干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 135273|回复: 3
go

[已解决求助] Developmental Biology, Eighth Edition   [复制链接]

Rank: 2

积分
265 
威望
265  
包包
543  
楼主
发表于 2009-7-10 21:51 |显示全部帖子
本帖最后由 细胞海洋 于 2010-3-8 08:42 编辑
/ I0 z' B9 D! j
& O; T/ _0 Z6 ^1 AOK了,楼主兑现你的100包包吧
" H! v/ q2 i3 A) X/ Z% {文件太大了,分为两部分上传。/ F; u' Y/ s7 M# L5 W6 Y( g
游客,如果你要查看本帖隐藏内容请回复
! I6 G1 X& M( m2 V! e0 @

. j* F9 n2 J% a3 M/ _9 Q- e  c细胞海洋注:文件较大 修改为回复可见 经鉴定 仍是6版 大家继续寻找 奖励仍然有效
附件: 你需要登录才可以下载或查看附件。没有帐号?注册

Rank: 2

积分
265 
威望
265  
包包
543  
沙发
发表于 2010-3-7 19:18 |显示全部帖子
可是这个版本(如果是,我就给你下):
; ?, w( Q4 _# Y# H( P6 TTable of Contents0 n5 s1 V, Y  O9 i$ O
5 f1 b3 F  o4 W9 f8 x( }1 e0 N  K
I. Principles of Developmental Biology
9 F& _6 s4 g8 M( b0 Z
1 A, s9 }! A! C" H0 _- H1 a& m. d1. Developmental biology: The anatomical tradition/ m9 Z/ G2 b1 v# L# a
New techniques of mathematical modeling of development
% @, I0 T, w, ~! h1 B: @2. Life cycles and the evolution of developmental patterns
! R4 P9 C- _% E5 M" ZRecent advances in planarian regeneration0 v# r) [+ Y8 ]; Q- J
3. Principles of experimental embryology
" l  w( H1 T: x( }4. The genetic core of development
2 D1 Z2 E$ F, }+ b5. The paradigm of differential gene expression
0 q& e9 T! P. z  n3 p- f  ?Histone modifications0 ?, S' q4 h" f
MicroRNAs
7 [0 Q* N6 G! t- T' ^Pioneer transcription factors
! S7 F8 K+ m, [" \$ LMammalian cloning and methylation patterns
, _" t* E' ^, D5 s9 s6. Cell–cell communication in development- _' o8 I4 ^8 B. q
Stem cell specification and stem cell niches
# P/ m; W% Q$ @  \. x; ZMorphogenetic regulation by cadherins
- K& f9 c0 J. W9 ]: qNoncanonical Wnt pathways# ?1 |% i" x# B5 i
Dependence receptors and apoptosis
8 l0 C* O2 ?6 Q2 }! w8 \6 xCommunity effect and autocrine factors+ ^) {8 M# S3 F4 I  w" D
) @; ~; Y0 }5 p& s
II. Early Embryonic Development1 h# T) u' `% V, Q  k8 }1 b( l  C
& {8 ?% E3 c4 P6 Y' S- Q
7. Fertilization: Beginning a new organism
. ?3 N8 E: D4 f, I" vCortical granule components* P' Z/ D. S; b! g
New mammalian sperm–egg binding model, P% E) l# Y! [3 N( B% i' ]
Mammalian sperm chemotaxis and thermotaxis
7 J% A) K) [+ g: A' n) yMechanisms of sea urchin sperm chemotaxis
5 V! q! q% d" a! W8 X" ~1 CSea urchin bindin receptor
- W' c+ C0 v( @Oocyte translation inhibitors and their removal
1 c; }0 {9 q9 U, Q9 R; N) UNew hypotheses of sperm activation
7 B7 a# ~$ s4 B$ zMammalian sperm–egg fusion, f1 k# C5 [  {' x7 ^
8. Early development in selected invertebrates$ J& }, E5 i) Y4 Z) y* G$ C+ \) J
Wnt and Nodal in sea urchin axis specification
8 ^3 d. H2 u! t, ]/ I% A' ^Coiling genetics of snail embryos
% ]4 P5 ?7 ~! S! r) kFunctions of tunicate yellow crescent
' x3 j$ U% o" _$ I& bRoles of FGFs in tunicate development: `: ~; T( Q3 V; {+ E0 `
Tunicate heart development
+ g, X! e0 k7 {7 U! a9. The genetics of axis specification in Drosophila' f! m, j% l  Y2 c* A) `
FGF signals and Drosophila mesoderm formation
) S/ B# L+ o. D: u( e2 lTransport of Nanos and Bicoid messages to opposite ends of the fly oocyte0 |) C3 v+ J% B+ u$ ~1 [
New model for gap protein stabilization
5 M8 p# U' o. J10. Early development and axis formation in amphibians* |# a, x2 Q# x" n# h
New models for organizer formation in Xenopus
0 i- A1 S* Y2 X& A3 o8 \New model for mesoderm specification in Xenopus
6 N8 r/ N; @0 O11. The early development of vertebrates: Fish, birds, and mammals+ N0 ]9 f- `) K% A$ i& B
Maternal effect mutations in zebrafish
0 c8 O4 K2 p1 i, `* t9 W1 ANeurulation in zebrafish0 i: ~9 i' \: s
Retinoic acid in anterior–posterior axis specification in chordates+ @5 k( S5 E( ]8 y  J
Ciliary movements and left–right axis specification in vertebrates0 v+ X1 \: e0 w$ f6 K* L
Role of Cerberus in chick head formation
" C6 U! [0 W3 q  x4 Z' N' ZMesoderm specification and migration in chick gastrulae
, B. \2 P4 ~' [FGF and cell fate in chick and mammalian epiblasts; E1 l, ~& w# H
Induction of pluripotency in mammalian inner cell mass blastomeres
; e% o" y6 V1 y  H& I  ^Homeotic transformation in mammals due to total Hox paralog knockouts
$ T/ U: G- k/ V/ ^9 D& sControversy over blastocyst polarity in mammals3 w, g! G4 B6 h7 z+ n8 P
Folate receptors and teratogens affecting neurulation5 I2 c1 j5 ~' Q+ J8 l
6 p( w. p- `" u0 y
III. Later Embryonic Development
9 s. ]% k  J0 Z9 P
$ ^) f3 r, |' b* |5 z+ u" C- u12. The emergence of the ectoderm: Central nervous system and epidermis4 H9 A7 H7 e' D' A
Genes specifying neural fate
! Z( C/ p' @$ g( ^: j, Q! wHuman-specific genes specifying brain growth- Y$ @" F( h8 t/ M7 i  i- h4 z- L
Progressive myelination of the human brain7 f" P: D( o7 K' P: w- o
Neural stem cells. T; A, J  w- a' B3 b. k" l
Eye development and blind cave salamanders7 p- H7 H/ t  V7 F, x  r5 ^
Skin, hair, and pigment stem cells' Z7 [6 j" P8 s9 J- U
13. Neural crest cells and axonal specificity7 x4 z4 ?9 Q$ @: S' `8 a) R; D: E
Neural crest cell specification and migrations
3 l6 P' _' A: z4 U) F$ r6 r0 ZHead vs. trunk neural crest specification
/ P2 X8 ^1 j: y9 z$ ?Neural crest-endoderm interactions forming facial structures
2 }# N5 q! q* s; nPlacode specification and separation
6 `" Z2 V1 m" [! B8 wTooth development and evolution
) A# U. K* S% U9 N. k" D2 xSemaphorins, Robo, and ephrins in neural patterning
- Z- \& T, a/ O& N  T* i14. Paraxial and intermediate mesoderm
5 Z& w3 n/ D9 z  ?; A' rSpecification of paraxial and intermediate mesoderm! U8 H  T) s$ E! \5 ^, K
Epithelialization of somites
$ V- U9 I! \) U% y& C) @) a+ _The syndetome—where tendons arise9 T7 A! Y5 R, |7 ]  m) d0 `0 j
FGFs, Notch, and Wnt in somite specification and separation
  Y5 Z0 U7 I; T0 tThe primaxial and abaxial musculature
7 V) n4 h- k% e" m' H5 H0 B8 m% ENew sources of muscle precursor cells5 B( c- B7 {) ?/ @3 t- c
Pathways of skeleton formation5 Y% h! `1 r' K; _! }! W% b, \& h
Regulating ureteric bud branching
6 y  z) I1 ~- t8 [Wnt and FGF proteins regulating nephron formation
. |; ]" v3 Z! `/ e; r4 C15. Lateral plate mesoderm and endoderm. m% L$ u6 x; [/ T( g; ?$ p
Cloaca formation( _" g" r) |9 a: o, S; m7 c
Heart cell specification5 }4 e8 `/ X5 P! }2 S% K
Tbx genes, retinoic acid and heart chamber formation
6 l- g* y6 ~3 S! B- O3 |Heart valve development
8 Q' T2 x- \4 A* y9 g! ]4 @Hematopoietic stem cells and their derivatives
% _; a5 d$ U" ^' U7 t( rLymphatic development
2 B+ l5 y0 ?% W5 A1 G( EInduction of arteries by neurons7 H# O, Q1 ]0 F4 J( I0 O
Placenta as source of blood stem cells
0 Y# i' {' f, gAdult blood stem cell niches
/ y7 ~: u) W; ~+ b8 r6 gEndoderm specificity& w* w9 d+ i$ \, G) W" s9 G
Pancreas vs. liver development; [: ?8 }2 e( ]6 U+ K
Fate mapping pancreatic cells2 z! |8 ^5 A+ H
16. Development of the tetrapod limb( O/ `0 i4 O/ K  x1 O" y, N  {+ B3 ?
Hox code of limb development
- d" _! ^- R5 ^7 hSpecification of the digits by hedgehog proteins and HoxD genes
$ O3 H7 E1 T+ G8 A% DControversy over digit identities in dinosaurs and birds
2 O; F4 z- J4 e* F+ |) L  sGetting limbs from fins+ `& o7 {7 R9 U1 K+ b9 l8 ~+ J
17. Sex determination
  S8 a& p$ @' STiming and gene expression in mammalian sex determination3 Q0 h; O! b. \! u+ F. e4 }! W8 R
Brain sex determination pathways in vertebrates and flies
& d4 e8 [- h+ nHormone disruptors and sex determination problems
6 U* {/ D+ B/ H3 k/ ZDosage compensation and sex determination* v: W3 Z4 R$ c
Temperature-dependent sex determination in turtles7 m' N' u9 ?0 G$ h& ?/ r+ w4 u
18. Metamorphosis, regeneration, and aging+ c7 u- r" `" v; ~( x' p1 f5 x
Molecular mechanisms of amphibian metamorphosis
* z9 h. B9 ?/ E8 K& w* A3 XEcdysone receptors and the response to molting hormone
9 l$ p0 B9 d3 h' K+ MCompartment formation in the wing imaginal disc! `) R& [( ~0 X: |2 [: C
Why can’t we regenerate our limbs?
" `1 L* V) r# }' a' B: ~) s: iNeuron- and mesenchyme-dependent stages of limb regeneration
2 Y7 n# `, O* ]) d# kSpecification of limb regions by transcription factors during regeneration
, ]- [8 z4 T" s' C2 cMitochondrial control of aging0 [, W! p( A: c% P* c8 {
Insulin pathway control of aging and possible relation to oxygen radicals
8 F. m) ?& l+ D; @1 g( t“Ageless” animals and environmental control of aging
. L2 D4 t& Q: c) {6 a0 ~0 s2 m19. The saga of the germ line4 d9 {4 O# N1 t! S, d: L
Genetic specification of germ-line cells in Drosophila and vertebrates5 h. y3 C2 S6 S2 b
Components of the Drosophila germ plasm
$ Z) q4 X7 q* q2 aEgg and sperm stem cell niches in Drosophila7 {2 L* k4 Z6 ]- w( t7 C
Migration of primordial germ cells in mammals, chicks, and flies$ g$ \4 E7 u: B  E' Z% h2 F! c
Determination of meiosis and mitosis in C. elegans
% O% w9 ^( B$ P8 l- e- YRetaining mammalian spermatic stem cells
/ w, s! [3 i# |) v! a: X; X& JIV. Ramifications of Developmental Biology
5 u2 t# ]! u$ \6 n5 B$ m3 x7 w20. An overview of plant development8 Z2 Q# ^" C- M, {
Gamete formation and pollen tube guidance
1 H3 c1 x: p7 Y8 {Maternal effects and embryo development
( _0 l+ i5 z3 M3 h5 cRadial and axial patterning
1 o) s1 c/ r) j% g: QNew model for auxin specification of polarity
' u  e* o% L: Z  L! }  [Roles of microRNAs in plant development' g8 H# z+ Z8 {
Dorsal–ventral leaf patterning: n- x; E7 X# W5 x" _& f
Long-distance RNA transport and flowering
/ Z5 R9 z1 i1 c/ {/ {4 \Floral meristem specification
4 t4 B0 k# B  ?# z9 A1 Y0 ]; z21. Medical implications of developmental biology) I* x5 l  ]6 |" p+ V
Mechanisms of alcohol teratogenesis2 b# [- @* d1 Q  \9 s
Effects of endocrine disruptors on human development
. E. Q9 d+ m$ X# E. tNutritional effects of gene methylation and disease susceptibility
* @& z# W# O! @9 m' u7 ~8 iCancer as a disease of development+ P5 o7 H3 h6 s
Cancer stem cell hypothesis. x; B3 Z+ T6 C6 P' D0 z
Developmental approaches to cancer therapy7 H" C& m+ @$ ?& {$ X
Stem cell therapeutics
6 k3 r* [) `1 U" [/ n% jRegenerating human limbs and neurons. J* N2 \) ?! b$ L- \
22. Environmental regulation of animal development9 e9 Z; D9 N) B+ a# l3 A
Molecular bases for environmental regulation of gene expression: k3 g) Y" L* q1 I4 _+ q
• Importance of symbionts in mammalian gut and immune system7 \4 r$ H% D8 ?2 n$ |: i; v
development& ~1 C  o$ E9 _  J: q+ O1 c% T, f
Signaling from fetal mammalian lung to initiate labor5 W/ I' [% T7 K! w3 M+ Q/ w) n2 Q$ I
The role of nutrition in the development of the dung beetle
8 c  G* t6 Q. @8 XPredator-induced polyphenism and toxicity testing
, X, |8 I. {6 xGenetic assimilation of environmentally induced traits) [! `' a1 w: h4 C% N: B
23. Developmental mechanisms of evolutionary change! M; V7 B( I7 }$ V* u4 Y3 `, P
Developmental modularity and evolution (stickleback studies)
) [8 `0 {8 l8 N! VEvolution by heterochrony, heterotopy, heterometry, heterotypy
* x" m: A/ v6 A/ t1 JBMPs and Darwin’s finches
5 u9 u# R/ f) e9 u8 I% AOrigin of neural crest cells and the origin of jaws7 u" x2 y$ f4 l+ A: p# Z
The search for the Urbilaterian ancestor

Rank: 2

积分
265 
威望
265  
包包
543  
藤椅
发表于 2010-3-8 09:08 |显示全部帖子
回复 20# hualin840518
/ n! c* V. s( g6 z4 f  ]; T9 h2 z" p- m$ J8 s+ ^$ k& N
) P; e1 f: n1 ]  [
    没下载那个目录的,上传的附件我查验过了,是第八版

Rank: 2

积分
265 
威望
265  
包包
543  
板凳
发表于 2010-3-8 09:21 |显示全部帖子
干细胞之家微信公众号
回复 20# hualin840518
5 D; S' p4 }5 h8 R! ]0 P9 O) Z6 F( S' w, d" H
参见图片
) z1 g% S: p( k( p
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2025-5-17 07:44

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.