throughinhibition of renin release from the kidney( 14, 53, 59, 103 ). Kaliuretic peptide andlong-acting natriuretic peptide are also potent inhibitors of the circulatingconcentrations of aldosterone in healthy humans( 108 ). Kaliuretic peptide andLANP effects on decreasing plasma aldosterone levels last for at least 3 hafter their infusions have stopped, whereas ANP no longer has any effect onplasma aldosterone concentrations within 30 min of cessation of its infusion( 108 ). Vessel dilator does not appear to have direct effects on aldosterone synthesis but is a potentinhibitor (66%) of plasma renin activity( 117 ). The site of synthesis,molecular weight, and hemodynamic effects of each of the natriuretic peptidesin humans is summarized in Table1. ANP, LANP, and vessel dilator cause a significant diuresis andnatriuresis in healthy humans( 112 ). Kaliuretic peptidedoes not cause a significant natriuresis in healthy humans, but when infusedin humans with congestive heart failure it causes a significant natriuresis( 70 ).0 ?1 C( m! u% a/ O$ p
# G% n# i( r$ b/ G' F$ L+ `+ TUrodilatin. ANP prohormone posttranslational processing is different within the kidney from that which occurs in the heart, resulting inan additional four amino acids added to the NH 2 terminus of ANP[i.e., proANP-(95-126); urodilatin] ( 56, 69, 93 )( Fig. 2 ). The rest of the aminoacids in urodilatin are identical and in the same sequence as those in ANP( Fig. 2 ). Urodilatin and ANPhave identical ring structures formed with cysteine-to-cysteine bonding( Fig. 2 ). Urodilatin is not formed in the heart or in other tissues except the kidney. This peptidehormone is synthesized by the same gene that synthesizes ANP, but in thekidney, as opposed to all other tissues that have been investigated, the ANPprohormone is processed differently, resulting in the formation of urodilatinrather than ANP ( 56, 69, 93 ). Urodilatin circulates invery low concentrations (i.e., 9-12 pg/ml)( 115 ). Infusion of ANPincreases the circulating concentration of urodilatin, suggesting that some ofANP's effects may be mediated by urodilatin( 115 ). Infusion of LANP,vessel dilator, and kaliuretic peptide, on the other hand, do not affect thecirculating concentration of urodilatin in healthy humans( 115 ). |3 z% `5 I+ y3 i5 Q
4 s3 R7 ~. K% k5 t! d" u [1 M
Fig. 2. Amino acid sequences of the natriuretic peptides. Each of the sequences arethe human sequences except for Dendroaspis natriuretic peptide (DNP),whose sequence is only known in the snake. The brackets illustrate thelocation of cystine bridges that help to form a ring structure in a number ofthese peptides. BNP, brain natriuretic peptide; CNP, C-type natriureticpeptide.& u/ Z; | [% F0 p" G- u* Z
8 o- ~5 |' M3 g9 T9 Z, D4 Q }
BNP and CNP
% x' }( h, V/ D* O4 N" I+ Q% A( l9 E, N; \. ] d8 m8 d
BNP. BNP has similar diuretic and natriuretic effects and a shorthalf-life as ANP ( 98 ). BNP'shalf-life is 100-fold shorter than the half-lives of vessel dilator and LANP( 1, 54, 98, 99, 104 ). BNP has remarkablesequence homology to ANP, with only four amino acids being different in the17-aa ring structure common to both peptides( Fig. 2 )( 54, 55, 73, 83, 84, 98 ). Although BNP was named( 98 ) for where it was firstisolated (i.e., porcine brain), the main source of its synthesis and secretionis the heart ( Table 1 )( 36, 54, 56, 84, 101 ). As with ANP, thehighest levels of BNP are found in the atria of the heart( 36, 101 ). BNP levels in theatria, however, are 101 ). The immunoreactivelevel of BNP within the ventricles is only 1% of BNP's concentration withinthe atria ( 101 ). BNP,however, has been termed a "ventricular" peptide based onventricular BNP mRNA levels being similar to those in the atria, and theventricles are much larger than the atria( 69 ).' v0 {, l; K; I9 S
7 E( Z4 E9 o+ [- ~
The 108-aa BNP prohormone is processed within the heart to yield abiologically functioning BNP consisting of aa 77-108 of the BNPprohormone and the NH 2 terminus of the BNP prohormone (aa1-76 of prohormone), both of which circulate( 54 ). The circulatingconcentration of BNP is ( 36 ). The sequence homology ofBNP differs appreciably across species (both in size and amino acid sequence)( 28, 54, 68, 73, 101 ). BNP's marked sequencevariability explains, in part, the variations in its biological activity indifferent species. The peptide hormones from the ANP prohormone, on the other hand, have remarkable homology across different species( 28, 32, 73, 104 ). Mice overexpressing theBNP gene, where the circulating concentration of BNP is 10- to 100-fold higher than in healthy mice, have less glomerular hypertrophy and mesangial expansionwith intraglomerular cells than healthy mice 16 wk after both received renalablation ( 45 ). This mousemodel of subtotal renal ablation, however, also has significantly increasedANP concentrations ( 74, 102, 128 ), which may also havecontributed to the effects attributed to BNP in the BNP gene-overexpressingmice ( 45 ).
0 d0 j5 \" T6 x; Q% b! A! q4 z& h* k. m8 t( i1 o
CNP. CNP has remarkable similarity to ANP in its amino acid sequence but lacks the COOH-terminal tail of ANP( Fig. 2 ) ( 6, 7, 99 ). CNP is present within thehuman kidney ( 62, 100 ) and has been found tohave little effect on renal vasoconstriction ( 126 ). Although CNP has beenreported to have natriuretic effects in some animals, when infused in humansat physiological concentrations and in concentrations that reached 4- to10-fold above those observed in disease states, CNP did not affect renalfunction ( 6 ). Thus in healthyhumans CNP had no effect on renal hemodynamics, systemic hemodynamics,intrarenal sodium handling, sodium excretion, or plasma levels of renin andaldosterone ( 6 ). In another study of infusion of CNP in healthy humans, CNP increased 60-fold in plasmaand there were no significant hemodynamic or natriuretic effects( 40 ). The authors of thisstudy concluded that it is unlikely that CNP has any endocrine role incirculatory physiology ( 40 ).There is one study in humans where infusion of CNP to increase CNP plasmalevels 550-fold caused a 1.5-fold increase in urinary volume and sodiumexcretion ( 42 ). With this veryhigh plasma concentration of CNP, both ANP and BNP also increased 2.4-fold( 42 ), which may have been thecause of the natriuresis and diuresis observed. Each of these studies suggeststhat CNP does not contribute physiologically to any natriuresis or diuresis inhumans ( 6, 40, 42 ).
) ?' ]. k c4 x. J+ D/ B9 n/ S- @9 w4 Q5 W d. Y* R9 B
ADM, a 52-aa peptide originally isolated from an extract of apheochromocytoma ( 48 ), alsohas biological properties nearly identical to those of the ANPs( Table 1 )( 43, 48, 86 ). Infusion of ADM lowersblood pressure and produces a diuresis and natriuresis ( 43, 48, 86 ). ANP but not LANP, vesseldilator, or kaliuretic hormone increases the circulating concentration of ADMthree- to fourfold, suggesting that some of the reported effects of ANP may bemediated via ADM ( 107 ).However, the natriuresis and diuresis secondary to ANP in the aboveinvestigation were much larger than has ever been observed with ADM( 107 ), suggesting that ADMdoes not mediate all of the natriuretic and diuretic effects of ANP. ADM isnot produced in the atrium of the heart and therefore is not one of the ANPsper se as these peptides were so named because they are synthesized in theatrium of the heart ( Table 1 ).ADM is a larger peptide than any of the ANPs, with its main site of synthesisbeing in the adrenal, but isolated renal cells also have the ability tosynthesize ADM secondarily to stimulation by vasopressin via V 2 receptors ( Table 1 )( 88 ). Because vasopressin[antidiuretic hormone (ADH)] inhibits a diuresis, these findings are opposedto findings that ADM causes a diuresis( 43, 48, 86 ).5 r4 @+ K1 U5 P
! J0 \. o1 D! | qDendroaspis Natriuretic Peptide* X& ^3 x' A. t0 G7 D( q
* `3 J. }7 E* l- X& X; e
Dendroaspis natriuretic peptide (DNP) is the newest of the natriuretic peptides. This peptide was isolated from the venom of the greenmamba, Dendroaspis angusticeps ( 94 ). The venom also containsseveral polypeptide toxins that block cholinergenic receptors to causeparalysis ( 94 ). DNP-likepeptide has been reported to be present in human plasma and in heart atria( 91 ). In plasma, DNP'sconcentration is very low, i.e., 6 pg/ml, which is one-half of 1% of thecirculating ANPs ( 91 ). This peptide has a 17-aa disulfide ring structure similar to ANP, BNP, and CNP( Fig. 2 ) and causes anatriuresis and diuresis in dogs( 58 ). Infusion of DNP does notcause any significant change in the circulating levels of ANP, BNP, or CNP( 58 ).
) Z: ?1 T2 w8 h+ M' ]
0 o3 j5 F! G0 NRichards et al. ( 81 ) havequestioned whether DNP actually exists in humans and mammals because it hasnot been characterized by HPLC linked to immunoassay, followed by purificationand analysis to establish the human amino acid sequence as has been done withthe above natriuretic peptides. The gene for DNP has not been cloned in thesnake or in any mammal as has been done for each of the other natriureticpeptides ( 81 ). Richards et al.suggest that DNP may be "snake BNP" because BNP varies markedly inamino acid sequence among species (and the BNP sequence in this snake isunknown). The peptides from the ANP prohormone are markedly conserved amongspecies ( 36, 104 ), and one would notsuspect that DNP is one of these peptides as their amino acid sequences aremarkedly different from DNP. Further experimentation with the above studiessuggested by Richards et al.( 81 ) should give us moreinsight with respect to this interesting peptide." a1 ]3 a* t$ L% `7 Q; _/ j
) O, e1 X. r/ f+ m
IMMUNOCYTOCHEMICAL LOCALIZATION AT ANPs IN THE KIDNEY' d/ }- E0 {0 Y5 P: ~8 X
/ q/ u) X9 t" {, Q( d# I( o& S- V, ~4 K
The kidney is a prime target organ (along with vasculature) of thephysiological effects of ANPs( 10, 56, 104 ). Immunohistochemical studies have localized ANP, vessel dilator, and LANP to the sub-brush borderof the pars convuluta and pars recta of the proximal tubules of animal( 79 ) and human( 85 ) kidneys( Fig. 3 ). Immunofluorescentstudies reveal that each of these peptides has a strong inclination for theperinuclear region in both the proximal and distal tubules( 79, 85 ). Immunohistochemical studies localize urodilatin to the distal tubule, with no evidence ofurodilatin in the proximal tubule( 85 ). ANP mRNA studies haveconfirmed that ANP prohormone is synthesized in the kidney ( 34, 76, 97, 102 ). The amount of ANPprohormone present in the kidney, however, is only one one-ninetieth of thatproduced in the atria of the heart( 104 ). These studies takentogether suggest that because urodilatin( 93 ) is found mainly in the distal nephron ( 82, 85 ) and because it is part ofthe ANP prohormone ( 104 ),synthesis of the ANP prohormone may take place in the distal nephron( 82, 85 ). The ANP prohormone gene is present and can be expressed in the kidney( 34, 76, 97, 102 ). The gene is upregulatedwithin the kidney in early renal failure in diabetic animals( 34 ) and in the remnant kidney of rats with reduced renal mass( 102 ).$ n$ L$ k" X: k) |
: x- E) n% n: J; _: j
Fig. 3. Vessel dilator immunoperoxidase staining in the rat kidney reveals strongstaining of the sub-brush border of proximal convoluted tubules (arrowheads in A and B ), including a proximal tubule ( A )originating directly from the top left portion of the glomerulus. Theinterstitial artery ( C ) had strong proANP-(31-67) staining ofthe elastica with moderate staining of endothelial cells (arrow) and media(*). The distal tubules and collecting ducts (arrows in A and B ) had weak staining with no demonstrable staining in some of thecollecting duct cells. Magnification: x 940. Reprinted by permission(Blackwell Publishing, Ltd., 1992)( 79 ).; m7 H# u2 T, Q, |$ P9 B' U
" _, u' l- Z0 D2 E" HINFLUENCE OF ARF ON THE CIRCULATING CONCENTRATION OF ANPs" f+ a' y8 I$ A
5 Y p1 N; u/ n7 ]+ hEach of the ANPs from the ANP prohormone( 30, 41, 50, 70, 114, 123, 124 ), BNP( 13, 16, 21, 54, 55 ), and CNP( 7, 40, 42 ) increases in thecirculation in salt- and water-retaining states such as congestive heartfailure and renal failure compared with their concentrations in healthyindividuals. Thus in salt- and water-retaining states there is no decrease inproduction of these natriuretic and diuretic peptides, but rather there isincreased production (mainly from the ventricle of the heart) ( 32, 76 ) in an apparent attempt toovercome the salt and water retention via their natriuretic and diureticproperties ( 123 ). The diseasestate associated with the highest circulating concentrations of ANPs is renalfailure ( 29, 30, 89, 122, 124 ). One would suspect thatANPs are higher in renal failure vs. class IV congestive heart failurepatients because of the added pathophysiology of decreased degradation ofthese peptides with the decreased functioning of renal parenchyma( 124 ). However, Franz et al. ( 30 ) have shown that there isan increased excretion of ANPs in renal failure and that the increase invessel dilator excretion occurs even before serum creatinine levels begin torise. The circulating concentrations of ANPs in chronic renal failure (CRF)appear to reflect volume status( 50, 66, 80, 124 ). Despite increasedcirculating ANPs in sodium-retaining disease states, the kidney retains sodiumand is hyporesponsive to ANP, LANP, and BNP( 11, 54, 77, 109 ). The mechanism for theattenuated renal response to these natriuretic peptides is multifactoral andincludes renal hypoperfusion and activation of therenin-angiotensin-aldosterone and sympathetic nervous systems( 10, 36, 65 ).
. x$ O: C+ d8 J3 G
- m" k6 C; z2 X' QHemodialysis
% Y' ^* Q4 ^/ d1 ?$ c% O8 f9 g% f0 a) g: \% R# ]1 ^6 o
ANPs. These peptides have been suggested as possible indicators ofwhen to perform dialysis in persons with CRF( 50, 66, 80, 89, 124 ). However, other datasuggest that ANPs are not useful in predicting when hemodialysis is necessary( 29 ). Hemodialysis lowers thecirculating concentration of ANP by 34-42%, with the amount of decreaseappearing to be related to the volume status of the patients( 50, 121, 124 ). Hemodialysis does notdecrease the circulating concentrations of vessel dilator and LANP( 124 ). Part of the reason forthe difference in the effects of hemodialysis on ANPs is that vessel dilator and LANP crosses the dialysis membrane compared with15-25% of ANP crossing hemodialysis membranes( 124 ). Hemodialysis usingcellulose-triacete dialyzers reduces plasma levels of these peptides in ARFmore than hemodialysis therapy with polysulfone dialyzers( 29 ).3 ~6 w9 E( }" v4 Q0 _& m
0 a. R( ^# I% nBNP. Hemodialysis has been reported to both lower( 55 ) and have no effect oncirculating BNP levels ( 49 ).Before dialysis in persons with CRF, plasma BNP levels have no relationship toserum creatinine or mean blood pressure( 55 ). In those CRF patients inwhom plasma BNP levels decrease with dialysis, this decrease correlates withthe degree of postural blood pressure drop, but there is no correlation withthe fall in serum creatinine( 55 ). In none of the studiesof BNP and dialysis ( 13, 21, 49, 55 ) has BNP ever returned toits circulating concentration in healthy individuals. With volume repletion after hemodialysis, there is an exaggerated release of ANP, but changes in BNPare small and without any correlation with either atrial or ventricular volume( 21 ).! ^8 n. v6 m7 D8 q0 W& ], N
0 K& {0 M+ X. f9 j0 XRenal Transplantation
" G2 `2 O9 m {- r+ g9 G3 r) X+ z& ^* ]6 |
Successful transplantation of functioning kidneys decreases the markedlyelevated circulating levels of ANPs in persons with ARF to those in healthyindividuals ( 75, 78 ). Nonfunctioning renalallografts continue to have elevated circulating concentrations of ANPs( 78 ). Postrenal transplantion,it takes 7 days for ANP and 10 days for vessel dilator to return to normal( 75 ). This suggests that theallograft kidney does not fully function immediately with respect to clearingthese peptides. The half-life of ANP in healthy persons is only 2.5-3.5min ( 1, 104 ). If the transplantedkidneys began to function immediately, one would have expected the circulatingconcentration of ANP to have decreased to the normal range within 24 h (i.e.,360 half-lives). Vessel dilator has a 20-fold longer half-life compared withthat of ANP ( 1, 104 ), which may explain whyit takes 3 more days for this peptide hormone to normalize in the circulation after successful renal transplantation. If one gives ANP (via infusion) at thetime of renal transplantion, this does not appear to have any beneficialeffect on the outcome of the renal allograft( 87 ).3 m @- s! [% Z3 j
" O7 h+ Q0 `% j# X- q( @; M3 c+ q. v, \
PROTECTIVE AND THERAPEUTIC EFFECTS OF ANPs IN ARF
6 ~1 j) w; b, k) o' N9 }
* ]. k1 W' D# r/ ~: }# S6 {4 R% v( nANP and Urodilatin0 N% Q+ r4 Q g& C
% @7 J! H. X3 M4 e0 hSeveral of the atrial peptides have been investigated as possible treatment(s) of ARF. ANP had encouraging results in early studies of ARF inanimals ( 20, 57 ). The infusion of ANP( 20, 57, 60, 66, 68, 71, 74, 77, 90, 95 ) or urodilatin( 63, 92, 96 ) in rat models of ischemicARF attenuated renal tissue damage and preserved glomerular filtration rate(GFR). Nakamoto et al. ( 68 )and Shaw et al. ( 95 ) were ableto shorten the course of renal artery cross-clamping-induced ARF in rats with ANP. Conger et al. ( 20 ) founda marked improvement in GFR in a rat renal artery clamp model when ANP-III(0.2µg·kg - 1 ·min - 1 ) was given intravenously immediately after clamp release in combination withdopamine sufficient to maintain mean arterial pressure above 100 mmHg. In therat, ANP had no effect on GFR when given intravenously( 56 ) but did have an effect onGFR when given directly into the renal artery for 4 h( 95 ). The inability of ANP toincrease GFR when given intravenously could be restored if dopamine were givensimultaneously ( 20 ). In thedog, the improvement in renal perfusion only lasted for a short period after a180-min infusion of ANP ( 71 ).When ANP was given by intra-arotic bolus on days 1 and 2 after the above-mentioned infusion, there was not any significant improvementin renal perfusion on those days( 71 ). Thus in animals theimprovement in renal failure with ANP was only of short duration and depended on whether ANP was given intravenously or directly into the artery( 20, 56, 71 ).
/ {3 _( a& H; I. J
8 T/ I3 }# F) G7 x( UThe administration of 0.2 µg of ANP·kg bodywt - 1 ·min - 1 for24 h to humans with ARF revealed that ANP did not cause significantimprovement and did not reduce the need for dialysis or reduce mortality( 3 ). ANP infusions wereassociated with decreased survival in the nonoliguric ARF subjects, whorepresented 75% of the subjects( 3 ). The usefulness of ANP fortreatment is hampered by its short half-life of 2.5 min( 1, 104 ) and by its very shortduration of action ( 20, 57, 59, 61, 77, 112 ). Of 504 ARF patientstreated with ANP, 46% developed hypotension, which would further limit itsusefulness in ARF ( 3 ). Use of several of the ANPs investigated to treat ARF has each resulted in severehypotension and bradycardia ( 3, 47 ). In addition to ANPresulting in 46% of renal failure patients becoming hypotensive( 3 ), urodilatin has also beenassociated with severe hypotension and bradycardia, when given as a potential treatment of congestive heart failure( 47 ). ANP is now considered more harmful than helpful with respect to the treatment of ARF ( 11 ). ANP has also beeninvestigated in humans with CRF to determine whether it could preventradiocontrast-induced nephropathy, one cause of hospital-acquired ARF( 52 ). When ANP was given before and during a radiocontrast study in 247 patients, no beneficial effectwas found ( 52 ). Urodilatin hasbeen suggested as a possible treatment of renal failure( 63, 92, 96 ), but in double-blindtrials in ARF patients urodilatin was found to have no beneficial effect( 63 ).
" v5 B. \% ]) c9 `! Y; I3 @' q1 S; U# J: X
Vessel Dilator8 p6 V% x7 X% E' o2 V
8 I. C) t1 q) UVessel dilator appears to be one of the ANPs with promising therapeuticpotential in the treatment of ARF. Vessel dilator (0.3µg·kg - 1 ·min - 1 via ip pump) decreases blood urea nitrogen and serum creatinine from 162± 4 and 8.17 ± 0.5 mg/dl, respectively, to 53 ± 17 and0.98 ± 0.12 mg/dl in ARF animals in which ARF was established for 2days (after vascular clamping) before vessel dilator was given( 19 ). At day 6 ofARF, mortality decreased to 14% with vessel dilator from 88% without vessel dilator ( 19 ). The ARF animalsthat did not receive vessel dilator had moderate (i.e., 25-75% of alltubules involved) to 75% of all tubules necrotic) ATN by day 8 after the ischemic event( Fig. 4 B ). As shown in Fig. 4 B, the tubulesof the animals were almost completely destroyed. The destruction of thetubules included both the proximal and distal tubules, with the proximaltubules being more severely affected ( Fig.4 B ). The glomerulus of the ARF animals was sparedcompared with the renal tubules, with the glomerulus appearing to be normal inthe ARF animals ( Fig. 4, A and B ).
5 L3 K1 f* a! {, E: z1 C' Y( l
% K; `- \6 [5 I7 e9 bFig. 4. Renal histology of a normal Sprague-Dawley rat ( A ) with intactproximal tubular brush border (arrowhead). B : acute renal failure(ARF) rat at day 8 75% of tubules are necrotic). Theglomerulus (x) appears to be normal. C : ARF rat treated with vesseldilator from days 2-5 of ARF with kidney examined after day8 of ARF reveals brush border to be present in proximal tubule(arrowhead). No tubules are necrotic in this ARF animal treated with vesseldilator. The glomerulus (x) is intact. Magnification of hematoxylin and eosin: x 426 ( A and C ) and x 320 ( B ). Reprintedfrom Ref. 19.
# J( Y o0 [" v& J' w8 W3 G6 p# o! W6 X( q$ p0 G( @5 Q: |+ a! a
The addition of vessel dilator after renal failure had been present for 2days resulted in a marked improvement in renal histology, with scores rangingfrom 0 (i.e., no tubular necrosis) to 1 (i.e., 19 ). When the kidneys were examined at day 8 of renal failure, the brush borders ofthe proximal tubules in the ARF animals treated with vessel dilator werepresent ( Fig. 4 C ),which was similar with respect to the proximal tubules in healthy animals( Fig. 4 A ). In the ARFanimals not treated with vessel dilator, the brush borders of the tubules weredestroyed ( Fig. 4 B ).The glomeruli of vessel dilator-treated ARF animals also appeared normal( Fig. 4 C ). It shouldbe pointed out that the animals treated with vessel dilator did have severerenal failure before vessel dilator was begun on the second day of renalfailure ( 19 ). It is alsoimportant to note that the animals treated with vessel dilator that had asignificant increase in survival had nonoliguric renal failure( 19 ). As noted above,nonoliguric renal failure subjects treated with ANP had a decreased survival rate, and it was nonoliguric renal failure subjects who did not respond to ANP( 3 ). Vessel dilator, LANP, andkaliuretic peptide, as opposed to ANP, BNP, and urodilatin, have never causeda hypotensive episode when given to either healthy animals or humans( 61, 111, 112 ) or when given to humanswith sodium and water retention( 70, 109, 110 ).; y! h; H6 O/ ~. L% p
* Y y/ j* S' s+ r% z5 r" o: G2 hThe ability of vessel dilator to reverse ischemic ARF is consistent withthe important concept, based on experiments at the cellular level and inhumans with ATN, that the pathophysiology of ischemic ARF is due to asublethal and reversible injury to renal tubular cells( 9, 64 ). This reversible injury isnow thought to contribute more predominately to renal tubular dysfunction thanpermanent tubular cell necrosis( 9, 64 ). Pathological similarities between humans and rats with ischemic ATN are that the injury is to theproximal brush border, with a predilection for the most severe injury to occurin the proximal straight (S3 segments) tubules( 64 ). As outlined above, itwas the proximal tubule brush borders that were mainly regenerated by vesseldilator even when given 2 days after ischemic ATN( 19 ). Part of the improvementby using vessel dilator may be due to its ability to cause intrarenalvasodilation because it is a strong vasodilator ( 113 ). The reason vesseldilator has greater benefical effects than ANP, BNP, CNP, and urodilatin inARF appears due, at least in part, to its ability to cause the endogenoussynthesis of renoprotective PGE 2, which ANP, BNP, CNP, andurodilatin do not have ( 18, 35 ).
" p% h9 Y- J/ W& N4 W- ~, [1 e" \. E& @ g
Prostaglandins have renoprotective effects in ARF( 2, 46, 121 ). An indication thatPGE 2 is renoprotective (by maintaining glomerular hemodynamics) isthe observation that cyclooxygenase inhibitors in congestive heart failure andvolume depletion states augment the reduction in renal blood flow and GFR( 27, 120 ). With respect to themechanism of the protective effects of prostaglandins in ARF, after ischemicinjury there is a dramatic decrease in perfusion in the outer medulla( 44 ), a region of renal tissuethat normally operates "on the verge of ischemia"( 12 ). Prostaglandins have afavorable effect on blood flow distribution to this region( 67 ). In addition, prostaglandins have distinct cytoprotective effects and improve microvascularpermeability in ischemic ARF( 15, 46 ). Prostaglandins are notstored in the kidney but rather have to be synthesized acutely secondarily toa stimulating agent such as vessel dilator ( 18, 35 ) for prostaglandins to havea positive beneficial effect in renal failure.
+ S' S. ^$ x" o' S' m7 m2 A
+ q; G3 N. ~! J+ l6 R# pThere is evidence that ADM is renoprotective in Dahl salt-sensitive rats inthat when they were perfused for 7 days, their glomerular injury score was 54%less ( P salt-sensitive rats( 72 ). The ADM-treatedsalt-sensitive rats, however, had considerably more ( P and anteriolar sclerosis and atrophic tubules aftertreatment than the control Dahl salt-resistant rats( 72 ).9 `7 Z* X# B- f' S+ m2 O
8 h$ b, J' N- j, ?/ }3 z
CNP increases in the circulation in ARF( 42 ), but its effects in ARFare unknown. As above, CNP has no natriuretic effects in healthy humans( 6, 40, 42 ).
- [( [" Y% {# F: \( e9 N2 j8 T; Y! h: x& x; t" P/ f; Q
DNP has been evaluated in persons with end-stage renal disease on dialysisand was found not to correlate ( P = 0.62) with the echocardiographicleft ventricular mass index, whereas ANP and BNP did correlate with the leftventricular mass index of these end-stage renal patients( 16 ). DNP has not beeninvestigated with respect to its possible therapeutic effects in renalfailure.# Q; B2 b' W9 L' C" e
# B1 v8 u) \4 t/ M
SUMMARY AND FUTURE DIRECTIONS
+ v/ w' S+ K3 h2 O4 [/ Z( C2 N7 K* Q. f% r8 Z! ?. E6 y% N
ANPs are both synthesized( 34, 76, 102 ), and have some of theirmost potent biological effects, e.g., natriuresis and diuresis, within thekidney ( 8, 25, 26, 35, 37, 61, 118, 127 ). Vessel dilator, via itsability to ameliorate ARF and enhance tubule regeneration in ATN( 19 ), may prove useful in thefuture in the treatment of ARF. BNP and ADM, with their effects in glomerularhypertrophy ( 45 ) andglomerular injury ( 72 ),respectively, may be useful in the treatment of renal glomerular diseases.Because BNP, ANP, and ADM do not appear to help tubular diseases such as ATN,the major cause of ARF ( 39, 125 ), their therapeuticpotential in ATN appears limited. Future studies with these peptide hormonesin humans with ARF and/or glomerular diseases are necessary to determinewhether the findings in animal models of ARF are applicable to the treatment of humans with ARF." t+ K3 z' T n q; N! d3 T1 o
; X: {& @, v- KDISCLOSURES7 J4 q( W( [8 \3 o! m
; c- y w, U7 V7 Z' l
This work was supported in part by grants from the National Institutes ofHealth, a Merit Award from the U.S. Department of Veteran Affairs, and aGrant-in-Aid from the American Heart Association, Florida-Puerto RicoAffiliate.
. Z( c7 O& \' G1 U% Y! p' h5 L; y) ]/ j8 i9 }% q
ACKNOWLEDGMENTS
6 ]" w0 W- l8 M* c9 r$ b; \
' Z, |* m, P& w: rThe author thanks Charlene Pennington for secretarial assistance and thenumerous coinvestigators without whom all of the investigations reportedherein could not have been completed., |. w2 r' [1 D$ }
【参考文献】0 I9 a- V3 ^* |3 v I. i
Ackerman BH,Overton RM, McCormick MT, Schocken DD, and Vesely DL. Disposition ofvessel dilator and long-acting natriuretic peptide in healthy humans after aone-hour infusion. J Pharmacol Exp Therap 282: 603-608,1997.! K3 \1 V8 U7 ?$ d! J$ B
4 C( P7 S( Y6 e, J o0 h
2 n+ A: z/ l) x) B$ z& q8 B; b" |6 V3 m& U
Agmon Y, PelegH, Greenfeld Z, Rosen S, and Brezis M. Nitric oxide and prostanoidsprotect the renal outer medulla from radiocontrast toxicity in the rat. J Clin Invest 94:1069-1075.+ H/ Y6 `/ n, N0 U
7 c$ y) {4 A3 o! z7 _! g, Z! p) c: `0 ^; X9 ~8 I# E
0 |3 I6 z! V0 b$ m# u6 aAllgren RL,Marbury TC, Rahman SN, Weisberg LS, Fenves AZ, Lafayette RA, Sweet RM, GenterFC, Kurnik BRC, Conger JD, and Sayegh MH. Anaritide in acute tubularnecrosis. N Engl J Med 336:828-834, 1997.
0 b5 j% K3 n" x, r1 C
0 p# R1 W) M: C1 S& \1 B8 M
# o( i+ U/ C% s2 c7 p+ t
: }; @, {& N; ]5 z* V- y, X4 o FAnderson RJ andSchrier RW. Acute renal failure. In: Diseases of the Kidney andUrinary Tract (7th ed.), edited by Schrier RW. Philadelphia, PA ippincott Williams & Wilkins, 2001, p.1093-1136.- k- F) N& x. G6 ~8 V5 `
1 r+ }" Z6 h6 i* o# U/ L% ?
# Q' [) ?( F5 T. U9 o9 B& \: a) ?5 _4 [% i
Atarashi K,Mulrow PJ, Franco-Saenz R, Snajdar R, and Rapp J. Inhibition ofaldosterone production by an atrial extract. Science 224: 992-994,1984.
6 {) z" g4 C; c% w8 c F. d& B3 B+ t- F0 z( N( G; S2 ?
4 _& M6 N N: R5 j- i z0 k( n5 J2 I+ l: G( j7 q
Barletta G,Lazzeri C, Vecchiarino S, Del Bene R, Messeri G, Dello Sbarba A, Mannelli M,and LaVilla G. Low-dose C-type natriuretic peptide does not affect cardiacand renal function in humans. Hypertension 31: 802-808,1988.0 j2 c2 M# r& o: c' k/ Z
) w9 [. @1 m/ C, U0 \
+ r6 ?& k# B1 ]. V/ L
" s. u9 O q6 `2 o5 hBarr CS, RhodesP, and Struthers AD. C-type natriuretic peptide. Peptides 17:1243-1251, 1996.+ F Y0 x( u9 N; H; _( \
( _. G: X. n2 h7 x3 W" \* Y. X% I% x7 N L, w# G* D( Q
: J0 v2 r0 }' C, F
Benjamin BA andPeterson TV. Effects of proANF-(31-67) on sodium excretion inconscious monkeys. Am J Physiol Regul Integr CompPhysiol 269:R1351-R1355, 1995.
! \- F% y- y$ v- ]' I3 V. U; v# N1 y$ I0 i+ U; _
. V8 ?$ Z. T0 u9 I% G: ~) s' V1 t
Brady HR,Brenner BM, Clarkson MR, and Lieberthal W. Acute renal failure. In: Brenner & Rector's The Kidney (6th ed.), edited byBrenner BM. Philadelphia, PA: Saunders, 2000, p.1201-1262." P9 J2 t4 K& D, u6 K
& `2 o9 ^4 `+ ]- p" {4 ^; `. A. ^4 j1 E
4 L6 {3 w8 I. S9 J" l
Brenner BM,Ballermann BJ, Gunning ME, and Zeidel ML. Diverse biological actions ofatrial natriuretic peptide. Physiol Rev 70: 665-699,1990.
+ L1 c$ _$ I2 K K3 r7 u" |# A& {0 R0 w- o
# t8 @! I& Y* \' H2 D L9 H+ p: R% r
Brenner RM andChertow GM. The rise and fall of atrial natriuretic peptide for acuterenal failure. Curr Opin Nephrol Hypertens 6: 474-476,1997.
( e0 |. F9 A$ u/ `8 K# v, i/ w1 i/ }( Y# a4 L6 A
5 x) o3 C) B5 Y1 N3 {7 P) u( P9 m# M9 N
Brezis M, RosenS, Silva P, and Epstein FH. Renal ischemia: a new perspective. Kidney Int 26:375-383, 1984.
5 |! r- a' v4 s. ^5 x2 z7 V, \
" P3 T. H4 v' a% z9 g+ h. J q. i8 h) _: t
6 z; l4 f+ P* Z9 x* i
Buckley MG,Sethi D, Markandu ND, Sagnella GA, Sincer DR, and MacGregor GA. Plasmaconcentrations and comparisons of brain natriuretic peptide and atrialnatriuretic peptide in normal subjects, cardiac transplant recipients andpatients with dialysis-independent or dialysis-dependent chronic renalfailure. Clin Sci (Colch) 83:437-444, 1992. v8 l/ u7 I! `2 Y/ N0 N( E
' D E% L5 b# q/ Q5 i, a- |! J
9 o [% ]+ X- J1 W/ S# \$ F* E
. J* ?) @$ l" K: u7 z, qBurnett JC Jr,Granger JP, and Opgenorth TJ. Effects of synthetic atrial natriureticfactor on renal function and renin release. Am J Physiol RenalFluid Electrolyte Physiol 247:F863-F866, 1984.
4 R2 F1 l# g6 K, _- i w
0 k% }% U% a( N1 }; Q- |% q
3 G4 Y( z8 C& V" w0 ]- t9 @
% \7 ?5 ~+ ] N3 s, U' ?) k, ?2 ACasey KF,Machiedo GW, Lyons MJ, Slotman GJ, and Novak RT. Alteration ofpostischemic renal pathology by prostaglandin infusion. J SurgRes 29:1-10, 1980. C. t7 Q5 O! l8 w
# T1 H7 \4 o" p& V( X5 p5 w( P3 v7 Q7 x
. B0 G3 b$ @3 X3 Q+ g' O- T9 x3 n
Cataliotti A,Malatino LS, Jougasaki M, Zoccali C, Castellino P, Giacone G, Bellanuova I,Tripepi R, Seminara G, Parlongo S, Stancanelli B, Bonanno G, Fatuzzo P,Rapisarda F, Belluardo P, Signorelli SS, Heublein DM, Lainchbury JG, LeskinenHK, Bailey KR, Redfield MM, and Burnett JC Jr. Circulating natriureticpeptide concentrations in patients with end-state renal disease: role of brainnatriuretic peptide as a biomarker for ventricular remodeling. MayoClin Proc 76:1111-1119, 2001.
7 r: ^) y0 G( Q& y; c F1 s E0 x/ [; e. J S( D( l7 U
$ \* N" ]( z. ~+ ~8 W! [+ m& e( P3 l' P- }, l. b
Chartier L,Schiffrin E, and Thibault G. Effect of atrial natriuretic factor(ANF)-related peptides on aldosterone secretion by adrenal glomerulosa cells:critical role of the intramolecular disulphide bond. BiochemBiophys Res Commun 122:171-174, 1984.
! W1 E8 }/ k' U& x2 x! c% H& ^: ~. c% d' Z) E2 P
. o8 x; q( Z1 U
( Y' u9 |1 ^: c3 i; T4 DChiou S andVesely DL. Kaliuretic peptide: the most potent inhibitor ofNa -K -ATPase of the atrial natriuretic peptides. Endocrinology 136:2033-2039, 1995.
: L4 U$ p$ f% c, b7 F4 m, \' M/ W5 W( r
5 f! c$ U" h R/ V" {9 h7 t
5 c: d6 l6 o$ M; @$ aClark LC,Farghaly H, Saba SR, and Vesely DL. Amelioration with vessel dilator ofacute tubular necrosis and renal failure established for 2 days. AmJ Physiol Heart Circ Physiol 278:H1555-H1564, 2000.
1 Y6 x# J1 i# P2 }8 b8 j7 g- @1 I1 Z0 E3 `
) }$ H0 \" y) O0 J' `$ p
( O+ l; g6 ?4 ?" ]; K4 \Conger JD, FalkSA, Yuan BH, and Schrier RW. Atrial natriuretic peptide and dopamine in arat model of ischemic acute renal failure. Kidney Int 35: 1126-1132,1989.
# B' n* o% y5 J* [9 O' { A4 y; y# i1 `, B2 A
# b# H9 Q0 c0 f4 C( K' q% ^0 b* D
Corboy JC,Walker RJ, Simmonds MB, Wilkins GT, Richards AM, and Espiner EA. Plasmanatriuretic peptides and cardiac volume during acute changes in intravascularvolume in haemodialysis patients. Clin Sci (Colch) 87: 679-684,1994.
0 i% ]3 U* l! O
5 h/ k# {, L, t
" z. Y) U; d$ k8 V: R/ [2 }) g9 v3 g, _. h- r5 f
Davidman M,Olson P, Kohen J, Leither T, and Kjellstrand C. Iatrogenic renal disease. Arch Intern Med 151:1809-1812, 1991.
! t- \6 @& y; y# @8 m
* W5 @; k0 t! q. |5 ^, Q
3 q) t. M! P8 |% _) k$ ^- u* ]7 `6 W1 f" i
De Lean A,Gutkowska J, McNicoll N, Schiller PW, Cantin M, and Genest J. Characterization of specific receptors for atrial natriuretic factor in bovineadrenal zona glomerulosa. Life Sci 35: 2311-2318,1984.% Z1 q4 P# d/ }% |9 }. Y
6 N, M) u+ n8 \) s* o' c
0 [9 j# ~% U7 {7 t& C8 j) g4 i. D* A8 B
De Palo EF,Woloszczuk W, Meneghetti M, DePalo CB, Nielsen HB, and Secher NH. Circulating immunoreactive proANP (1-30) and proANP (31-67) insedentary subjects and athletes. Clin Chem 46: 843-847,2000.
; A6 e! A9 A, w M! W0 h$ i% u1 m8 F: X6 ~$ j
6 {7 p$ N8 t. R: J
0 r+ L! w# v* s& t% {% h" x6 P/ T
Dietz JR, ScottDY, Landon CS, and Nazian SJ. Evidence supporting a physiological role forpro ANP (1-30) in the regulation of renal excretion. Am JPhysiol Regul Integr Comp Physiol 280:R1510-R1517, 2001.' [6 m* r7 M8 Z" c2 C
9 x1 L$ P- M" c' _" Q
e/ q. D5 g2 d: T$ w1 @# C5 i! {& r* V; k$ O
Dietz JR,Vesely DL, Gower WR Jr, and Nazian SJ. Secretion and renal effects of ANFprohormone peptides. Clin Exp Pharmacol Physiol 22: 115-120,1995.5 e) j* H% A3 N- t; r% C
, N7 n6 |+ o' m( N: u7 @/ L- V
, m# o9 N/ k$ ~ X0 Q* z* j6 g, ?$ e: o7 N: t3 D p8 w1 i
Fink MP, MacVittie TJ, and Casey LC. Effects of nonsteroidal anti-inflammatory drugson renal function in septic dogs. J Surg Res 36: 516-525,1984.
2 }6 X3 x( _0 G5 C
2 o' m: U: V: B d) Y- o! F! @6 i" N
# ]7 t. j- T: J5 SFlynn TG. Past and current perspectives on the natriuretic peptides. Proc SocExp Biol Med 213:98-104, 1996. P& W9 d A7 g/ u3 @ | {
# P0 P p4 Q5 Q" t* |2 H) P- X# y5 e- c
% G- l1 @) S8 @4 z" \( W3 ]- ?" T# n6 P1 a
Franz M,Woloszczuk W, and Horl WH. N-terminal fragments of the proatrialnatriuretic peptide in patients before and after hemodialysis treatment. Kidney Int 58:374-378, 2000.% w- V9 L- f, p0 q3 t# S/ l
" |7 ]2 [( n2 ]$ D( V7 [% V. L2 [ T* f7 Q# T$ T: c2 `- S
! e% _& |# G9 lFranz M,Woloszczuk W, and Horl WH. Plasma concentration and urinary excretion ofN-terminal proatrial natriuretic peptides in patients with kidney diseases. Kidney Int 59:1928-1934, 2001.1 ]) B5 i w9 h
* z2 F8 N/ C' Z* d6 L; H5 A
6 U3 P8 K4 i$ C( E( K5 R8 X' A& J+ ]% u) c2 G
Gardner DG,Deschepper CT, Ganong WF, Hane S, Fiddes J, Baxter JD, and Lewicki J. Extra-atrial expression of the gene for atrial natriuretic factor. Proc Natl Acad Sci USA 83:6697-6701, 1986.
# g1 v5 n2 K4 z* o8 Z4 Q% Q! M. F6 |
4 V8 m/ m- z0 {- V2 ^& G" j- W( a8 R; g
Gardner DG,Kovacic-Milivojevic BK, and Garmai M. Molecular biology of the natriureticpeptides. In: Atrial Natriuretic Peptides, edited byVesely DL. Trivandrum, India: Research Signpost, 1997, p.15-38." o6 ?* T& d% v& a& n
& k# K% t9 \( y, }, @3 L3 D
' |( `" y9 ?6 j, Y3 ?
+ g9 M! a0 C" \+ v0 ^Goodfriend TL,Elliott ME, and Atlas SA. Actions of synthetic atrial natriuretic factoron bovine adrenal glomerulosa. Life Sci 35: 1675-1682,1984.7 L/ D& F2 w/ G
+ P" f- p* F4 A3 ^& D4 H0 y w ?6 m# s# @1 g" T8 T3 {
- d' W) O' W. @: c) {8 g* f
Gower WR Jr,San Miguel GI, Carter GM, Hassan I, Farese RV, and Vesely DL. Enhancedatrial natriuretic prohormone gene expression in cardiac and extracardiactissues of type II diabetic Goto-Kakizaki rat. Mol CellBiochem. In press.
9 N5 v+ s8 D u9 |" x' q6 @
! K& n. @& ], ]
2 l( I0 C& v5 U- c% Z
6 ]% R J" w5 ]Gunning ME,Brady HR, Otuechere G, Brenner BM, and Zeidel ML. Atrial natriureticpeptide (31-67) inhibits Na transport in rabbit innermedullary collecting duct cells: role of prostaglandin E 2. J Clin Invest 89:1411-1417, 1992., n6 R" M7 n8 _* H! Y: A) A J6 g
1 |/ u$ [8 J: H4 i( [% [8 E
4 l; w+ e+ g; E9 [0 t j, U3 ?3 K
5 E: Z' \( S+ s, G4 ~3 O. gGunning ME andBrenner BM. Natriuretic peptides and the kidney: current concepts. Kidney Int 42, Supp 38: S127-S133,1992.
) m$ j* h- x5 d, \& X* ?5 |1 p. k( U, L& [0 P8 N6 r3 L' e
, t; Z: B- r }4 l6 S& W3 l! M" ^0 d: x R0 U/ g
Habibullah AA,Villarreal D, Freeman RH, Dietz JR, Vesely DL, and Simmons JC. Atrialnatriuretic peptide fragments in dogs with experimental heart failure. Clin Exp Pharmacol Physiol 22:130-135, 1995.1 }& H1 G* a( P" t; G
$ ^( Y7 B. o$ R) O1 X* L6 C( ]9 o# g0 d: `) r5 H6 m
: O* Z" q( Q3 l- H+ AHock R andAnderson RJ. Prevention of drug-induced nephrotoxicity in the intensivecare unit. J Crit Care 10:33-43, 1995.- Z$ s- y- z/ E/ J1 f: T% L S
m q- @* f* V/ X0 |, ^- \& W
/ f! w! d! A3 F; k/ W0 o
( W* U) d- _% D6 D* ?. D6 p# E4 \Hou SH,Bushinsky DA, Wish JB, Cohen JJ, and Harrington JT. Hospital acquiredrenal insufficiency: a prospective study. Am J Med 74: 243-248,1983.* h( t; m7 f# C: e" ~
9 D: C- O* E, p' e! i0 O& C
2 _& V) B* X4 C6 B k8 n
, s; }/ _# h& o& J: N1 ]6 a* uHunt PJ,Richards AM, Espiner EA, Nicholls MG, and Yandle TG. Bioactivity andmetabolism of C-type natriuretic peptide in normal man. J ClinEndocrinol Metab 78:1428-1435, 1994./ n2 K3 f1 b+ z- I, U1 v7 j
* a$ g1 N* _" f
* ]* |' Y" C% k5 ~: A! `! d* f. B5 x+ b) Z) X* }
Hunter EFM,Kelly PA, Prowse C, Woods FJ, and Lowry PJ. Analysis of peptides derivedfrom pro atrial natriuretic peptide that circulate in man and increase inheart disease. Scan J Clin Lab Invest 58: 205-216,1998.
2 u9 N8 B, J. G6 r8 w5 o! r" `2 s6 a+ d5 }5 H1 d; [
2 l' o5 J: c# d2 e
' H8 L; N9 o0 i1 @
Igaki T, ItohH, Suga S, Hama N, Ogawa Y, Komatsu Y, Mukoyama M, Sugawara A, Yoshimasa T,Tanaka I, and Nakao K. C-type natriuretic peptide in chronic renal failureand its action in humans. Kidney Int 49, Suppl 55:S144-S147, 1996.* F! S. W! M$ J$ G
$ h# U# V( ?# m( k
' U4 \! z* {3 ~; \5 T* n l H+ L
8 M/ ~6 Y" ^0 }; C: u" N
Jougasaki M andBurnett JC Jr. Adrenomedullin: potential in physiology andpathophysiology. Life Sci 66:855-872, 2000.
/ d( t5 G& z, K, @
+ Q" D$ S% p& H+ i
" v. S% H% V% D* i: G
1 ?: g7 T* F. t0 G6 [Karlberg L,Norlen BJ, Ojteg G, and Wolgast M. Impaired medullary circulation inpostischemic acute renal failure. Acta Physiol Scan 118: 11-17,1983., \1 F, u8 p0 J* P' Y7 \4 l
' G) n0 t7 B& w2 I5 i
% }! E5 y J6 K+ X' h' \
) K% f3 g1 X9 N. b9 f/ }Kasahara M,Mukoyama M, Sugawara A, Makino H, Suganami T, Ogawa Y, Nakagawa M, Yahata K,Goto M, Ishibashi R, Tamura N, Tanaka I, and Nakao K. Amelioratedglomerular injury in mice over expressing brain natriuretic peptide with renalablation. J Am Soc Nephrol 11:1691-1701, 2000., |1 M; b! C C* e) V' L% m
$ T) E4 G& D. Q! O7 @
. G/ X2 G% R/ @3 Q3 ^: o$ z1 v7 ?) V$ | }8 ]1 I( `* ?
Kaufman RP Jr,Anner H, Kobzik L, Valeri CR, Shepro D, and Hechtman HB. Vasodilatorprostaglandins (PG) prevent renal damage after ischemia. AnnSurg 205:195-198, 1987." d/ I- h$ J: T% v+ R
2 c) ~9 u: s( M" n
$ {" j0 Y! w4 H
, R: V6 c) N4 r: m) t' L& c" B' A) v# rKentsch M,Drummer C, Gerzer R, and Muller-Esch G. Severe hypotension and bradycardiaafter continuous intravenous infusion of urodilatin (ANP 95-126) in apatient with congestive heart failure. Eur J ClinInvest 25:281-283, 1995.
, d" ]8 U+ U; y. h" I; A6 P! d3 \1 e( k1 i5 @0 E7 J
' Z2 e1 _* t: K. P$ I
, Q" Z' Q" F1 y( w) t- wKitamura K,Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, and Eto T. Adrenomedullin: a novel hypotensive peptide isolated from humanpheochromocytoma. Biochem Biophys Res Commun 192: 553-560,1993.
, l8 g3 s; t0 I( w0 V
, Z2 n) m9 Y) B: T) y! q' O6 q
, X. v2 T8 X& V7 w0 Z; g' s5 l1 a8 f. W% x0 }) t8 A/ Z+ B
Kohse KP,Feifel K, and Mayer-Wehrstein R. Differential regulation of brain andatrial natriuretic peptides in hemodialysis patients. ClinNephrol 40:83-90, 1993.: @* F# Q; U; Q, \: y5 D
9 U1 O W: p2 M5 O$ M$ h- q3 Z* ~$ U Y& H1 W9 w; E! s' q4 g; D
1 W+ }. [7 U1 U( q
Kojima S, InoueI, Hirata Y, Kimura G, Saito F, Kawano Y, Satani M, Ito K, and Omae T. Plasma concentrations of immunoreactive-atrial natriuretic polypeptide inpatients on hemodialysis. Nephron 46: 45-48,1987.
; V, r) }& F8 w, w; j- L4 R4 W7 B
( U1 @* _4 j( h% \' `1 D
) z ^3 B3 `: o3 d5 c: n- r/ O. b- g: Y r% V
Kudo T andBaird A. Inhibition of aldosterone production in the adrenal glomerulosaby atrial natriuretic factor. Nature 312: 756-757,1984.
8 @' g2 z3 K4 W w' u, O
: `# S. [/ w# u- u5 w& z! k' w/ }* u: ]
$ N1 H; u. i9 ^) K* E, s ` a
Kurnik BR,Allgren RL, Genter FC, Solomon RJ, Bates ER, and Weisberg LS. Prospectivestudy of atrial natriuretic peptide for the prevention ofradiocontrast-induced nephropathy. Am J Kidney Dis 31: 674-680,1998.
& o& V4 `# i' X7 }" m
; k- Y) z$ V( T% }8 f% m1 r
! a+ U' ~5 I8 \; }3 {5 z
7 l& w: d9 g: Y& C/ G, f* A! zKurtz A, DellaBruna R, Pfeilschifter J, Taugner R, and Bauer C. Atrial natriureticpeptide inhibits renin release from juxtaglomerular cells by cGMP-mediatedprocess. Proc Natl Acad Sci USA 83: 4769-4773,1986.
0 b8 \2 b4 a; P |) n9 |+ y. z' ^, H/ A9 {! ^! V g9 R$ s
) F- i, z, S3 a0 X& j) f5 [$ T2 \! u1 c! S
+ n: x( m8 d. y; E7 LLainchbury J,Richards AM, and Nicholls MG. Brain natriuretic peptide in heart failure.In: Atrial Natriuretic Peptides, edited by Vesely DL.Trivandrum, India: Research Signpost, 1997, p.151-158.& a1 S$ |; X* A; d; ^# n4 X* b
' P! o* V5 }4 L2 z2 u2 _$ ]- J7 f" C. h9 ?2 f% j/ j8 }- y" y6 {
( s8 u$ I x: i$ j& q E% ~
Lang CC, ChoyAM, Henderson IS, Coutie WJ, and Struthers AD. Effect of haemodialysis onplasma levels of brain natriuretic peptide in patients with chronic renalfailure. Clin Sci (Colch) 82:127-131, 1992.
* e8 ~0 K3 @7 X% y7 j/ |) @1 C5 d7 K5 a% M
. w1 B" V1 S/ \" x4 L' W$ w
5 b1 E8 A+ y) x n
Levin ER,Gardner DG, and Samson WK. Natriuretic peptides. N Engl JMed 339:321-328, 1998.
% V/ h3 h; h: a0 Z( q& |4 D- V8 \) g2 ~
( P! l4 G( E6 ^+ o
; D# \3 A& g2 S% uLieberthal W,Sheridan AM, and Valeri CR. Protective effect of atrial natriuretic factorand mannitol following renal ischemia. Am J Physiol Renal FluidElectrolyte Physiol 258:F1266-F1272, 1990.) S, M0 C9 T2 F2 g+ {
7 }7 l2 H3 ` w- o* C: y3 A8 b
# ]7 J1 _; ?8 P9 E: R u' P3 ^
8 W8 k# i% N) \Lisy O,Jougasaki M, Heublein DM, Schirger JA, Chen HH, Wennberg PW, and BurnettJC. Renal actions of synthetic dendroaspis natriuretic peptide. Kidney Int 56:502-508, 1999.* x! I) y7 D e2 E: i
/ y' k0 X9 \+ ] D, w
$ J* g0 z8 }# g* n! b- @0 w
2 a& x0 f; ]' E2 |0 `9 J: S KMaack T, MarionDN, Camargo MJ, Kleinert HD, Laragh JH, Vaughan ED Jr, and Atlas SA. Effects of auriculin (atrial natriuretic factor) on blood pressure, renalfunction, and the renin-aldosterone system in dogs. Am JMed 77:1069-1075, 1984.+ g! o- _4 o: [
* S* A9 I+ _* P& o7 a
& ?2 O, T) D$ H4 _" a4 N2 w# W9 l
# U* h) y. B- `Marin-Grez M,Fleming JT, and Steinhausen M. Atrial natriuretic petpide causespre-glomerular vasodilatation and post-glomerular vasoconstriction in ratkidney. Nature 324:473-476, 1986.- @5 j: g8 i0 A4 Z
6 L9 _* m' j6 R- q1 Q; h
4 C- J; e9 ^3 C/ D5 L
! q8 y* t3 |+ j( a; u
Martin DR,Pevahouse JB, Trigg DJ, Vesely DL, and Buerkert JE. Three peptides fromthe ANF prohormone NH 2 -terminus are natriuretic and/or kaliuretic. Am J Physiol Renal Fluid Electrolyte Physiol 258: F1401-F1408,1990.
0 e6 z( w7 j1 t7 B/ j! D: x, t
, N- ~. r" h. t5 [ y: y; I- C
' K4 R) y. F' S: m
- t D/ O' E8 A6 z4 f9 VMattingly MT,Brandt RR, Heublein DM, Wei CM, Nir A, and Burnett JC Jr. Presence ofC-type natriuretic peptide in human kidney and urine. KidneyInt 46:744-747, 1994.8 B7 O: u; ?; G3 m
& q: q8 u( e/ @$ B5 Z+ ?
, T6 \0 E. n; R& Z# G$ Z4 f N, k
4 u# c' Z4 G7 t# D6 ^
Meyer M, PfarrE, Schirmer G, Uberbacher HJ, Schope K, Bohm E, Fluge T, Mentz P, Scigalla P,and Forssmann WG. Therapeutic use of the natriuretic peptide ularitide inacute renal failure. Ren Fail 21: 85-100,1999.+ ^! }$ H$ O' C& i+ R
5 ]7 K$ }' t9 _" m
2 [0 H: q! N+ c, l" A) J- l
2 M8 U$ q1 }2 L, r# H0 Y: dMolitoris BA,Meyer C, Dahl R, and Geerdes A. Mechanism of ischemia-enhancedaminoglycoside binding and uptake by proximal tubule cells. Am JPhysiol Renal Fluid Electrolyte Physiol 264: F907-F916,1993.1 c- j' G* ~) a) e
) |9 E4 Y f& o" S# x$ ~/ s; L8 H$ [+ J; |
! F6 H4 R! L$ Z8 P5 h' T' aMorgan DA,Peuler JD, Koepke JP, Mark AL, and DiBona GF. Renal sympathetic nervesattenuate the natriuretic effects of atrial peptide. J Lab ClinMed 114:538-544, 1989.+ n' a( B- A1 ?) f7 f
; I u; ~( E8 E: I. Y7 f! x# V3 v" T+ e; I: a8 R. l
! F6 Y; t9 \& {6 e( i6 P- ]% }Morrissey EC,Wilner KD, Barager RR, Ward DM, and Ziegler MG. Atrial natriuretic factorin renal failure and posthemodialytic postural hypotension. Am JKidney Dis 12:510-515, 1988.
W0 S% F M# t
7 f. A; N. F/ x* K# `# l
5 n2 h* A$ L& u9 ~4 X4 K/ m# M+ J7 e. `+ v O5 Y
Moskowitz PS,Korobkin M, and Rambo ON. Diuresis and improved renal hemodynamicsproduced by prostaglandin E 1 in the dog with norepinephrine-inducedacute renal failure. Invest Radiol 10: 284-299,1975.( }- O3 R/ K4 c. P
6 \7 o& _$ u4 p* M
8 A F% c8 u/ ~8 s
: C1 U* s1 J5 z+ B" aNakamoto M,Shapiro JI, Shanley PF, Chan L, and Schrier RW. In vitro and in vivoprotective effect of atriopeptin III on ischemic acute renal failure. J Clin Invest 80:698-705, 1987." k& c9 ~& Y+ x3 e' B
0 k3 z3 c! ]9 ^& U$ B
7 o" P2 u7 G% E6 w
# e/ F8 ^+ ]$ hNakao K, OgawaY, Suga S, and Imura H. Molecular biology and biochemistry of thenatriuretic peptide system. I. Natriuretic peptides. JHypertens 10:907-912, 1992.) S D+ ?# L: T) }
( |7 L- ?! B; Y& D1 P# S3 t5 {
5 i. A) I8 A% `$ x. ~& E$ D2 |5 h: Q5 g5 ]! h2 z$ j
Nasser A, DietzJR, Siddique M, Patel H, Khan N, Antwi EK, San Miguel GI, McCormick MT,Schocken DD, and Vesely DL. Effects of kaliuretic peptide on sodium andwater excretion in persons with congestive heart failure. Am JCardiol 88:23-29, 2001./ T0 L; c) m+ o& a5 v' |* _ V
, k3 P. J0 y6 q3 _" `) h* g
2 _& \; n. @# t6 t& d9 Y) F
# u% t: B9 \1 F+ B% xNeumayer HH,Blossei N, Seherr-Thohs U, and Wagner K. Amelioration of postischaemicacute renal failure in conscious dogs by human atrial natriuretic peptide. Nephrol Dial Transplant 5:32-38, 1990.
; C5 T2 `. M. `3 j3 b4 f% v
) E; N" y+ B* v% }( c4 U0 H8 {( Z; |0 u" s% {, G8 T
9 ~3 e, O( `6 i. ~& w7 I/ x$ ?
Nishikimi T,Mori Y, Kobayashi N, Tadokoro K, Wang X, Akimoto K, Yoshihara F, Kangawa K,and Matsuoka H. Renoprotective effect of chronic adrenomedullin infusionin Dahl salt-sensitive rats. Hypertension 39: 1077-1082,2002.. G, d) i0 K# e0 C2 o. A7 D. K
Q) S Y0 M- n
% |) T% L9 `6 _2 H3 l
! M; q2 T0 ]1 `1 a0 h* v; \
Ogawa Y, ItohH, and Nakao K. Molecular biology and biochemistry of natriuretic peptidefamily. Clin Exp Pharmacol Physiol 22: 49-53,1995.4 Q0 z8 U* t9 i8 N
; X, E4 e, w' Z2 J8 `
) K/ [! R e4 V3 A' d( z" N1 B! B* j. {8 H8 j+ X! X
Ortola FV,Ballermann BJ, and Brenner BM. Endogenous ANP augments fractionalexcretion of Pi, Ca, and Na in rats with reduced renal mass. Am JPhysiol Renal Fluid Electrolyte Physiol 255: F1091-F1097,1988.
7 G4 H+ O" j+ M3 |# g4 [/ d3 W" o' {- b7 w9 X) ]
& S8 H$ e6 M L
' \! V; W$ V" }4 d) {Pevahouse JB,Flanigan WJ, Winters CJ, and Vesely DL. Normalization of elevatedcirculating N-terminal and C-terminal atrial natriuretic factor prohormoneconcentrations by renal transplantations. Transplantation 53:1375-1377, 1992.. [& ?( {! K6 o, i9 i
1 q- x: y. F7 T8 n/ K s; c
/ f4 O9 {- x, \3 U3 Y- p
4 O; M k7 P3 D2 C1 M
Poulos JE,Gower WR Jr, Sullebarger JT, Fontanet HL, and Vesely DL. Congestive heartfailure: Increased cardiac and extracardiac atrial natriuretic peptide geneexpression. Cardiovasc Res 32:909-919, 1996.
) p a* c4 p* b- q; U! ?4 Z0 d! t, m2 }
0 u) v4 n4 w- R+ ], P8 E
C' a6 o/ Z! gRahman SN, KimGE, Mathew AS, Goldberg CA, Allgren R, Schrier RW, and Conger JD. Effectsof atrial natriuretic peptide in clinical acute renal failure. Kidney Int 45:1731-1738, 1994.
+ v# \) a: v% O5 J ], T) @. j+ j; ~5 F9 m# X
- x: U2 w5 V; c% s
9 O( X8 y; B1 l ]: K5 JRaine AE,Anderson JV, Bloom SR, and Morris PJ. Plasma atrial natriuretic factor andgraft function in renal transplant recipients. Transplantation 48:796-800, 1989.9 I" i( v* O4 S, K
, R, \% M* o- J& y; f3 `
. w; }' a* d3 M
3 o& k }8 G9 b8 y p fRamirez G, SabaSR, Dietz JR, and Vesely DL. Immunocytochemical localization ofproANF1-30, proANF 31-67, and atrial natriuretic factor in thekidney. Kidney Int 41:334-341, 1992., u4 W# v$ s( J8 H) n2 ^7 [
; P9 o7 L9 O* @: M/ o8 f* q# U: {! Y8 Y
2 M/ a+ u- b0 f1 w9 K# ^2 K: r
Rascher W,Tulassay T, and Lang RE. Atrial natriuretic peptide in plasma ofvolume-overloaded children with chronic renal failure. Lancet 2:303-305, 1985.
9 o8 l6 t! r( c4 [5 a3 v! L
3 o! e# f0 H& I& b, `. N% R2 L6 `! B) z+ z, U3 D. e
3 n, O2 v S6 i/ G3 }9 r
Richards AM,Lainchbury JG, Nicholls MG, Cameron AV, and Yandle TG. Dendroaspisnatriuretic peptide: endogenous or dubious? Lancet 359: 5-6,2002.9 X$ h: J( T; A. s
* `; S0 B+ L8 w- B0 i0 n9 R
$ m9 M4 p' X- M; _9 T4 N& z$ d6 p+ s8 t
Ritter D, ChaoJ, Needleman P, Tetens E, and Greenwald JE. Localization, syntheticregulation, and biology of renal atriopeptin-like prohormone. Am JPhysiol Renal Fluid Electrolyte Physiol 263: F503-F509,1992.4 ^8 f- a2 U6 H0 `' t
1 {$ M: C& I6 T- E Q
; k6 a( b$ e" C6 D8 v8 [$ w" t6 |5 a) `
Rosenzweig A and Seidman CE. Atrial natriuretic factor and related peptide hormones. Annu Rev Biochem 60:229-255, 1991.
4 h, B1 K9 S) w0 a8 V' P ^) j8 J0 I- y9 ~: A
4 `$ Z" _& q: }6 F% O; R8 I2 \ `& i# E9 j
Ruskoaho H. Atrial natriuretic peptide: synthesis, release, and metabolism. Pharmacol Rev 44:479-602, 1992.
7 t6 s: O* R' Y& Z& |, C1 m8 c/ G! H: G
+ C% `5 W: k8 _
& h; E. Q Y' T4 dSaba SR,Ramirez G, and Vesely DL. Immunocytochemical localization of ProANF1-30, ProANF 31-67, atrial natriuretic factor and urodilatin inthe human kidney. Am J Nephrol 13: 85-93,1993.
C7 H% p3 q& Q0 }/ T
" G2 O3 {+ n6 R/ F. g+ w( O, {/ h- g% Z% B) @$ W
, K* z4 c, P7 a6 M* I n
Samson WK. Adrenomedullin and the control of fluid and electrolyte homeostasis. Annu Rev Physiol 61:363-389, 1999.' H- _( {$ B5 q0 S2 s$ k2 P( b
`, Q- k/ W9 J5 R8 G3 Z7 p4 ^* b9 U
8 Z4 P% B- y- ~0 f$ R+ }8 Y
3 {8 j9 J2 N( _5 `! y3 C
Sands JM,Neylan JF, Olson RA, O'Brien DP, Whelchel JD, and Mitch WE. Atrialnatriuretic factor does not improve the outcome of cadaveric renaltransplantation. J Am Soc Nephrol 1: 1081-1086,1991.0 U( u w9 t! @- d% ]( W
1 h2 I# N t. x! o. Q9 ]) r6 w$ ^/ R# B8 D9 p( ]# s% F
6 r* R9 ]1 m) d2 s4 Y: o* |1 kSato K, Imai T,Iwashina M, Marumo F, and Hirata Y. Secretion of adrenomedullin by renaltubular cell lines. Nephron 78:9-14, 1998.
3 e5 O* w4 K% c4 p
1 }+ M5 ?% Y: n: N W& z# h0 w- {0 I1 J- ^" d0 r
9 ?* u5 t4 w0 z1 _6 eSaxenhofer H,Gnadinger MP, Weidmann P, Shaw S, Schohn D, Hess C, Uehlinger DE, and JahnH. Plasma levels and dialysance of atrial natriuretic peptide in terminalrenal failure. Kidney Int 32:554-561, 1987.
4 v0 b% r- K, ]* S
6 c& ]' q+ |1 s6 N
5 A8 J7 A& z. r. h! l3 F5 _
% }4 e2 \5 ^7 fSchafferhans K,Heidbreder E, Grimm D, and Heidland A. Norepinephrine-induced acute renalfailure: beneficial effects of atrial natriuretic factor. Nephron 44:240-244, 1986.7 ^' x! t3 c: `) }& [
7 d) p9 J/ }1 ` f9 k" j
% J, t" E* b2 C$ O$ i! p+ a+ V9 ]- @& D/ I- o C. _9 ?
Schirger JA,Heublein DM, Chen HH, Lisy O, Jougasaki M, Wennberg PW, and Burnett JC Jr. Presence of Dendroaspis natriuretic peptide-like immunoreactivity in humanplasma and its increase during human heart failure. Mayo ClinProc 74:126-130, 1999.
4 w y# j! `! d9 m- ?: d4 U- y0 e$ _. H0 y5 z3 r: M- }
7 s; @9 |. B% `' l$ O t# d
: Z/ `$ x$ V. O7 v1 H* o& f) hSchramm L,Heidbreder E, Schaar J, Lopau K, Zimmermann J, Gotz R, Ling H, and HeidlandA. Toxic acute renal failure in the rat: effects of diltiazem andurodilatin on renal function. Nephron 68: 454-461,1994.
# O6 S+ t( n0 Z2 t( X9 D
0 F* y. v" U& Z [4 _9 Q" J @8 A* V2 G1 J4 W
, N" I% D) S, f. U3 q! p
Schulz-Knappe P, Forssmann K, Herbst F, Hock D, Pipkorn R, andForssmann WG. Isolation and structural analysis of 'urodilatin,' a newpeptide of the cardiodilatin-(ANP)-family, extracted from human urine. Klin Wochenschr 66:752-759, 1988.
1 N# @( T- j9 K" K3 ~3 ?$ F0 D
( ]. J% s, @" F# D9 ?2 R
) v7 Y& m* @2 \* ^Schweitz H,Vigne P, Moinier D, Frelin C, and Lazdunski M. A new member of thenatriuretic peptide family is present in the venom of the green mamba( Dendroaspis angusticeps ). J Biol Chem 267: 13928-13932,1992.
) P+ u9 A* d, n3 e" @7 y0 f0 @! j6 z! o
" b3 h: h v: }2 j1 M
: D+ A0 }- ~( M# ^- l
Shaw SG,Weidmann P, Hodler J, Zimmermann A, and Paternostro A. Atrial natriureticpeptide protects against ischemic renal failure in the rat. J ClinInvest 80:1232-1237, 1987.
4 V( G% s7 T M Z
5 M4 a0 r8 T0 R/ a$ z, x: ^* N
* d3 z' Q6 ^& G, k7 p
3 P2 D2 V2 f7 W, S2 o: ]* S WShaw SG,Weidmann P, and Zimmermann A. Urodilatin, not nitroprusside, combined withdopamine reverses ischemic acute renal failure. KidneyInt 42:1153-1159, 1992.6 D h2 E: i9 Q" M% Q: F
3 x4 w7 g6 ], O: B7 _0 V
' W2 w* F7 O, b/ C8 N9 z) x" `7 p% ^- D* S0 D2 g
Shin SJ, LeeYJ, Tan MS, Hsieh TJ, and Tsai JH. Increased atrial natriuretic peptidemRNA expression in the kidney of diabetic rats. KidneyInt 51:1100-1105, 1997.
9 \+ V, }( k, k& O) `* q. C5 x; y3 Z; R- M" I9 f0 s$ z5 _
7 o* s; t9 N: J/ g5 y
3 E6 C; ?- v) Z% G6 jSudoh T,Kangawa K, Minamino W, and Matsuo H. A new natriuretic peptide in porcinebrain. Nature 332:78-81, 1988.
, o& N+ n* Y$ o. E2 M
6 V6 Q' @( y: L. s; K
+ h) `3 U1 q, c; Y. V5 n5 S$ W
4 l2 z3 s4 s$ r; dSudoh T,Minamino N, Kangawa K, and Matsuo H. C-type natriuretic peptide (CNP): anew member of the natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun 168:863-870, 1990.
$ J( }9 O+ q) Q4 b' ^$ m H, ^' j% g, S
- u/ L7 f$ ?0 k$ m
6 B' B6 M2 `5 [- a* r4 _( x- KSuzuki E,Hirata Y, Hayakawa H, Omata M, Kojima M, Kangawa K, Minamino N, andMatsuo H. Evidence for C-type natriuretic peptide production in the ratkidney. Biochem Biophys Res Commun 192: 532-538,1993.
. K) q+ G8 F. H( {% |) j+ `# e4 i" `5 ?2 G* _
4 ]2 a0 a9 S Z7 j( S
S, Q# p" M4 l2 h2 c2 g+ eTateyama H,Hino J, Minamino N, Kangawa K, Ogihara T, and Matsuo H. Characterization of immunoreactive brain natriuretic peptide in human cardiacatrium. Biochem Biophys Res Commun 166: 1080-1087,1990.
. T7 f* \( A3 |# j- G
( c' q1 N; ?& Z# K# s
# Z3 u# T; ^3 c) o
; e' b9 Y' y4 l6 `# Y$ w, W3 tTotsune K,Mackenzie HS, Totsune H, Troy JL, Lytton J, and Brenner BM. Upregulationof atrial natriuretic peptide gene expression in remnant kidney of rats withreduced renal mass. J Am Soc Nephrol 9: 1613-1617,1998.: g3 ^6 V% \& R" ]. E: @* p' [; e# l
w- R7 o4 }' O$ Y* Q0 M" K9 V9 Q
# k% [6 S. A0 v: mVari RC,Freeman RH, Davis JO, Villarreal D, and Verburg KM. Effect of syntheticatrial natriuretic factor on aldosterone secretion in the rat. Am JPhysiol Regul Integr Comp Physiol 251:R48-R52, 1986.
7 j% P& X _; t$ @' |; l& G1 j. F1 W V8 V
K' G- L3 O: v, M( I) e
1 s- r# C, N' G4 f) N) N$ uVesely DL. Atrial Natriuretic Hormones. Englewood Cliffs, NJ rentice Hall, 1992, p.1-256.
) b6 k) Z9 W2 Y+ Z9 l
$ M1 F9 ]8 t/ {4 t7 T- @1 X7 G# N0 |( i
6 p+ i; A7 I. G; [+ z& PVesely DL. Atrial natriuretic peptides in pathophysiological diseases. Cardiovasc Res 51:647-658, 2001.
! V" L5 A# n. n) C- U0 m4 \; _+ [$ V( \- i, F9 v
: Y2 A& P% X$ \4 }0 W6 c- R4 n" b5 E ?# w% G5 _
Vesely DL. Atrial natriuretic peptide prohormone gene expression: Hormones and diseasesthat upregulate its expression. IUBMB Life 53: 153-159,2002.
8 \6 n# W1 p7 T
/ k9 g1 D* L/ F H& L
q! S/ N$ U, K0 P: k/ T' V0 x N2 L* f1 F( Q2 Q: r7 m. M
Vesely DL,Blankenship M, Douglass MA, McCormick MT, Rodriguez-Paz G, and SchockenDD. Atrial natriuretic peptide increases adrenomedullin in the circulationof healthy humans. Life Sci 59:243-254, 1996.& q' c- Y* ^: t( ?3 `
3 u6 A# G6 |& P
5 p6 t3 C: _7 E% L5 }( v" N3 C1 o! J# ? O- `, h7 q
Vesely DL,Chiou S, Douglass MA, McCormick MT, Rodriguez-Paz G, and SchockenDD. Kaliuretic peptide and long acting natriuretic peptide as well asatrial natriuretic factor inhibit aldosterone secretion. JEndocrinol 146:373-380, 1995.
1 Z& I, i0 l' w# Y0 E
5 w5 U' f; s4 y6 B2 ^2 ~2 _; o4 b' H' A
v' @2 \+ D4 n1 q/ v. i1 nVesely DL,Dietz JR, Parks JR, Antwi EA, Overton RM, McCormick MT, Cintron G, andSchocken DD. Comparison of vessel dilator and long acting natriureticpeptide in the treatment of congestive heart failure. Am HeartJ 138:625-632, 1999.
# F1 {1 a3 C0 v2 j0 P
9 C! ~% ?/ g; @$ O# U$ a$ \/ V$ B7 s# p3 E# M8 T4 L
2 P" V( \1 ~6 P* A
Vesely DL,Dietz JR, Parks JR, Baig M, McCormick MT, Cintron G, and SchockenDD. Vessel dilator enhances sodium and water excretion and has beneficialhemodynamic effects in persons with congestive heart failure. Circulation 98:323-329, 1998.3 v( a' s. ?- p1 m
5 J( B5 o* n3 R2 R2 p! V) d( x, ?. ~, t: F# P3 z
# Y. ~8 Y+ g' ]7 \Vesely DL,Douglass MA, Dietz JR, Giordano AT, McCormick MT, Rodriguez-Paz G, andSchocken DD. Negative feedback of atrial natriuretic peptides. J Clin Endocrinol Metab 78:1128-1134, 1994.
) W; w' m1 J/ H
3 a; S+ Q( q3 o9 U; M7 m! u( }- ?: w# L/ t: J
/ q: _" j+ x9 N5 N3 X( N) Z% D }Vesely DL,Douglass MA, Dietz JR, Gower WR Jr, McCormick MT, Rodriguez-Paz G, andSchocken DD. Three peptides from the atrial natriuretic factor prohormoneamino terminus lower blood pressure and produce diuresis, natriuresis, and/orkaliuresis in humans. Circulation 90: 1129-1140,1994.- j' `! M) r. K1 A! U/ [3 e& [% y
) O1 p; g1 R- W& J
% I+ G- z0 `$ P4 p. V; L& T, C, H7 A
Vesely DL,Norris JS, Walters JM, Jespersen RR, and Baeyens DA. Atrialnatriuretic prohormone peptides 1-30, 31-67 and 79-98vasodilate the aorta. Biochem Biophys Res Commun 148: 1540-1548,1987.
9 O1 r2 D; a3 y2 \
$ b$ l# n- W4 p ?/ F/ A" M5 T' K; B/ m9 R; H
5 N+ l8 I2 E! [6 E! c J5 V5 J: k
Vesely DL,Norsk P, Winters CJ, Rico DM, Sallman AL, and Epstein M. Increased releaseof the N-terminal and C-terminal portions of the prohormone of atrialnatriuretic factor during immersion-induced central hypervolemia in normalhumans. Proc Soc Exp Biol Med 192: 230-235,1989.( z( O( V5 q; T8 Q0 {7 W
0 U0 G& }2 B1 L; a; k o% W
* c3 u$ L2 W9 Y! e |5 Q! _3 B: ^0 k; } i: T' J2 E, V3 m, P
Vesely DL,Overton RM, Blankenship M, McCormick MT, and Schocken DD. Atrialnatriuretic peptide increases urodilatin in the circulation. Am JNephrol 18:204-213, 1998.
' _; C3 F% s* H* C) x/ D# T* A+ [. [
0 |+ |8 B$ V4 P1 a! A
0 S1 [8 ]( W) a3 r
Vesely DL,Palmer PA, and Giordano AT. Atrial natriuretic factor prohormone peptidesare present in a variety of tissues. Peptides 13: 165-170,1992.
# A2 f9 D+ m- Q' ?3 y& u) i
+ R. t6 M( Y7 v$ x$ Z$ `# w' ]5 ~8 c6 G0 X7 P7 [/ b
/ b5 @1 W) g* n3 y+ |* n
Villarreal D,Freeman RH, Taraben A, and Reams GP. Modulation of renin secretion byatrial natriuretic factor prohormone fragment 31-67. Am J MedSci 318:330-335, 1999.! K& [+ l' e5 ~: u2 b. ?3 q5 k
3 Q8 L: j3 V- d0 z6 ^) P
' _5 C# \! \) V# i/ w6 D6 \ |( R/ o5 s" K( N( I$ [
Villarreal D,Reams GP, Taraben A, and Freeman RH. Hemodynamic and renal effects ofproANF 31-67 in hypertensive rats. Proc Soc Exp BiolMed 221:166-170, 1999.
0 Q y; q+ S, F/ {( W4 y7 T& c2 p5 W* m% s/ h$ m
3 Q& X2 P: v6 P7 [ p
+ Q L6 l, C) K! v' K4 JVuolteenaho O,Leskinen H, Magga J, Taskinen P, Mantymaa P, Leppaluoto J, and Ruskoaho H. Regulation of atrial natriuretic peptide synthesis and secretion. Atrial Natriuretic Peptides, edited by Vesely DL.Trivandrum, India: Research Signpost, 1997, p.39-52.& @5 X, o9 y( X$ l+ a0 t0 }
4 b0 R) d- C, s3 f0 X
! G3 |" q; a9 C$ O% L9 m k
- A; u% ^3 A4 ~# P. XWalshe JJ andVenuto RC. Acute oliguric renal failure induced by indomethacin: possiblemechanism. Ann Intern Med 91:47-49, 1979.& W! i( i# P8 n$ b! e
+ d+ y$ O& @/ H- w7 r4 ] T- d8 t8 R( y1 h) e
; ~) P; B0 y" b& sWerb R, ClarkWF, Lindsay RM, Jones EO, Turnbull DI, and Linton AL. Protective effect ofprostaglandin [PGE 2 ] in glycerol-induced acute renal failure inrats. Clin Sci Mol Med 55:505-507, 1978.
, A/ ?7 y! X0 b3 w2 Z
! M0 u/ x! z3 w4 h* d" h# H( r F9 G+ B. N
7 K7 A" C% X1 }; }6 _& n2 F! p7 sWilkins MR,Wood JA, Adu D, Lote CJ, Kendall MJ, and Michael J. Change inplasma immunoreactive atrial natriuretic peptide during sequentialultrafiltration and haemodialysis. Clin Sci (Colch) 71: 157-160,1986.
$ e7 `+ J& Q' b6 u4 J. M Q# `9 Y! G9 [$ F/ }* [
3 R7 M: v8 {6 m% J
8 J$ [/ l T n1 `" c- }. _Winters CJ,Sallman AL, Baker BJ, Meadows J, Rico DM, and Vesely DL. The N-terminusand a 4000 molecular weight peptide from the mid portion of the N-terminus ofthe atrial natriuretic factor prohormone each circulate in humans and increasein congestive heart failure. Circulation 80: 438-449,1989.
) h) m8 ^, D$ m7 ?. }6 m- p: {! ^1 z, u) A
( F- @- V' Y) `
2 ~. R9 Z2 [" t+ V
Winters CJ andVesely DL. Change in plasma immunoreactive N-terminus, C-terminus, and4000 dalton mid portion of atrial natriuretic factor prohormone withhemodialysis. Nephron 58:17-22, 1991.7 X( b* l7 C. }8 Q F
D' h2 [, W" u/ C
6 @. a& G% I7 v+ o; ~6 |' l5 I4 w5 I0 K0 u* p/ \) V
Woolf AS,Mansell MA, Hoffbrand BI, Cohen SL, and Moult PJ. The effect of lowdose intravenous 99-126 atrial natriuretic factor infusion in patientswith chronic renal failure. Postgrad Med J 65: 362-366,1989.! n! r5 w2 b6 x$ \$ d+ o0 [ J
, R, C+ K K& y0 u& V
$ W! S5 R1 Y; x) I: `" O4 Z/ H s: r( ]4 Z5 h9 ?
Yoshida K,Yamagata T, Tomura Y, Suzuki-Kusaba M, Yoshida M, Hisa H, and SatohS. Effects of c-type natriuretic peptide on vasoconstriction in dogs. Eur J Pharmacol 338:131-134, 1997.
8 J9 z/ \0 A1 }' o) o/ x; N
9 D( Q" J7 I1 U# w6 j! `8 d+ Q6 [8 K o: h4 ]0 i! k' h- d: {
( |, ~, p. k% ?3 o% O: [Zeidel ML. Regulation of collecting duct Na reabsorption by ANP 31-67. Clin Exp Pharmacol Physiol 22:121-124, 1995.% }- s1 G& ~+ |
0 p- B. |: Y! W# K% {) r) m
4 |6 c% {* \" }
. M* k4 f9 e5 G% e9 [4 U- a4 rZhang PL,Mackenzie HS, Troy KL, and Brenner BM. Effects of natriuretic peptidereceptor inhibition on remnant kidney function in rats. KidneyInt 46:414-420, 1994. |
|