
- 积分
- 52
- 威望
- 52
- 包包
- 658
|
本帖最后由 细胞海洋 于 2010-7-15 07:40 编辑 7 @$ s! k! ^/ g1 w/ l
# r4 C; R; X6 E# k z/ f: Y
Developmental Biology, Ninth Edition) C* l1 r. D+ ~2 \' Q
Scott F. Gilbert6 ?3 s" `$ h* X/ L5 ~! a# A u
April 12, 2010
5 U$ b. f9 t* H A# A# G711 pages, 699 illustrations
) o6 R- a! ~% D: A# kcasebound
4 }' U( u: o9 H: p6 Z( t$ w/ v7 `+ m' i# s
1 F" c! y, }- S9 z# uDuring the past four years, the field of developmental biology has begun a new metamorphosis. The Ninth Edition of Developmental Biology mirrors this shift with a wholly revised text, over 600 new literature citations, and substantial reorganization of content. The introductory section has been streamlined from six chapters to three—one each on developmental anatomy, the mechanisms of gene regulation during differentiation, and cell–cell communication during morphogenesis. Another new feature is the addition of short part openers that address key concerns in developmental biology. These provide an introduction to the subsequent chapters, telling the reader what to expect and placing that information into a specific context. Each chapter ends with a guide to Web-based resources relevant to that chapter’s content, and the Ninth Edition is the first to include a glossary of key terms. Some of the new material in this edition includes: mesenchymal and induced pluripotent stem cells; the transdifferentiation of pancreatic cells; new data on sea urchin micromere specification; the mechanisms whereby Sry and Wnt signaling determine mammalian sex; the memory of cell fate during amphibian limb regeneration; how bats got their wings and how dachshunds got their short legs. 0 n' S; k x4 e. B: L' s
% K, K, i' j# r
I. Principles: Introducing Developmental Biology
3 k( g! E }% b( h0 BIntroducing the questions and principles that are the foundation of developmental biology 2 W& Q4 \* C* ]9 F* y9 v
+ z, P1 b6 Q4 F7 x! B
1. Developmental anatomy % h, ?1 @) z! T: o' n" v9 _
* z& d# b" ~/ {- A8 W2 m0 C
•Evolutionary developmental biology of bat wings and dachshund legs
& k4 h- d, i* T2. Developmental genetics 5 y5 Y" V& E* `6 j& f/ a3 y4 m5 V+ I
1 ?# ?2 |- [* l) b5 i5 Z6 L% o•Roles of microRNAs in controlling cell identity% o( g2 O. G' _
•Histone remodeling
4 }) P2 P$ t; i2 y4 T( v) U0 g9 \8 a•Reprogramming exocrine pancreas into beta-cells
+ y$ z) A0 X" B) ]8 m4 v•Dscam splicing ]. H$ l! k [6 p
•Translation initiation3 _! e( ^% U7 H
3. Cell–cell communication in development
: N/ w* z+ c5 H; ]' k
4 s; J/ c9 [6 e) P3 m+ O+ R•Epithelial–mesenchymal transitions8 q. P X$ L; f/ Z: I- H
•Cell shape change and morphogenesis" |7 \; p* `- B" f
•Elasticity of extracellular matrix regulating differentiation
. e f+ ]' w `& x" _•Coordination of cell migration
3 e0 {8 M! Y/ \# [' V" O4 |II. Specification: Introducing Early Embryonic Development5 Z: U* |" \, T/ ~
An introduction to the modes of specification and determination used in the animal kingdom
; {5 C& I# E9 U. ]3 {
6 \4 `8 i0 c }# Z# A \4. Fertilization
& z) o5 l3 v3 }& Y, n/ J+ n. F# L
4 I, e4 V( I# V) R•Soluble PLC-zeta in mammalian fertilization: \# e4 }8 N. U. v2 f
•The mechanisms for cortical granule exocytosis! x/ \5 y8 F8 f9 W/ F5 H' A3 L' j
•Mammalian blocks to polyspermy Q! N; g/ J4 J( _) M7 S) `+ s0 G1 [) q
•Regulation of acrosome reactions
/ ~4 E- q8 p' ^, Y: t c5. Early development in selected invertebrates ; J! R# c4 M/ d8 S
1 Q( h! M1 A7 o" E; l1 p. q! p•Specification of sea urchin micromeres and recruitment of skeletogenic genes
. e8 @9 K. D2 h3 x) B, o* U•Regulation of sea urchin gastrulation
7 o' u3 {5 c' _# i' C* c•Double-negative gate gene circuits" q/ ]/ ]% G& \1 }- z, y* A
•Left–right axis formation in snails, tunicates, and nematodes( a5 |8 k1 Q0 q5 t. G5 E
•Mollusk D-quadrant signaling
) e& Z4 ^1 {( V' V" C' J& w•Centrosome-attracting bodies in tunicate development
5 t+ B' @; B- E: G$ v/ J! l6. The genetics of axis specification in Drosophila
% a" u- y1 ^9 W: n% u' L' C
$ D; e, L+ b, C4 x! ]* ]•Smaug in maternal-to-zygote transition
7 A3 d7 Q5 P, D2 u- C•The bicoid mRNA gradient7 t6 {# p6 v" s. Q6 z2 b( q
•Cytoskeletal and cell adhesion changes induced by homeotic genes
2 a7 ~7 t9 y8 V•Mechanisms of cellularization3 H! A$ U6 x0 G4 Y
•Mechanisms of posterior localization% R: t! N: C6 a; o
•Realisator gene pathways
- r+ D5 e4 q( G2 x o7. Amphibians and fish: Early development and axis formation ! v# J- r9 P' ~" y. I5 K; Q
1 Z' C: ]( K; I2 Y/ e
•Cell adhesion and cell shape changes during gastrulation- S- X* z4 J7 l9 ]8 p! _
•Vg1 signaling for mesoderm and endoderm specification
; N9 l: r/ `6 y3 ^! o' G0 |: d•Importance of Wnt11 for dorsal–ventral polarity
4 L# r: m2 e/ _% x•New pathway of organizer formation
9 \7 ~$ l4 }. n: B•Single-cell internalization in zebrafish gastrulation+ p1 l# ~( v& v
8. Birds and mammals: Early development and axis formation : M6 j/ d. J8 l8 z
8 w Q/ e8 ^1 y' k
•Intercalation and primitive streak formation
; K9 C: C; m0 w5 u! H' C% w" Q•How the amniote mesenchyme cells are instructed to ingress into the embryo1 P; g8 B) m8 e+ R
•Specification of chick germ layers
; Q+ t: J' \. d: ~•How the mammalian inner cell mass separates from the trophectoderm1 ~$ p$ ^1 j; `$ F* d4 ~7 D, k! G, s& `
•How the embryonic axis is established in the blastocyst
) P; [, A: u W6 }+ a( qIII. Stem Cells: Introducing Organogenesis$ m Q. J2 C) {& U
An introduction to the stem cell concept, including new material on embryonic and induced stem cells, mesenchymal stem cells, and the construction of stem cell niches , d9 U& X* q `- U" U9 L5 W
8 H: \' E* L3 Z- P: v) |9. The emergence of the ectoderm: CNS and epidermis
4 w- J. m2 G4 p1 b
. M1 Q1 u. G0 s/ H3 ]% p. [/ m9 V•How the layers of the mammalian cortex are defined and how cells are instructed to reach these layers
7 p4 T a! v2 x& k6 H•The developmental regulatory genes that may be involved in primate brain evolution1 u% l( G ?2 j) U! A8 k+ J: k
•How the hair follicles become spaced and the hair shaft grows( O4 ~) ]/ e) i! }8 ~
•EDAR mutations and epidermal appendages- L. ~0 j% `2 T7 n
•Multipotent retinal stem cells and their specification by microRNAs and timing
, C! S3 D$ E! H% E+ Q10. Neural crest cells and axonal specificity
) d( y7 [ x$ a: v$ N5 g4 E, G6 L$ q1 }/ N1 b; h- V3 i
•Neural crest cell specification by paracrine factors and transcription factors# E& k. `1 a/ a/ d! B
•Migrational control of neural crest cells
0 ]( K& p' y+ x0 ?+ [4 ?•Adrenal cortex formation
$ {. P5 t, Z9 w) S•Reciprocal regulation of facial and brain structures" n( Q6 u6 G/ o( M
•Multipotency of neural crest cells
. |9 b1 N' o) R4 H•Species-specific facial patterns* v0 Z6 d3 i- U7 D/ N7 X: Z
•Transcription factors in neural guidance8 Q9 K; C9 B0 [% _; l0 Z! W
•The Brainbow technique
, C) {7 w" S! x9 f•Retinal guidance mechanisms
2 B; \. ]: H% r11. Paraxial and intermediate mesoderm
0 ^! W( n+ T! N. ]% H* Q1 n/ E7 r0 Q% {8 V
•The new cell types (fat, tendons, joints, blood vessels) that are derived from the somites( N0 ~8 _8 B2 |
•The formation of satellite cells for muscle growth and repair- P9 B8 Q) Y u3 t' v9 V3 z6 V
•Epiblast muscle precursor cells
. `' Z. m# e) [•Head mesoderm and its relationship to neural crest cells. S p" j! L8 I- M T
•Myostatin: w& r+ `; g$ U2 k+ p
•Somite-derived angioblasts
$ x$ P% V( f5 r- B9 X•Models of somite periodicity' t$ {! l9 g! G& K- a' Q9 Y
•Generation of kidney morphogenetic field& Y* t) e. @+ N6 S: T
•Nephron specification& T5 b" G6 z; c; p
12. Lateral plate mesoderm and endoderm % m A5 K) a/ [9 V) ~# X I
. T0 H: r1 E, u; g$ ^ B•Heart fields and patterning7 V" q: A" C, {7 Q* G- ^
•How the heart forms from multipotent stem cells6 M; C8 N: r# O! {8 U0 w) [
•Common endothelial and hematopoietic progenitor cells
7 b+ |& @ p [* K•Formation of blood vessel tubes
4 w! ?" U: i- W+ o& ^•Angiogenesis and VEGF receptors
1 S3 V& |4 e8 Y7 _3 C5 u) v•Angiogenesis blockade in disease and in cancer therapy
2 q: S/ z; F# [$ V! H1 b& P•Contribution of yolk sac to adult hematopoiesis
) \& X0 T W# r. N+ Z- F•Roles of shear force on cardiac and vessel development
; L' |/ I: B' _4 d2 W6 s* x•Mesoderm-endoderm interactions in gut tube development
, q- ]% {- P; f8 ^7 O) A•Control of liver and pancreas development+ B& _% R/ O2 R( f, s: a* g- j
•The formation of new blood vessels and the interaction of biomechanical and genetic factors/ Z8 y( M1 D% s0 H) T! j
13. Development of the tetrapod limb
( G; _# w' J$ F" Q1 K% O) B5 \( Y* ]! Q) ^9 G
•The integration and self-regulation of paracrine pathways to enable limb patterning5 Y- V S3 ~/ ]- ~& y
•Formation of joints2 A0 N7 T) Q& n5 t/ }
•Sonic hedghog regulation and limb outgrowth
( {8 L9 E' `# l: k5 ?# B0 l8 z2 g•Tiktaalik
6 s' S" o$ F/ }3 U•Digit identity genes
6 \* j; e6 X2 @% I; x" d14. Sex determination
& h6 T! D) V8 k' O! h9 t; e' X) K4 @% Q6 p$ v) U. Z$ C
•Roles of Sry in promoting testis development and blocking ovarian development
! O* B+ W1 E3 F' n, \/ T9 T•Role of Wnt4, R-spondin1, and beta-catenin in promoting ovarian development and blocking testis development
8 I" f+ Q9 R5 o6 e. S•Sex differences in brain development
+ u a L% R6 U! }/ Z•Fruitless gene function in Drosophila
: ~9 I7 \) S) H. o4 ^•Sexual differentiation in wallabies and chickens
0 p( W+ y, X0 E0 h; |•Temperature-dependent sex determination( C& Z3 U1 ?5 u5 I. t% K
15. Postembryonic development: Metamorphosis, regeneration, and aging
" W* y6 Z6 R+ I; ^0 C' z
! j% E) O) i& o4 x6 i, U1 _•Cell fate memory in amphibian limb regeneration6 S- P3 [/ N4 a' z1 m) X
•Role of neurons in regeneration7 \) @6 z3 D' ?
•Aging through epigenetic drift
# R0 E f- W9 N3 g! {7 B6 i, m% `•Evolution of larvae
: ~7 {# @4 H3 U+ P& B' g•Self-regulation of liver regeneration% |2 L% n: ]" o
•Nuclear envelope defects in aging. |0 j* C7 }& I5 [
16. The saga of the germ line
; D7 V4 g' V+ U) ~& g* U4 h8 ~: D5 C0 t0 Y+ ~
•Migration of chick and mammalian germ cells7 S5 V! T- w; X6 S* Q; s
•Traveling niche hypothesis
6 t5 t% g% `9 h% w- W3 z. \•Germ cell specification in mice
' m* }8 v- M) b+ h+ |•Cohesin in meiosis5 m6 R8 y; B' p1 B
•Regulation of cytostatic factor in frog oocytes
/ o- L( L2 B, k5 B; ?* C6 k•Retinoic acid regulation of meiotic initiation& i. p% |$ p/ Z; `+ q t
•Sperm cell niches5 p2 ?, `9 m3 b- f& R! g
IV. Systems Biology and Development- F: z; P ~6 J L9 E
Introducing the integration and extension of developmental biology into the areas of medicine, ecology, and evolution
- n" P) X X* L) v* m% T5 ^
; y \4 t' B7 c* {4 k17. Medical aspects of developmental biology 2 E! a) |* j3 r+ }
5 G- N6 P1 [# G
•Altered synaptic function in Down syndrome neurons9 {9 }4 ^ [: K/ C7 p" |
•Teratogenesis and recreational drugs
3 p3 o7 X T& q1 z! c: K% }* l) z" }•Targeting paracrine factor pathways in cancers' k# ?7 u) g; W0 A8 O
•VEGFR-3 as a target for cancer therapeutics
* H$ o* T2 Z: G; f; A7 d•Theories of cancer stem cells
* }, I# |7 c$ b, {0 u: g•Endocrine disruption2 b5 `, x: @ y( C) M$ r
•Medical aspects of induced pluripotent stem cells1 g( l. G1 c% r4 s* ?9 z6 B
•Stem cell gene therapy
3 D% h. a% h5 Q8 s- z! U. \•Regenerative medicine
: p+ {1 I+ F7 \: u+ j18. Developmental plasticity 7 {- p2 \/ R' k# p
0 e2 Y2 q0 q! S•Vibrational signals for treefrog developmental plasticity
: t1 Q1 w6 t0 R% o% [$ H•Developmental symbioses in mammalian gut
6 p' M5 I P# S$ n, Y•Neural plasticity
3 A5 v. z t7 ~; h" q•Transgenerational effects of environment7 U: I# Z! r: S- g
•Trade-offs in development
0 @( D+ ^; P5 u9 p! k8 Y19. Evolutionary developmental biology
6 \" t* p3 z# L: q3 U7 `
. z9 q% r0 h$ O4 G( W! d1 P* G# t• itx1 and Duffy blood group enhancer modularity and selection
; L$ W8 b$ G3 v: X•How the turtle gets its shell6 O1 T& {0 `% E4 M0 u$ I1 u
•HoxA-11 and the evolution of the mammalian uterus
3 H3 K0 Q) P( X! h. h" d+ P& }•Evolution of the neural crest
' _' C3 q$ S9 x. ^1 B. c•Bilaterian ancestry% g, Z. i# b( g
•Genetic assimilation& k- C" O& ^- e
•Co-development and co-evolution
7 {% w* w7 q4 j; d* ?. c* g) v+ ^. u. b% m" V8 W. P
; O, m1 j5 `- b/ i2 ?$ h# {) T* y
其实网上有许多关于developmental biology 的6th,8th版本,但多为免费网站上复制下来转换的PDF版,排版很乱,效果很差。不知道那位高手有这几个版本的高质量的PDF版,类似于我提供的附件里面的那种版本?希望能让我们大家共享!来源一般是购买的正版的ebook才有这种效果。 |
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
-
总评分: 威望 + 5
包包 + 10
查看全部评分
|