干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 5384|回复: 2
go

[已解决求助] 求助Development. 2011 Nov;138(21):4801-12.文献 [复制链接]

Rank: 3Rank: 3

积分
318 
威望
318  
包包
7  

优秀会员

楼主
发表于 2011-11-2 22:30 |只看该作者 |倒序浏览 |打印
Development. 2011 Nov;138(21):4801-12.! a, p0 ~! p8 a
ER71 directs mesodermal fate decisions during embryogenesis.
( g) i9 A9 D7 ?7 v1 _0 KRasmussen TL, Kweon J, Diekmann MA, Belema-Bedada F, Song Q, Bowlin K, Shi X, Ferdous A, Li T, Kyba M, Metzger JM, Koyano-Nakagawa N, Garry DJ.
* H" m* k5 _6 r* jSourceLillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA.
2 F4 h0 u( l# i8 b, w- N6 |3 y5 n* D2 x2 x- G# M! D
PMID: 21989919
1 N6 b  s; m6 z$ Phttp://www.ncbi.nlm.nih.gov/pubmed/21989919

Rank: 1

积分
17 
威望
17  
包包
79  
沙发
发表于 2011-11-4 09:39 |只看该作者
1      ER71 directs mesodermal fate decisions during embryogenesis. 参考中文标题: 点击查看机器翻译 作      者: Rasmussen TL. Kweon J. Diekmann MA. Belema-Bedada F. Song Q. Bowlin K. Shi X. Ferdous A. Li T. Kyba M. Metzger JM. Koyano-Nakagawa N. Garry DJ. 全文及相关链接:HighWire Press     Swets Information Services     摘      要: Er71 mutant embryos are nonviable and lack hematopoietic and endothelial lineages. To further define the functional role for ER71 in cell lineage decisions, we generated genetically modified mouse models. We engineered an Er71-EYFP transgenic mouse model by fusing the 3.9 kb Er71 promoter to the EYFP reporter gene. Using FACS and transcriptional profiling, we examined the EYFP(+) population of cells in Er71 mutant and wild-type littermates. In the absence of ER71, we observed an increase in the number of EYFP-expressing cells, increased expression of the cardiac molecular program and decreased expression of the hemato-endothelial program, as compared with wild-type littermate controls. We also generated a novel Er71-Cre transgenic mouse model using the same 3.9 kb Er71 promoter. Genetic fate-mapping studies revealed that the ER71-expressing cells give rise to the hematopoietic and endothelial lineages in the wild-type background. In the absence of ER71, these cell populations contributed to alternative mesodermal lineages, including the cardiac lineage. To extend these analyses, we used an inducible embryonic stem/embryoid body system and observed that ER71 overexpression repressed cardiogenesis. Together, these studies identify ER71 as a critical regulator of mesodermal fate decisions that acts to specify the hematopoietic and endothelial lineages at the expense of cardiac lineages. This enhances our understanding of the mechanisms that govern mesodermal fate decisions early during embryogenesis. 参考中文摘要:Er71 nonviable突变和缺乏胚胎造血和内皮血统之中。进一步而言,需定义的功能作用在ER71细胞谱系的决定,我们产生转基因小鼠模型。我们策划的转基因小鼠模型Er71-EYFP通过熔断3.9 kb Er71赞助人EYFP记者的基因。使用FACS和转录的评价,我们仔细检查了EYFP(+)人口的细胞突变的、Er71野生littermates。在缺乏ER71,我们观察到一个数量的增长EYFP-expressing细胞,增加表达式的程序并减少心脏分子的表达hemato-endothelial程序,相比而言,野生littermate控制。我们也产生了一个新颖的Er71-Cre转基因小鼠模型使用相同的3.9 kb Er71推销员。研究表明,遗传fate-mapping ER71-expressing产生造血细胞和内皮血统的野生的背景。在缺乏ER71,这些细胞群体选择了mesodermal血统,包括心脏血统。延长这些分析中,我们使用了一个诱导胚胎干细胞/混合而且发现生命的性体系统ER71压抑的cardiogenesis品系。在一起,这些研究确定ER71作为一个至关重要的调节作用mesodermal命运决定说明造血和内皮血统的代价心脏血统之中。这加强我们对mesodermal决策机制控制命运的早期胚胎。出      处: Development (Cambridge, England). 2011年138卷21期4801-12页 相关链接: PubMed Google学术搜索 Google引文 外部引文 相关文献 引文追踪(Google)

Rank: 1

积分
威望
0  
包包
818  
藤椅
发表于 2011-11-6 13:17 |只看该作者
回复 chleiwu 的帖子# z( N) _% p! J* a$ \9 I1 J! I
! X# k0 ?* C0 S& E3 ]3 B7 r
4801 RESEARCH ARTICLE, l" G  [7 m( w
INTRODUCTION. ]/ u0 n* O# E, w/ X
Transcriptional networks, signaling cascades, microRNAs and' M2 M/ \9 l2 G- k! `8 \
other factors coordinately regulate stem and progenitor cell
6 M  c" W7 K+ a6 l2 m( Kpopulations to give rise to the mesodermal lineages (Davis and Zur
) ^! M  Y9 _  ]/ w, FNieden, 2008; Ivey et al., 2008; Omelyanchuk et al., 2009; Park et; b: N$ ?  B1 o4 f0 Q+ u" d( C
al., 1998). During embryogenesis, a set of anterior progenitors( ]  f5 Z5 Z$ }& ]) r! i# }3 ]
coalesce to form the heart. These progenitors, along with the blood, }3 s  R9 {& f
and vasculature, comprise the circulatory system, which is the first
2 S% s0 O$ ~3 ]4 _% [, Zorgan system to develop in mouse and human. Disruption or) U0 U' c. E- J* ~. k
elimination of any one of these lineages results in early embryonic
& h0 Q# U5 F" s( Wlethality. However, the factors that regulate the co-emergence of  q9 I  H. b6 o" @* K: j5 v6 d" S
these lineages from the mesodermal progenitor pools are- N' t- j5 o2 }; [  |
incompletely defined.& {0 G7 V# Y& e$ r
Recent studies have identified a multipotent progenitor cell" W; a9 ^4 T, t
population that is capable of giving rise to the cardiomyocyte and
4 @% j" s9 h$ ^2 zendothelial lineages during embryogenesis (Kattman et al., 2006;
$ C0 `# w- ~. W  M; |# v) C% A( OMoretti et al., 2006; Wu et al., 2006). Although these multipotent( J% a; @( D9 o- Q) V6 S
progenitors have been identified based on the expression of Flk1
( y3 r! ^& M8 c" i; ~% N(also known as Kdr), Nkx2-5 and Isl1, the transcriptional networks
. ]& }) x$ W# G% S! J8 {2 sthat govern the fate of these progenitors are unknown. These and
/ u, T1 M/ g' R) i+ d/ n* hother studies emphasized the plasticity and context dependence of$ d( |! n1 n2 O: s
regulatory cascades in the progenitor cell populations. For example,
* @- Q3 ]. L; Uour previous studies demonstrated that Nkx2-5 has a dual- V6 Z- A; u. b. f' ?8 ]
transcriptional regulatory role in the promotion of the cardiac3 @% [% U0 P" ^) V
lineage and suppression of the hematopoietic lineage (Caprioli et
( E7 s( |! g' `) d5 `/ |2 @" Oal., 2011). In this fashion, we proposed that the stoichiometry of
. P7 N( h2 A) G+ X. l. A) Tregulatory transcription factors and interacting factors could
) m4 F- }8 |7 ^! ]dynamically regulate the fate of progenitors. Definition of4 R2 b' V, u# F2 ]! G
additional networks and signaling pathways that promote and
8 [7 u; Y$ S/ {+ O, j* L  h" Gsuppress the fate of distinct lineages that arise from multipotent
: Z  k, E/ k- }: V: {. m8 z0 ]progenitors will enhance our mechanistic understanding of their3 b% K: b, d! V! Z1 ?
developmental potential.
1 p! e, z9 v# Q6 v& t, v/ D  REts-related protein 71 (ER71; Etv2) is a member of the Ets. Z( t0 T3 z% h, B0 o7 x
transcription factor family that we and others have shown to be0 j# P: X1 q4 I# ~% M
essential for formation of the endothelial and hematopoietic
0 j2 o5 Y! U2 w1 q+ g* ]lineages (De Val et al., 2008; Ferdous et al., 2009; Lee et al., 2008).
5 W! {! t$ B" r* i: pEr71 can be induced by BMP, Wnt and Notch signals to promote  p6 t  L& J. j
hematopoiesis (Lee et al., 2008) and synergizes with FoxC2 to" Q0 R: D0 N$ \( w
regulate the endothelial program by directly targeting Scl (also
* J) G4 S! O9 {" }# H# Mknown as Tal1), Notch4, Cdh5 and Tie2 (also known as Tek) (De
  R  x2 D1 v5 e, u' {Val et al., 2008; Ferdous et al., 2009; Lee et al., 2008). In Er712 F  V1 r7 C0 V  |
mutant mouse embryos, there is a complete lack of hematopoietic
. g, Y: i) h' Tand endothelial lineages and the embryos are nonviable by# d3 t# R/ C: _1 z) k, G
embryonic day (E) 9.5 (Ferdous et al., 2009; Lee et al., 2008).
# l; w$ U; x, ]+ H, q% j2 RAnalysis of the Er71 mutant embryos revealed no differences in
. @! P" U$ M/ R) F$ @* |- [cellular proliferation or cellular apoptosis compared with age-* f& e/ X2 h# d0 r& r+ c* V$ C( v
matched wild-type littermates (Ferdous et al., 2009). These results5 Z; y0 z- D! e  ^
raised the question of whether the hematopoietic and endothelial0 h; c& h: p' a9 `7 r5 x
precursors are still present but unable to differentiate to hemato-
! q) L1 i; K% }$ l, vendothelial lineages, whether they had been redirected towards, y, U# k; n% w" u. s9 {* u) H
other lineages or whether these cells never arose during
- w5 N! C* B- R/ ddevelopment.; Q) R' S8 L- a4 `6 Z/ q! e
Development 138, 4801-4812 (2011) doi:10.1242/dev.0709124 V8 S# c& R4 K  G3 V' P
© 2011. Published by The Company of Biologists Ltd) `" J% {$ s, U7 p: H: i2 Q
1Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA.
: n# J- H/ Q" p# B% F( ]( q2Department of Integrative Biology & Physiology, Medical School, University of: ?! X7 y/ P- k9 o) |& e" L1 h
Minnesota, Minneapolis, MN 55455, USA.
" G% _( E3 Y8 T8 V9 o8 ^3Biolead.org Research Group, LC
5 |$ k+ B, I' L5 p  M; w4 FSciences, Houston, TX 77054, USA. 3 l" I. i( C0 R5 }
4University of Texas Southwestern Medical6 A- x3 `, v1 y: ]3 g
Center, Dallas, TX 75244, USA.( {7 E* O. q$ B! \6 Z1 t8 p* ?
*Author for correspondence (garry@umn.edu)
$ N! s; p- i5 |$ |Accepted 5 September 2011: _2 m( O+ h* U" ?- C: x9 g  H
SUMMARY2 W1 j7 n4 f, o2 i
Er71 mutant embryos are nonviable and lack hematopoietic and endothelial lineages. To further define the functional role for
. U$ s& c' x* o: t' ~9 ?8 @& nER71 in cell lineage decisions, we generated genetically modified mouse models. We engineered an Er71-EYFP transgenic mouse
3 F% B7 _' r7 g7 kmodel by fusing the 3.9 kb Er71 promoter to the EYFP reporter gene. Using FACS and transcriptional profiling, we examined the
1 h8 F: ^- U8 m9 m: GEYFP+ population of cells in Er71 mutant and wild-type littermates. In the absence of ER71, we observed an increase in the
4 p  K6 E$ h4 Tnumber of EYFP-expressing cells, increased expression of the cardiac molecular program and decreased expression of the hemato-+ a, w) u# f: p0 J6 e, P: h9 ?# c
endothelial program, as compared with wild-type littermate controls. We also generated a novel Er71-Cre transgenic mouse
! t9 ]4 h0 g. E, F8 ]model using the same 3.9 kb Er71 promoter. Genetic fate-mapping studies revealed that the ER71-expressing cells give rise to the5 k, [. Q/ F" h: N
hematopoietic and endothelial lineages in the wild-type background. In the absence of ER71, these cell populations contributed
* l+ l# t+ l, j. l4 d. ^) b& }' Lto alternative mesodermal lineages, including the cardiac lineage. To extend these analyses, we used an inducible embryonic
# F+ a6 X9 ]" z: S" q# B  nstem/embryoid body system and observed that ER71 overexpression repressed cardiogenesis. Together, these studies identify ER712 V: j; Y: O# ^& H
as a critical regulator of mesodermal fate decisions that acts to specify the hematopoietic and endothelial lineages at the expense) H8 J7 v# m/ b1 Z% f; k& s) Y1 O
of cardiac lineages. This enhances our understanding of the mechanisms that govern mesodermal fate decisions early during
2 D  j& P; [$ Oembryogenesis.
3 d) b# h* h* U0 D0 OKEY WORDS: Transgenesis, Er71 (Etv2) knockout, Mouse
% ~, i- R* K) p1 c! q0 \ER71 directs mesodermal fate decisions during
1 M6 g% M; H) h3 V+ iembryogenesis
- k3 X3 \( d% u# ~: V' fTara L. Rasmussen1, Junghun Kweon1, Mackenzie A. Diekmann1, Fikru Belema-Bedada1,2, Qingfeng Song3, 8 x: s# _% K8 h7 n" A% r: J
Kathy Bowlin1, Xiaozhong Shi
" M+ w4 f! J9 l* S' j' R1, Anwarul Ferdous4, Tongbin Li4 I+ H5 _- `3 P2 e% v  O  z+ }
3, Michael Kyba1, Joseph M. Metzger1,2,
5 A8 Z' `6 s; DNaoko Koyano-Nakagawa1 and Daniel J. Garry1,
* _7 M& m( h% Y2 ^, Q& V*- X& A- J" ]2 B1 L
DEVELOPMENT4802
" K" K" l, g6 }7 q# O0 O, s  q) M4 GIn the present study, we have dissected ER71-mediated% ]5 C* ]6 V: c) V
mechanisms that govern fate determination during murine, s$ n5 l- o$ E( \* I
embryogenesis. We have generated a novel transgenic mouse! l$ G7 F3 }1 o- K1 `2 {
model in which the 3.9 kb Er71 promoter drives the EYFP reporter& H+ i, ]0 c# o: c* Y
(Er71-EYFP), and crossed it into the Er71 wild-type and mutant  ]9 A0 j4 a9 [! E" J7 }4 U% w
backgrounds. This strategy facilitates the isolation and
/ m0 L# A  F: K: Qcharacterization of cells that would normally express ER71 from
2 ^! {) i9 |6 [9 |! P  O5 GEr71 mutant embryos. In the absence of ER71, we observed the
& p" O. z7 ?* h8 q7 S7 e, gconversion of cells that would normally give rise to lateral plate
* x, O& ?1 H# _" Zmesoderm into cells that produce paraxial and cardiac mesoderm.
* N0 h! s5 c& l, MFurthermore, ER71 overexpression in vitro using an inducible. g2 L+ @& l8 X/ h7 w( K, h& w
embryonic stem cell/embryoid body system demonstrated5 e% d0 K+ {8 o! t# g( F  o5 ]
decreased cardiogenic potential. Collectively, these data
5 H( G2 |* s* V7 Pcomplement and extend our understanding of the functional role of
$ K1 t- y  [% O0 ~# LER71 to differentially promote mesodermal fate decisions during: n' y* j, A$ ]. o
embryogenesis.
7 R2 K/ c3 b2 G  q% RMATERIALS AND METHODS
0 S3 u2 _3 U. b4 ?4 ?6 ^. FGeneration of transgenic mice3 o7 j4 K* V8 K- A2 G: N
The 3.9 kb  Er71 promoter (Ferdous et al., 2009), which harbors the% f2 J! V" F; Z# j) t* W0 V
modules necessary to direct the temporal and spatial expression of ER71,4 X1 y5 O2 M' K# w: y' x
was cloned into the pEYFP-1 vector (BD Biosciences) and into a5 W  h1 B7 X& V6 W7 H
promoterless pBS-Cre-pA vector to generate the ER71-EYFP and ER71-
, w/ ]- {/ ?, P' t3 G1 h/ L* VCre constructs, respectively. Transgenic animals were generated at the4 m/ K  y3 |; Z/ ~
University of Minnesota Mouse Genetics Laboratory using standard* c/ j' i3 K( E& {5 A) l5 C
methods. Transgenic mice were screened for DNA integration by PCR.
4 E. Y8 B7 k. t% b" a. fExpression analysis of ER71-EYFP lines was performed by examining2 [3 M$ ~: \0 _1 O3 M- W
E7.0-9.5 embryos resulting from timed matings to wild-type CD1 mice
( P9 Q6 ]2 s0 F" u% j(Charles River). We also analyzed E11.0 and postnatal day (P) 3 offspring& I' I# V5 u# \0 g4 `6 s# Z
of timed matings of the ER71-Cre lines and the Rosa-EYFP line (Jackson
- _. f0 y% S; k3 t9 W( K- ELabs 006148). Founder mouse lines were crossed to the  Er71* y% Y$ O1 R; e: l- B. l* S
heterozygotes previously described (Ferdous et al., 2009). In all cases, at; L" f" P, Z7 A( M# X5 P
least three transgenic lines were examined to confirm similar temporal and
& v3 b; e8 l7 G& Sspatial expression patterns. All mice were maintained at the University of1 P. ]6 `* ?( b, _- p8 m8 k: p
Minnesota under protocols approved by the Institutional Animal Care and# n- L) P: O( t- L
Use Committee and Research Animal Resources.* m, P' i3 i9 |! k
FACS analysis8 Y  F$ |( U+ n, ?
Embryos from timed pregnant females were harvested at specified stages.# @) X; V% J& ^; _7 r
Embryos were separated from yolk sacs, which were used for genotyping,: _7 T6 y5 E# K4 q* J8 V& n
and imaged on a Zeiss Axio Observer Z1 inverted microscope prior to  L1 h; q# ]& S1 o- J5 N; l
dissociation. Embryos between E7.5 and E9.5 were digested in 30-50 l# r  G4 H4 x: J& x; u0 b
0.25% trypsin plus EDTA at 37°C. Digestion was arrested with 500 l
- _: n/ s+ X$ A) MDMEM containing 10% fetal bovine serum (FBS). Cells were pelleted at
7 {! ?& y' B1 n3 T7 X4°C (1600  g), resuspended in PBS and passed through a 70  m cell8 Z  `( L& {- P" |4 p
strainer. Cells were incubated with antibody cocktails for 30 minutes,0 y5 h8 ~* @8 @7 t/ B0 n7 C
washed, and resuspended in PBS. Cells were analyzed or sorted using a
- {0 z2 @* U  v6 \5 _: `0 iFACSAria (BD Biosciences). Various combinations of antibodies (1:1000); P1 g. x3 N; z1 o7 G! W/ P
were used, including Flk1-APC (eBiosciences 17-5821), Pdgfra-PE
( x" U0 J1 b$ n& Y(eBiosciences 12-1401), CD31-PECy7 (eBiosciences 25-0311), CD34-PE
  r. H% f0 [% C# l(BD Pharmingen 551387), cKit-APC (eBiosciences 17-1171), CD41-" C5 y) ]6 ~! V: o& n& }2 g7 _
PECy7 (eBiosciences 25-0411), CD45-PE (BD Pharmingen 553081)," A7 [( F" e8 D9 G2 _
CD45-PECy7 (eBiosciences 25-0451-81), and Ter119-APC (BD
0 I/ K4 W6 s: E, m( aPharmingen 561033) antibodies.$ E1 h. Z9 {8 Q
Transcriptome analysis9 V+ F$ a9 {$ f3 y% S; ~* ^2 R9 H
Total RNA was isolated from 1000-5000 FACS sorted cells in TRIzol( `4 q0 c5 W1 A4 f% [3 T
(Invitrogen) using the PureLink Mini RNA system (Ambion). RNA was
. b) G" M4 K* K4 E4 I! isubjected to two rounds of amplification using the MessageAmp II aRNA& F  u% L* P/ p0 g! g; R: _
Amplification Kit (Ambion) and then labeled using the MessageAmp II-
0 F; g6 e$ k8 D& {% X: `/ [Biotin Enhanced Kit (Ambion) according to manufacturer’s protocols.5 K- c! R: E! a1 `4 K: y! M- j
Amplified RNAs were hybridized to Affymetrix mouse 430 2.0 full genome" r/ p6 O1 ?( J0 v3 D
array chips at the BioMedical Genomics Center of the University of4 i+ s5 I& R: s# k
Minnesota. The CEL data files produced from Affymetrix array experiments
7 F) {' M5 Y7 w7 E0 `6 Iwere processed using the affy package included in Bioconductor. The robust1 p) ]: H: ?. H' x& Y' K0 n
multi-array (RMA) method (Irizarry et al., 2003) was used to perform data( n2 ]7 \  h- T. `" C* `
normalization, background correction and expression quantification. The3 Y% @2 F# s. M
limma package (Smyth, 2005) was used to identify differentially expressed
1 z$ }0 y; H7 H9 m. A9 w5 kgenes by ANOVA analysis, and false discovery rate (FDR) values were0 ^. Y! _& h* G$ m6 R( j
calculated using the Benjamini-Hochberg method (Benjamini and Hochberg,1 v0 I8 l4 L2 R$ H9 ^% y
1995). Average linkage hierarchical clustering analysis was performed using7 D3 y  I$ i, r' Z* W2 ?
the cluster program (de Hoon et al., 2004), with uncentered Pearson’s1 i- W  k1 M7 |$ z; B  ?* h
correlation coefficient used to define pairwise similarity in gene expression.
. B. E( I3 {  n3 OGenes annotated with the gene ontology (GO) term ‘heart development’
2 Z. K2 A8 c6 E4 c* W: [(GO:0007507) were downloaded with AmiGO tool (Carbon et al., 2009) and
7 u: Z" ~: l6 p, g7 ~used in producing the heatmaps. Microarray data is accessible in Gene9 |) }* B2 I  k6 S
Expression Omnibus (series GSE32223).7 q  F) S% v5 m5 I3 }6 u2 _
Quantitative RT-PCR$ m$ @) g" }) Z% g
Total RNA was isolated from 1000-5000 FACS sorted cells or embryoid
" d% _; k- I' O3 i% L/ Gbody cells in TRIzol (Invitrogen) using the PureLink Mini RNA system.9 \9 m/ X; Y" V
RNA from FACS sorted cells was subjected to two rounds of amplification3 k; s" U  j$ j6 Q0 {+ r
as described above, but left unlabeled. cDNA was made using random
9 v* `. z4 I) E& b- f5 N$ a( mhexamers and transcript levels were determined using VIC-labeled (Gapdh,
: z! u- {0 @* S( Z2 S& N0 ?4352339E) or FAM-labeled (Er71, mm01176581_g1;  Scl,
) p% _1 B. W1 C! C5 r0 o3 tmm01187033_m1; Cdh5, mm00486938_m1; Gata4, mm00484689_m1;
3 f8 K3 p% P' R6 ^7 Z' _! Y& [Tbx5, mm00803518_m1; Tnnt2, mm00441922_m1) TaqMan probe sets
9 [( `. B: ^- _(Applied Biosystems).
5 J8 Q: s% `+ Y3 M2 z  }6 cEmbryoid body differentiation and ER71 overexpression
1 ?' z2 D5 c1 F& dDoxycycline-dependent ER71-overexpressing mouse embryonic stem& a1 Y. [3 i1 i. J3 I, `
(mES) cells were generated using an inducible cassette exchange strategy3 I! t0 u) X& e3 [" ^% |8 R! ^
(Iacovino et al., 2009). In this system, ER71 tagged with a C-terminal HA! o$ \5 ?: b: s% @
epitope was overexpressed in response to 0.5 g doxycycline. To mimic
8 h: h* D' q% Y7 S  Yearly embryonic development, the mES cells were differentiated into
( h$ \4 E3 G( j9 ]8 }) u" uembryoid bodies (EBs) using mesodermal differentiation media [1.5% FBS$ [+ F4 a  Y1 ]8 Q  p" P6 i% k/ b8 a6 x
(Stem Cell Technology), 1 penicillin/streptomycin, 1 GlutaMAX
5 G* [" ^7 O: v1 @& I(Gibco), 100 g/ml Fe-saturated transferrin, 450 mM monothioglycerol, 50
: p) a% [; h& k, E* L5 X9 Ig/ml ascorbic acid in IMDM (Invitrogen)] (Kennedy et al., 1997). ER71
6 l: E; i# }- H+ Mwas induced on day 3 after initiating differentiation and maintained through+ u+ q; u/ j# Z5 t7 W
day 10 by supplementing the differentiation media with doxycycline. On
) v' B) w. u! p/ c/ _6 E! [day 10, we fixed the EBs with 4% paraformaldehyde (PFA) and prepared/ n  Y4 X; `  x) S- ?# d- v
cryosections. We stained adjacent sections with Hematoxylin and Eosin( ?; h' m( L2 j3 X
using a standard protocol and performed immunostaining with mouse anti-
! ~& u4 u9 _6 Z2 YTnT serum (1:200, DSHB clone CT3). We assayed the TnT-expressing area5 T, }  B2 n# L, D1 v
of each EB using ImageJ software (NIH) and calculated the ratio of the* {" i8 Q6 A( m0 S7 F
positive area to the total area from 33 sections of uninduced EBs and 42* w' k: e5 E2 x1 a
sections of induced EBs. EBs were placed on laminin-coated coverslips' O5 d5 k7 j1 h6 G" i) W( H
and stimulated at 1 Hz. Edge detection (Ionoptix, Milton, MA, USA) was
. ~5 w4 s: I& |" Z0 M. G" Wused to measure contractility of intact EBs.
' {4 h1 X( b# ^; Y9 vImmunohistochemical analysis
- k. _  [' [  ~Stage-specific embryos were harvested from time-mated pregnant females.4 O! H) J; [. w) R: a# r' ?
For paraffin sectioning, embryos were fixed for 4-8 hours at 4°C in 4%0 t3 I9 z! `% {: J2 z7 |6 }! i+ f
PFA and embedded. For cryosectioning, embryos were fixed for 1 hour at- i# ]6 O$ t# W
4°C in 4% PFA and embedded in OCT compound (Sakura). Sections were- j3 R3 D0 ]+ Y, i0 ~- @& u6 v
blocked with immunohistochemical diluent (2% normal donkey serum, 1%- s* q1 V1 u; ]" U0 N# f
bovine serum albumin, 0.3% Triton X-100, 0.02% sodium azide in PBS,$ a( a% b7 L: J8 t5 l7 e) _
pH 7.3) at room temperature and incubated overnight at 4°C with primary5 y' l: g2 v, O1 B1 `) ]* H6 y9 Z
antibodies, including chicken anti-GFP (1:500, Abcam ab13970), rabbit& o: y7 o+ J' c8 g% w
anti-desmin (1:200, Novus Biologicals NB120-15200), rat anti-Tie2 (1:100,5 d8 T! X0 F( i2 P- u4 Z. L
eBiosciences 13-5987-81), rat anti-Pdgfra (1:200, eBiosciences 12-1401-- Y$ \2 c9 C6 z
81), goat anti-Nkx2-5 (1:500, Santa Cruz SC-8697) and anti-CD41 (1:100,/ u; ]: \% O0 @2 ]8 P( x) j
BD Pharmingen 550274), anti-Cdh5 (1:100, BD Pharmingen 55289), anti-
  ^$ V9 c. y  B# U7 y+ q/ ?CD31 (1:200, BD Pharmingen 550274), anti-Gata1 (1:100, Santa Cruz SC6 ], O% k( s/ z0 ]; R( E0 B! t
265X) and anti-troponin T (1:200, DSHB CT3) sera. Slides were washed3 r/ _$ z3 q, e
and incubated with combinations of secondary antibodies (1:200) including
0 j* J4 g3 U6 j" w+ y) Eanti-chicken Dylight 488, anti-rabbit Cy3, anti-mouse Cy3, anti-rat Cy3
2 f8 H  ~& c6 }; d" @and anti-goat Dylight 549 (Jackson ImmunoResearch Laboratories).
) ?+ d  x6 M% j! ?2 jResults were imaged on a Zeiss Axio Imager M1 upright microscope or a
6 {' l9 G2 R7 S& q7 c2 DZeiss LSM 510 Meta confocal microscope.: B/ N( Q7 j3 I, ?  d! x
Statistical analysis1 J7 P9 `: l( E, _
Data represent the average of at least three replicates and s.e.m.
5 D% X2 s( b1 V+ l4 \$ vSignificance was tested by the Kruskal-Wallis test with the Dunn multiple
6 ?$ B4 b, I+ P) vcomparison test for more than two groups; for example, when comparing0 {) q4 o/ U4 U  O; e% p, i3 |8 K2 Z
RESEARCH ARTICLE Development 138 (21)- |9 I. M. R( n3 W. ]4 |4 g
DEVELOPMENTwild type, heterozygous and homozygous mutants. Significance was tested5 ]4 [( R  x1 d1 z* k) c- T
by the Mann-Whitney U test for two groups. Analyses were performed
/ h+ i6 r5 ^3 z/ ]using Prism5 software (GraphPad).
  y7 s$ a& L  _& KRESULTS
4 I' R, c6 W7 V. k. u! JExpression analysis of the ER71-EYFP reporter. Q& b$ U& ~* ^" z7 H; K# {# s
Initial analysis of ER71 expression in the developing mouse
: i: y& }( {9 G: zembryo was reported previously (Ferdous et al., 2009; Lee et al.,$ v6 R9 B# e9 \/ n* |" G8 Q
2008). To further examine its potential role in cardiovascular- Q! Y$ V3 z$ |( b& U# H4 T
development, we performed a detailed expression analysis of ER71
* s3 N% N- g+ J! Kfrom E7.0 to E9.5, when Er71 mRNA is expressed (Ferdous et al.,2 m2 @) M' r+ q0 B4 O6 X& v* w
2009). None of the commercially available ER71 antibodies% I' v, d- ^  S" F7 w
detected the endogenous protein, so we utilized an Er71 transgenic
+ y, v" |' m! M+ k' ~mouse driving an enhanced yellow fluorescent protein (EYFP)
6 l) |5 V. \3 t8 U: Greporter. The 3.9 kb region upstream of the Er71 transcription start9 o: Y' c1 A7 I) [
site was fused to the  EYFP reporter (Fig. 1A). This promoter3 [  Z) C2 P+ s, v5 _
fragment was previously shown to drive reporter expression that0 W- W4 |% p9 X
recapitulated endogenous ER71 expression (Ferdous et al., 2009).
: s7 ^9 K( g0 L" e3 w7 L8 uFour founder lines were generated with offspring embryos that
' V. c% v: b1 mshowed the same expression pattern.
8 F+ i  ]& E* o' n# s4 ~2 OTo examine the expression pattern of the EYFP reporter, we( R+ `* m7 O6 ]7 K. j
compared its expression to that of the angiopoietin 1 receptor Tie2,, M6 P9 Z0 W* I3 _3 Q9 v
which marks endothelial cells in mice and humans (Dumont et al.,
% S* t6 m. ]  t' v; e! p% i1992; Sarb et al., 2010; Schlaeger et al., 1997; Schnurch and Risau,! t( \+ S% r/ a9 P9 i- r
1993). The EYFP reporter (representing ER71 expression) was
5 A; L6 U4 r* k+ Jexpressed as early as the early to mid gastrulation stage (E7.0; Fig.0 r1 G( e! z# e4 {" |  h) `
1B, bracket). At this stage, reporter expression was limited to the
8 v# b1 k1 y& j1 Y* b# l: e3 Lextra-embryonic mesoderm (Fig. 1C) and showed co-expression
9 {8 x" f/ ]# N. U* C4803 RESEARCH ARTICLE ER71 governs progenitor fates
$ `; D" F' J" l7 e+ wFig. 1. The transgenic ER71-3 X8 O* \  b# ]2 @& e9 k
EYFP reporter is expressed
; Q1 [; r. q/ s1 Y- Fduring embryogenesis.1 ?  g; i+ u1 `' z. q/ N7 s. g
(A)The transgenic Er71-EYFP; ^: f4 N1 x6 |* B) j( H" P
construct used in these analysis.. k) q% g, K- Y
(B-Q)Expression analysis of mouse
2 j' F2 v9 N! Oembryos between E7.0 and E9.5.
* `; q6 I5 Y6 ]EYFP protein fluorescence (green)0 S5 T7 i  C* d- m' u8 R) Z$ _
is shown in whole-mount images- X5 R4 s" W/ P2 {  j: g. J
(B,D,F,J,K,N). Sections were0 K- N) L# w6 v0 W& {
stained with anti-GFP (green),) L4 f, j5 {2 C$ X* z
anti-Tie2 (red), anti-Nkx2-5 (red)" M. R. i' Z$ i# m- G3 y, Z0 U9 J, r1 H
or anti-Pdgfra (red) antibody as
: t5 x# o! |7 c7 k( uindicated. DAPI nuclear staining is1 ~6 q; p! v& p4 t' C1 Q! `
shown in blue. Yellow indicates
/ ^8 K) X: v  T* a0 M. X# @overlap of green and red1 w$ ]( A6 q( x# U9 o8 B
channels. (B-C) Early to mid% B6 f; I- v, C! h4 s  X& k
streak stage, (D-E) early bud) E0 b, P$ A) ]" X: S4 r, ^
stage, (F-I) early head-fold stage,+ V, G  g- N1 q8 Y/ w, G* Z
(J-M) E8.5, (N-Q) E9.5; embryos% ~. O) j% ^3 e: \) R# l
were staged according to Downs
6 G/ O) I$ v  k3 b$ Tand Davies (Downs and Davies,
2 d' N- A* G" m" s1 k! k1993). Boxed regions are shown0 ~( |7 z; n3 T8 z3 i3 f: d, q" C
at higher magnification; planes of& q1 a; l; c" ^& }' ]
sections are indicated. See first
5 ]/ t# a2 \  d" p* Y) P7 Vsection of the Results for a
, S' h" W# R! s; G& s0 L. m  cdescription of arrows, arrowheads/ k! F2 }* O. t
and other labels. al, allantois; ba,& q7 H% ]) A4 U
branchial arch; bi, blood island;8 I9 U: m2 h/ `; M% {
cc, cardiac crescent; cv, cardinal
. z' ]: I- C* q4 v; l1 {vein; da, dorsal artery; ec,9 {* h- N  F- m$ r2 r& H
endocardium; h, heart; hf, head& D( K2 H# e3 _) ~
fold; np, neural plate; nt, neural
9 C6 w8 ~7 n2 stube; ph, pharynx; pm, paraxial
3 Y) v1 i9 u! o! l0 {mesoderm; s, somite; ys, yolk sac.
  S4 \' x+ O/ CScale bars: 200m; 50m in
% R4 N9 e1 Q) W; l- xenlargements.
* ~$ H2 [- V4 O# b6 h* A( tDEVELOPMENT4804! c3 C8 Z5 j0 e" i
with Tie2 in the primitive blood islands (Fig. 1C,C, arrows) (Ema
& w# t; M" j) v7 A' J# E. v- J7 i/ t: Set al., 2006b). EYFP was also weakly expressed in the mesothelial
+ g8 l2 P2 K+ @$ ]( Z4 p2 Qlayer of the yolk sac, but Tie2 was absent in this non-endothelial( |) G! z0 v9 q( U1 d
cell population (Fig. 1C,C, arrowheads). At E7.5, continued
! F) J5 q9 L" p8 d, K" H! }" Hexpression of the EYFP reporter was observed in the extra-, J9 z  W* k/ K6 [, @
embryonic mesoderm (Fig. 1D, bracket). In addition, scattered
9 K8 U6 N" b/ n/ s$ a% @: h: cEYFP+ cells were observed in the lateral plate mesoderm (Fig. 1D," V! W; ]( g, y  |6 Y
arrows). Transverse sections showed that these scattered cells co-+ x2 W, b; M. |7 e
expressed Tie2 and most likely represent endothelial progenitors
* I0 K0 X/ _/ I" x) n1 W: r(Fig. 1E,E,E), although Tie2 expression has also been identified
5 \. L  z( V- \) Z7 kin a subset of cells committed to the hematopoietic lineage
' v( ?0 T: \) p! ]2 f/ w(Kisanuki et al., 2001; Li et al., 2005).# @$ J% u+ S% M, c  r$ F
At E7.75, the EYFP signal localized to discrete structures6 r$ a7 U4 i+ J
including the cardiac crescent and the progenitors of the dorsal aortae+ d' X; G  I9 `1 ^  @% ]; _
(Fig. 1F, cc, arrows). We examined the expression in the cardiac
& }( D; X, o- d* j1 Z+ Xcrescent and paraxial mesoderm in detail using Nkx2-5 and Pdgfra2 U6 t3 E3 O( S) _7 k* a1 I
antibodies (Fig. 1G-I). We observed that the EYFP signal overlapped3 a, h0 R, N- T7 `: L+ |
extensively with Tie2 within the cardiac crescent (Fig. 1G,G).
( n8 j. z4 H" O" iThese EYFP+ cells are presumably endocardial progenitors (Misfeldt3 m5 ~% W; C! i4 r; P+ J
et al., 2009). By contrast, EYFP+ cells either weakly expressed or did
$ d3 S: s5 D4 u1 e; d) B* |not express Nkx2-5 (Fig. 1H,H, arrows and arrowheads,9 T- j' X6 {. B
respectively). We did not observe strong co-expression of Nkx2-5: [1 D( t. W; u2 e5 D
and EYFP. Pdgfra is strongly expressed in paraxial mesoderm and
* H- y" v) m: x. d+ r6 i: Ecardiac mesoderm (Fig. 1I, pm and asterisk). Double. w0 o2 G4 y! L% z) C& m6 [) N$ C
immunohistochemical labeling of EYFP and Pdgfra demonstrated
! y6 Y& R; K: X0 t$ ?- o0 ^( i2 a2 lthat most cells either did not co-express these markers or weakly
4 Z& ]4 A0 u" lexpressed Pdgfra (Fig. 1I,I,I, arrowheads and arrows, respectively),
' S; D+ a9 w8 X0 U! Zwhich is consistent with previous reports that the hemogenic lineage
# }- c8 _6 I" _9 F6 f; O/ `# xis segregated from the paraxial mesoderm early during gastrulation) u" H9 ~' F6 C0 `) f7 {4 S) s
(Kataoka et al., 1997; Takakura et al., 1997).
2 I' J, f' Y* Y/ s) \2 e1 e" cAt E8.5 and E9.5, we observed localization of the EYFP signal to
; {8 ~. X- Y* o" ^  ~vascular structures throughout the embryo proper (Fig. 1J,N; arrows0 N8 |% J6 ^) y' b( @1 {0 `: r+ @( J
point to the dorsal aorta and arrowheads indicate intersomitic vessels)
2 t& W" C. D. {# X) @and yolk sac (Fig. 1K). Transverse sections of the embryos (Fig.
8 `2 N3 e" Q+ o6 e6 }9 F1L,M,O,P) showed localized expression in the vessel structures# U$ \8 @) O5 e6 O
including dorsal aorta, cardinal vein, intersomitic vessels7 }* [6 D- P$ D0 W$ i
(arrowheads in Fig. 1M) and the endocardium (arrowheads in Fig.- f: B1 D: P7 t+ \! p4 I4 o" p. z
1L). The expression of EYFP largely overlapped with that of Tie2,
4 x7 q5 y% W" D  M6 n8 E  Aindicating that the  Er71 promoter is active in early embryonic
: V0 n; `( q. @# h, s/ L) d$ Wendothelial and hematopoietic cells (Fig. 1O-P). We also observed% v5 b! l% ]$ M9 `  Q+ L1 K
that EYFP was co-expressed with the hematopoietic transcription* {8 ~& K+ C* V2 i6 ~* S+ |; M
factor Gata1, the cell surface marker of hematopoietic progenitors
' J  X' t4 C) _$ t. hCD41 (also known as Itga2b), the marker of hematopoietic and; C/ l6 \/ \5 Y
endothelial lineages Cdh5, and with the primarily endothelium-
; X- N, u1 c7 T0 L+ x6 k6 k$ w8 Tspecific cell surface marker CD31 (also known as Pecam1)# ^3 ~- t; V( \0 K; I8 J* d
(supplementary material Fig. S1). By E9.5, Nkx2-5 was localized to6 ]1 w0 D3 l2 S9 K9 n9 n$ N# `" x
the myocardial layer of the heart and did not overlap with EYFP' x$ d  C. g$ b/ y
expression (Fig. 1Q, arrowheads; compare with 1O).2 S- b* f% J1 |# e& v6 Z
Reporter expression is mislocalized in the Er71
# Z7 w$ H$ H, Z7 Emutant
1 d1 V5 F" ?2 Y7 z( t+ ~' yIn the Er71 mutant, the hematopoietic and endothelial lineages are
3 v: Y+ Z* i8 B! F' S$ j7 G# }7 zabsent. However, no changes were observed in cellular
& H3 {0 c3 I5 q. R% o5 k8 ?' M% {proliferation or apoptosis in the Er71 mutant embryo (Ferdous et
1 F) k: ^3 `) m' L& y$ @al., 2009). Therefore, we crossed the ER71-EYFP reporter line into# g) r& u6 a- s2 w6 L
the Er71 mutant background to define and characterize the cells2 q' a3 N4 \! U$ ?* n$ v- s
that should give rise to these lineages (Fig. 2). In the E7.75 wild-
  c5 a7 A4 q% X) X$ g# {type embryo, EYFP expression was observed throughout the
+ i, q" m; P* U/ o/ x! t' rcardiac crescent, the dorsal aortae and the extra-embryonic  Y. [9 y2 S! y2 v* X6 H4 Y( n
mesoderm (Fig. 2A). By contrast, in the E7.75 mutant embryo the2 }( D; x  C6 p# j9 o4 s- I; R
expression pattern was less definitive. EYFP-positive cells were
2 U* V; }) `2 r! ]found in the extra-embryonic tissue; however, expression of EYFP, b0 h: s( R7 l* C3 }1 Y, d; u
within the embryo proper was mislocalized (Fig. 2B, arrow). EYFP
' F5 j' A) H8 Iexpression appeared diffuse throughout the cardiac crescent (Fig.4 e. ], O* p) g" s5 \- s
2B, asterisk). In the wild-type embryo at E8.0, EYFP expression. Y5 a( v: g; w! J1 M
was observed specifically in the dorsal aortae, but not on the
! _# R% w2 E/ u9 E0 [9 dperiphery of the embryo (Fig. 2C, arrowheads). EYFP expression
) `1 |* ^8 G; rwas also observed in the presumptive endocardium within the
6 R' J7 n' ?% x8 X$ k) [& p  _% olinear heart tube (Fig. 2C). By contrast, the Er71 mutant embryos
$ x. X. f7 r/ h1 dexpressed EYFP only at the periphery of the embryo, which is
- h( y6 m) t" e: b. x! |/ s+ hlikely to represent paraxial mesoderm (Fig. 2D).+ L* m. K, m2 [2 M
Immunohistochemical analysis of ER71-EYFP and Pdgfra, a
3 t5 X" ~; W1 q! c; d5 _8 Y$ Nmarker of paraxial mesoderm, expression in E8.5 wild-type and
" ^/ [$ M0 v6 @/ Q6 b; S- A5 mmutant embryos demonstrates that EYFP-positive cells are+ `$ g) {$ X6 G7 u$ ^( `& ^- I
interspersed within the Pdgfra-positive mesoderm (supplementary% z8 X# Q( L* u0 M( K
material Fig. S2). FACS profiling showed that the frequency of
8 ?4 P- R6 n* [! s+ d' t; ]- gEYFP+ cells was increased in the Er71 mutant compared with the
7 Y+ C3 W8 I9 b9 M* p% V8 f- Zwild-type control at E8.0 (Fig. 2G-I), but not at E7.75 (Fig. 2E,F,I).
( e  c! z. Z4 oThe apparent increase in the percentage of EYFP+ cells could be" n$ I! X" x7 f2 J; U
due to a reduction in the total number of cells without a change in2 b& l+ W1 J$ n' o" D8 O
the number of EYFP+ cells, as cell viability can be reduced by a' V& k0 H' _3 o
lack of vascularization. However, we ruled out this possibility as6 o, G% e3 t- @# q+ R! Z: P
we also observed a doubling in the absolute number of EYFP+ cells
& l+ a) A0 k( P( U7 v  Oin E8.0  Er71 mutant embryos as compared with wild-type+ a7 N% q9 e+ Y. j0 ~
littermates (Fig. 2J).1 v+ i; A( i  _4 U3 K3 P4 |$ J. }. J2 f
These analyses demonstrated that cells that expressed the ER71! N$ j  Y8 S, o4 v5 C4 r5 t
reporter were not only present in the Er71 mutant embryo, but were
. i+ Z2 o( f5 ]0 {/ S: @also expanded in number. Since the Er71 mutant embryo lacks6 i: m& p, o9 T7 k# ^3 d8 C+ F
differentiated endothelial and hematopoietic lineages, we examined
3 \- D$ n& S$ ywhether these EYFP+ cells were arrested progenitors or cells& Z5 y4 k1 x$ v
redirected to other lineages. We used FACS analysis to examine the
3 K, Q8 L) v( |/ ?cell surface markers of the EYFP+ cells in the Er71 mutant and: ~+ C, `, h) M0 J; i/ b; @* Z7 H. s
wild-type backgrounds. Previous studies have established that& C  t: ^. |! d
Pdgfra is expressed in the primitive streak at E7.0, but is restricted
  L4 M2 F8 F$ `+ t6 mto the paraxial mesoderm at the early head-fold stages (Takakura
. U6 }- y' r' Z6 o5 w' c$ \, Bet al., 1997). Flk1 is expressed more broadly in mesodermal
- ]  q: f" |" }. R+ Z! K* Dprecursors (Ema et al., 2006a; Motoike et al., 2003), including the* Y- b6 r, M. Q! N$ [, s, v
posterior portion of the primitive streak. Flk1+/Pdgfra–9 O% S- m& r6 j
cells mark7 E+ p: _$ _0 S& a3 a9 T. `' t! B! E
lateral plate mesoderm that will give rise to the endothelial and  h0 h: _2 b& l# N$ ~* r3 h
hematopoietic lineages and Flk1–
& b& \4 N7 f: t+ v& Q; B/Pdgfra+ cells mark the paraxial6 E' e# f3 T+ q3 l
mesoderm. Flk1 and Pdgfra are known to be co-expressed in the5 j7 V" R: j% F3 s( d% q
cardiac crescent (Kataoka et al., 1997) and in cardiac progenitors4 P4 B: a. v. R5 ^; g( w
of embryoid bodies (EBs) (Bondue et al., 2011; Kattman et al.,6 d* v+ u0 P/ z! k& q! H; J" l
2006). In the present study, the frequency of Flk1+ cells within the  s% H" T. r# G# K8 Q
EYFP+ population was significantly reduced at E7.75 and E8.0
5 }: \( x% t7 H; v(Fig. 3A,B,D,F). CD41 (Fig. 3D,E) and CD34 (Fig. 3E,F)
* s) _/ _  _7 y7 O, h" ]5 eexpression was essentially absent at E8.0 in the EYFP+ cells of the9 F' x% ?' B& P& n7 Y8 p
Er71 mutant. These results show that the lateral plate mesoderm% A/ u3 e' _3 a( \& c
lineage and its derivatives, i.e. the hematopoietic and endothelial
9 `  F5 ~' [7 M8 Y) S5 t: g7 m3 Q# qlineages, are reduced in the Er71 mutant.1 n. X) M- t7 P& G
In order to assess which lineages are expressing ER71-EYFP, we
7 X6 [+ G4 E, hanalyzed the EYFP+ cells using Flk1 and Pdgfra antibodies.  ]/ S; e9 c$ O3 _$ l3 }0 |3 ^
Concurrent with the decrease of Flk1 expression at E7.75 and E8.0,1 \; ?" x" j! g! v
we observed an increase in the frequency of EYFP+ cells that
. D# A, C9 x: T* d5 F; O" R8 o9 zexpress Pdgfra (Fig. 3A,B). This correlated with a significant. G: \0 ], v) U7 N9 J
increase of Pdgfra single-positive cells at E7.75 and a significant
% D: h6 q* Q9 ], {# G! \8 nincrease of Flk1+/Pdgfra+ cells at E8.0 (Fig. 3A,C). There was also
1 }  y3 \+ P# M9 Z+ ~* aa trend toward expansion of Pdgfra single-positive cells within the
! t3 D. v1 r7 g  F( I6 j( UEYFP+ population at E8.0 (Fig. 3A,C). To support these& F# i/ j: y. w! n) c% J; `/ k
observations, we used immunohistochemistry to analyze the EYFP, T/ L" ?) \* L  q. H2 |
expression patterns. In wild-type embryos, EYFP expression is/ U& n: X, k7 N( e1 a) s
distinct from Pdgfra+ paraxial mesoderm. A select number of! g- r) ?4 }) I! K' p
EYFP-positive cells are found within this region; however, these
9 ~4 E9 p# r% t( m1 ?2 i5 ^9 acells are Pdgfra–
+ K. M) l, b  L" r2 E4 Y(supplementary material Fig. S2A,B). In mutant3 f7 M  h5 o+ a* j/ L5 f
RESEARCH ARTICLE Development 138 (21)) k" W6 o$ _, }1 V" `2 e" ?
DEVELOPMENTembryos, many EYFP+ cells are found within the Pdgfra+ paraxial3 r0 d6 o) g/ f' F
mesoderm. Some of these cells are double positive for EYFP and) Y! ^& A4 m/ Q0 G' k
Pdgfra (supplementary material Fig. S2C,D). Likewise, in wild-
0 T, H: c# |" E" H' A* ]$ x5 g. ~type embryos, EYFP expression is distinct from troponin T (TnT)$ u/ G- ]' A3 P7 b4 _6 X
+
7 L' z( y, h+ V9 p: \8 Ucardiomyocytes (supplementary material Fig. S2E). However, in
+ t- q7 ?, x  A( a% [, {mutant embryos double-positive cells are found (supplementary+ d, s  d8 p' [0 l* o  ]
material Fig. S2F,G, arrows). One interpretation of these data is
, \* c3 B5 }3 a% o1 E1 H7 mthat, in the absence of ER71, the EYFP+ progenitor cells
$ t- G* l6 N1 Z3 O* @6 odifferentiate towards the paraxial (Flk1–
. ~+ [9 _/ E, F( e+ ]/Pdgfra+) and cardiac
/ ?" T/ w+ Q$ Y& |; |0 _& g' imesodermal (Flk1+/Pdgfra+) lineages at the expense of the lateral, ^& G- Z' x! h+ t+ Z. _
plate/hemangiogenic mesodermal (Flk1+/Pdgfra–" ?9 t" {7 [- D/ M* m
) lineage.! A* v5 Y! _& f8 L9 @
An alternative explanation of these results is that EYFP is- c1 N1 Q1 V$ ]0 X# T7 U
expressed ectopically in cardiac (Flk1+/Pdgfra+) and paraxial
' S4 E6 p4 K; f" y- ~8 f5 |# P(Flk1–6 t$ ]+ |: }! j( v
/Pdgfra+) mesodermal populations in the absence of ER71.  p$ X3 T  J1 l2 i: K, j
If this were the case, we would expect the cardiac and paraxial' J/ }/ s  j0 f" w" Y# }
mesodermal populations within the EYFP–# E3 R$ b& Y% z" o& U- s* m
gate to decrease in
: \" x* ]$ x1 qthe mutant embryos because these cells expressed EYFP and
! h& \$ [! J$ e5 {3 `: _, t& t! C9 _would be included in the EYFP+ gate. Furthermore, we would
2 {4 D( @, U- R0 I1 d+ h. w7 _expect no change in the overall representation of these markers, l# \9 I( m! q
in the unfractionated (the sum of EYFP+ and EYFP–
& K4 x5 f* [' O* ^/ a0 q" j) gate. To
) s9 }9 q) v7 a4 Kexamine this possibility, we analyzed unfractionated cells from/ n) [; P8 i  g! x8 }
the whole embryo as well as EYFP–
: V3 m! `9 V$ y, Vfractionated cells. In the  D, B/ {2 r: T& M9 Y1 e
EYFP–
& ^  S1 H1 Z% C: Ufraction no changes were observed in the mesodermal0 D: d+ C3 |6 D# n) p; f
populations at E7.75 (supplementary material Fig. S3C,D) and5 g6 W7 @$ R7 l9 w5 x( z) f
E8.0 (supplementary material Fig. S3G,H). Analysis of the* Y* K8 @7 }. s, }
whole population (the sum of EYFP–8 O# P5 k) ?1 m
and EYFP+ gates) showed8 y0 N6 Q- T* d& c
no change in cardiac or paraxial populations at E7.75
$ y/ H; D5 H& S8 k" m(supplementary material Fig. S3A,B); but at E8.0, we observed& _7 S, w% r5 ]* l' x
a small, but reproducible, increase in the cardiac mesoderm" t2 }, p* k+ T7 P% f
(Flk1+/Pdgfra+) (supplementary material Fig. S3E,F). We predict) ~3 [- Z4 r& p- |7 }) `2 g
that the increase in cardiac mesoderm in the whole embryo is
& h+ \5 X, I3 H. m6 S6 Ysmall because the EYFP+ population is a minor fraction of the
5 Z" b0 z9 j+ Jentire embryo.+ d2 i6 \. \( t2 c& L1 K
Collectively, our results support the model that, in the Er71! i" b7 r* N! W- ?
mutant background, EYFP+ cells differentiate to the cardiac( k% Z2 u/ B6 J' z: t5 x
mesoderm lineage and contribute to the increase in cardiac  w1 h( N# I5 Y1 w
mesoderm (Flk1+/Pdgfra+) markers, rather than cardiomyocytes or6 J5 i' Y# |$ s& u$ _% t
cardiac progenitors ectopically expressing EYFP.5 ?* F% f, W9 u, m6 n" f
4805 RESEARCH ARTICLE ER71 governs progenitor fates2 `& w: w/ Q& S
Fig. 2. The ER71 reporter is misexpressed in Er71 mutant embryos. (A-H)EYFP expression in Er71 wild type (A,C,E,G) and mutant (B,D,F,H)
: S, T- c8 O* a" Cmouse embryos at E7.75 (A,B,E,F) and E8.0 (C,D,G,H). Asterisks indicate the cardiac crescent (A,B) or forming linear heart tube (C,D). Arrowheads
. g: b0 z9 v6 b  i7 M. m8 j. Aindicate the bilateral dorsal aortae (C,D) or its progenitors (A,B). Arrows point to regions in which EYFP is misexpressed in the mutant (A-D).* z) I3 ]; p/ j& k+ {
Representative FACS profiles of individual embryos (E-H) show the percentage of EYFP positive cells per embryo. Scale bars: 200m. (I)The) [9 m( P2 h! b, r$ G# H
percentage of EYFP+ cells for all experiments. (J)The average number of EYFP+ cells sorted per embryo. WT, wild type; HET, Er71 heterozygote; MT,
6 ]- w- A# Q( Z: ~, K) k) Vhomozygous Er71 mutant. ***, P<0.001. Error bars indicate s.e.m.5 \, m1 K" O" D" T; @, O
DEVELOPMENT48061 V, T6 _, @) }  F( [, T. f
Cardiac and skeletal muscle genes are' z: `  Y2 i# b. X
upregulated in ER71-EYFP+ cells in Er71 mutant7 N1 [/ L7 p7 {' P6 D9 K$ \# y2 o: s
embryos
" t5 Z) J. Q% g8 {9 nTo further examine whether the EYFP+ cells in the absence of
( O! m0 m! U7 X4 j2 }( c: ^ER71 were redirected to other mesodermal lineages, we performed
; L  s# y- B* M6 n  {+ Qa transcriptome analysis. We used an Affymetrix microarray. M& Q. h4 r5 h2 R2 s7 C% C
platform and examined the EYFP-positive and EYFP-negative& j8 z2 Q% `2 e0 e4 c  j& d7 O
cells from wild-type and Er71 mutant littermate embryos. Genes* W' W+ {& {* Q" A# u; E- K
that were significantly dysregulated were filtered based on the false
- L* C. L5 C% _) [1 K" Zdiscovery rate (FDR<0.01 for EYFP+ versus EYFP–
1 a7 }3 v/ N* a; l: s; FDR<0.35 for
8 E5 }% m: v# s# H! C( z1 [; Cwild type versus mutant; FDR<0.01 for the interaction between
& N" O4 N+ W6 Z6 V6 A$ |2 Dthese two variables). Clustering analysis was carried out3 r8 M& a, D9 c2 q
subsequently (Fig. 4A). Interestingly, there were no transcripts that" I8 D7 T! ?2 _8 o/ J- o
showed differential expression between EYFP–
- \, x) K2 ^: {" W" w( y8 R: ~populations in the
* c7 M# U+ s' Z/ `9 PEr71 wild-type and mutant backgrounds. Also, the cluster analysis; x# [+ e& X) h* q$ K
was unable to resolve differences between the EYFP–
  z) g% g5 x8 E) ~- ]( Qpopulations
5 Y# @0 H5 e# W' W; T& WRESEARCH ARTICLE Development 138 (21)" l' a# j' s5 X' j
Fig. 3. ER71-EYFP+ cells in Er71 mutant mouse embryos lack markers of hematopoietic progenitors in exchange for those of other$ {3 m8 r7 _( e8 I, n$ U0 r( G
mesodermal lineages. (A)Using fluorophore-conjugated antibodies and FACS analysis, we observed an enrichment of Pdgfra+ cells in ER71-EYFP+' y: M, {' s' q+ \, P& f4 A
mutant cells at E7.75 and E8.0. (B,C)Summary of multiple experiments comparing individual fluorophores Flk1 and Pdgfra (B), and combinations of
& B8 q. J; ?! F, @% w6 \4 PFlk1 and Pdgfra (C). (D,F)Hematopoietic progenitor cell surface markers are not expressed in the embryo proper at E7.75, but there is a significant
) S  G9 g0 U9 ?0 lreduction in CD41 (D) and CD34 (F) at E8.0. (E)Summary of multiple experiments comparing hemogenic and endothelial markers CD41 and CD34.
  u" F5 b; i9 k' `+ C* @**, P<0.01; *, P<0.05. Error bars indicate s.e.m. LPM, lateral plate mesoderm; CM, cardiac mesoderm; PM, paraxial mesoderm.
4 d* n4 P  J+ z$ o8 eDEVELOPMENT(Fig. 4A). These transcriptome results for the EYFP–6 S, S3 {. r, D  ]8 @4 d  q1 H
cells support( E+ Z4 U; e; K$ X" Y* j# q/ @
the notion that EYFP is not being expressed ectopically.0 P0 l: h# }  j  {2 m
Furthermore, this indicated that there were no significant non-cell-8 ]% U* k( q3 E8 I* y$ ]: R
autonomous effects on gene expression resulting from the lack of, v% f& w$ M' _* I  \5 @
ER71 at this time point.- [# o" ]. z' J( K9 m
Within the EYFP+ populations, the Er71 mutant and wild-type
1 a! [: h/ X7 ~6 R, Icells were significantly different (Fig. 4A). A large number of2 G% L8 X, F( a3 U9 s& M/ k- k; Z' f* _
hematopoietic and endothelial transcripts were decreased in
/ t, l2 Z- B- Y& ]expression between  Er71 wild-type EYFP+ and  Er71 mutant# x+ P8 }4 W: _9 N9 }
EYFP+ cells (Fig. 4C). Importantly, ER71 expression was restricted
3 y6 v. B5 ?! H; p  K  P6 m7 c" kto the EYFP+ cells in the wild-type background (Fig. 4C, arrow),3 p7 u/ U# g: V/ V/ p
confirming that the  Er71-EYFP transgenic model reflects
  [/ L$ V4 j2 X. d2 H% ~endogenous ER71 expression. Other transcripts that were6 ^9 K' @/ V$ C8 X9 |' o
downregulated in the mutant EYFP+ cells compared with the Er71
, {: c+ X4 o; C# L: kwild-type EYFP+ cells included endothelial and hematopoietic! N2 j2 ]# U6 d
transcripts such as Hbb-y, Fli1, Erg, Tal1, Cldn5, Cd93, Sox18,8 k! Z, k9 Y& x) |6 T
Cdh5, Sox7, Mmrn1, Eng and Nos3 (Fig. 4C). These data indicated; T4 t3 b$ i" Q+ J0 {
that the EYFP reporter-positive cells contributed to the endothelial
3 o/ T* P' }8 N6 F% m0 eand hematopoietic lineages and did not express markers of those6 N% d# E, ?2 l; R' ~
lineages in the absence of ER71, consistent with the previously6 S; u1 b5 f) r1 V
described phenotypes (Ferdous et al., 2009; Lee et al., 2008).  x' ?+ X5 t+ i# [, n
Transcripts that were significantly upregulated in the Er71 mutant
9 y: p6 \. Z2 OEYFP+ cells compared with the Er71 wild-type EYFP+ cells were
) ^: k3 R9 ^9 Vassociated with muscle lineages (Fig. 4B). These transcripts
( V* i! {* {5 P9 R% u2 u, v4 tincluded Smarcd3, Myl3,  Irx4, Tnni1, Myl2 and Tbx5 (cardiac-! ]1 H' z4 N8 U( q8 J
restricted transcripts); Acta1, Myl1, Svep1, Dpf3 and Cdo1 (skeletal; a1 B# m" C. K* B, Z
muscle-expressed transcripts); and  Acta2 and  Myl9 (vascular" H' M3 r8 g* b& d) @
smooth muscle-specific transcripts). These results suggested that
* D  z/ K( ]* ?the EYFP+ cells gave rise to other mesodermal lineages in the
7 h( M9 y% B/ w# Yabsence of ER71.
& ^+ [, T2 N5 `, aIn order to determine whether the cardiac lineage was broadly
: G# C! j0 X( N3 _2 s2 t! aaffected, we analyzed transcripts from the cardiac development' Y8 C! r  {, U5 L+ ^2 N
gene list in gene ontology (GO) terms and performed a hierarchical7 l, B1 R7 B; \3 ~3 X" T
clustering analysis. Similar to the results obtained from whole-
* n9 I0 l6 n  @0 n( _" ]genome analysis, wild-type EYFP+ cells segregated from the
0 X+ }1 k2 ^; g' ?- R0 umutant EYFP+ cells (and all EYFP–
0 v# s( h( E7 z5 ?3 Q& ^: Ccells) (supplementary material
/ C: H! ^2 Q( |5 O, {* _. W% fFig. S4A). This result demonstrated that the difference between
( S: g% B6 J/ l; l8 g4 o# |these two populations can also be detected based only on cardiac3 J. Y  b) k5 v4 V. c; o9 M
development criteria. Some transcripts were decreased in EYFP+
9 N( A( w" B$ t1 G2 u! O# SEr71 mutant populations compared with EYFP+ wild-type cells,; G+ X; i' t# _/ |& v. R) ^
including a number of transcripts that are important for endocardial
; q7 A1 d6 Y& g+ s0 q0 Adevelopment (including  Eng,  Hhex,  Sox18,  Nfatc1,  Sox17)
" U" p/ B* v' k5 f* L6 S8 R8 }( u) k(supplementary material Fig. S4B). A number of transcripts were
. o& W0 {8 n0 s0 W  Pincreased in expression in the EYFP+ Er71 mutant population
( S' ]% v- \6 C9 K4 y: q+ ?' E/ mcompared with the other three groups (EYFP+ wild-type and both
7 n, _9 m! L, H; ?$ DEYFP–
! l3 v. U$ |9 H' Dpopulations), including a number of cardiac transcription4 r* ~: t6 w% Q' G2 i  z
factors (Myocd, Nkx2-5, Irx4, Isl1, Gata6, Tbx20, Tbx5, Gata4,
0 @4 Q. w; h7 c  p1 ~9 b$ J+ E+ PSmyd1 and Srf) and structure-function transcripts (Myl2, Myh7,
1 m+ c$ j7 z2 I$ z+ p/ M1 uMyl3, Tnnc1, Tnnt2, Tnni3) (supplementary material Fig. S4C). We6 k% ?# b$ ~5 c" M5 O/ J* _
validated changes in selected transcripts by qPCR on independent
6 q" Y9 o+ p9 p9 W4 lsamples and confirmed decreased expression of Er71, Tal1 and
( m( g# `% D( OCdh5 and the overexpression of cardiac transcripts including Nkx2-
- z( N) _( D: r* `' U5, Gata4 and Tbx5 in Er71 mutant EYFP+ cells (Fig. 5).
2 A. v6 z; z7 ~$ X2 K0 ~" ]( KIn summary, our transcriptome analysis indicated that cardiac
+ y3 B/ Z  I# t0 y6 _genes are over-represented in Er71 mutant EYFP+ cells, whereas
& `3 V& ]2 S* u, f, g6 B" rendothelial, endocardial and hematopoietic genes are under-
/ V' ]; N+ Y! R8 }represented.
: s& `3 J. A! j/ W$ PA novel Er71-Cre transgene marks endothelial and
! D8 s; @- Z7 X, E6 zhematopoietic lineages% r: f8 I9 Q  X) T3 Z( f- P1 @0 M
In order to determine whether ER71-expressing cells give rise to
+ R4 O, y7 A! A. t/ J9 a) qorgans or programs other than the endothelial and hematopoietic
, S/ C2 U2 D4 J' l3 xlineages, we generated an Er71-Cre transgenic mouse model (Fig.
3 d$ `5 |/ x6 P7 \' G6A). We obtained a total of six founder lines, with embryos that% J. O' k9 N$ M9 ?3 C8 H/ ?" |
showed similar expression patterns after breeding with the Rosa-5 m  y% B" |0 S/ F. ]3 G% E6 b
4807 RESEARCH ARTICLE ER71 governs progenitor fates
. x( w, l, K5 R$ \Fig. 4. Transcriptome analysis reveals that hemato-endothelial# @# n+ u: T, k2 `; [
and cardiac lineages are dysregulated in the Er71 mutant
; O$ x! b5 @0 m& bembryo. Transcriptome analysis was performed on EYFP+ and EYFP–
4 f  s, p5 X# m4 L" `! ?cells sorted from wild-type and Er71 mutant littermate mouse embryos.4 ~4 N8 x6 o: ?- W
(A)Clustering analysis shows that wild-type and mutant EYFP–4 W( L0 }. c7 T
cells are
$ t9 l" s2 {! d! Tindistinguishable, whereas EYFP+ cells from wild-type and mutant
7 y- m7 i# Q1 Y4 N* Q! j( bembryos show distinct gene expression profiles. (B)Transcripts
, Q: b  [& }  A. E4 Bupregulated in the EYFP+ mutant progenitors include cardiac and8 N" a4 w5 U6 y# g+ t/ H
skeletal muscle genes. (C)Downregulated transcripts in the Er71, p- d9 G- D$ [- n' S) ]& V
mutant background include hemato-endothelial transcripts, including
) Z' f! f  w: f# @5 Q; GEr71 (Etv2) (arrow).0 a! y2 x# s# ?" R- j# N6 j5 W
DEVELOPMENT4808; ]3 k4 z) @& H5 Z; ?: o! _! I
lacZ reporter mice (supplementary material Fig. S5). Two' A2 j( E8 ^# k7 ^1 F
transgenic lines were crossed to the Rosa-EYFP reporter mice and
( m! y3 h: @2 i' p" o: o! ^8 T3 Aused for immunohistochemical and FACS analyses. Our results
' C+ N# O: r2 a8 p/ H# q' @- i* Rrevealed that E11.5 embryos were marked by Rosa-EYFP or Rosa-' S' l. o1 f7 h! E3 y& r- D0 |4 w
lacZ in the endocardium, cardiac cushions, vasculature,* t% S; D) p/ T% b% a( x
mesenchyme and the fetal liver, which is the stage-appropriate site1 ]" w! l/ U' `5 Q  r2 _3 i
of hematopoiesis (Fig. 6B; supplementary material Fig. S5G,H;. A+ m( E4 @3 j3 p; Z+ v
data not shown). Hearts of P3 neonates were marked by Rosa-
+ M) K2 \0 W5 K7 B* x+ w1 lEYFP in the vascular structures (Fig. 6C). Co-staining for EYFP
1 B& D) [3 T1 Oand desmin, an early muscle-specific structural protein, showed
0 `# _4 c3 o8 p- j4 L1 X  t$ g7 i' dthat the Rosa-EYFP reporter did not overlap with desmin staining
% L0 J$ v3 {1 g+ O! |" G1 oin the heart at either time point (Fig. 6B,C). FACS analysis of1 i5 H2 s: n8 i# l( u( k1 \* ^; \5 S
whole E11.5 embryos showed that 7-8% of cells in the E11.5  z! E1 z: ]& l! @
embryo were derived from ER71-expressing cells (Fig. 6D,E). Of
# N' f5 Z0 d# |, `  `these EYFP+ cells, ~12% were endothelial (CD45–1 U2 T* B, V3 A7 [& ]8 s0 C
CD41–6 x  l  h* R5 }9 n  M
Tie2+;
! J$ H; L. K$ dFig. 6F), 23% were non-erythroid hematopoietic cells (CD45+, also6 ?. G5 R* m2 a% Q' H
RESEARCH ARTICLE Development 138 (21)1 h2 ^0 o3 {6 A# ?: m
Fig. 5. Representative transcripts from the cardiac program are overexpressed in the Er71 mutant. (A-F)qPCR analysis was performed on7 a1 J2 `7 b4 `, c( b
RNA isolated from EYFP+ cells in the wild-type (embryos 1 and 2) and mutant (embryos 3 and 4) backgrounds. We observed the loss of Er71 (A),
4 |* a' s" N' n" T: s; NCdh5 (B) and Scl (C) expression and an increase in the expression of representative cardiac program transcripts including Nkx2-5 (D), Tbx5 (E), and
; d% Y7 l) {* N) J4 b- LGata4 (F). Error bars indicate s.e.m.
$ P9 F/ Z3 L1 CFig. 6. Genetic fate-mapping studies indicate that ER71-expressing cells give rise to the endothelial and hematopoietic lineages.0 f  h; `9 P+ O* W/ z2 E
(A)The transgenic Er71-Cre mouse model used for these studies. (B,C)Immunohistochemistry for GFP (green) and desmin (red) and DAPI staining3 Z0 J8 ~  k7 u! F, `
(blue) in E11.5 (B) and P3 (C) heart. a, atria; bw, body wall; cu, cardiac cushion; fl, fetal liver; v, ventricle. (D)A representative FACS profile showing: L0 m& r7 q' U3 h9 k+ U% O( |
EYFP+ versus side scatter width (SSW). (E)ercentage of Rosa-EYFP+ cells from all experiments (n9). (F-H)EYFP-positive cells were gated and
/ V* ~8 j4 q; Z( z- {, E( C& t% \analyzed for lineage contribution. Representative FACS profiles are shown for (F) endothelial lineage (CD41–. z, Q, E6 }4 |' b3 v
CD45–5 V& }& f. ]) Z6 K3 i
Tie2+) cells and (G) CD41+
# X/ Z8 t2 y7 p" DCD45+, (H) CD45+ Ter119–
6 o# S0 t# x0 M' t% U6 `and Ter119+ CD45–% d9 F/ K9 q. V( h
hematopoietic lineage cells. (I)ercentage of Rosa-EYFP+ cells of each lineage from all experiments
- k3 Z( N4 {( Y: d" S9 r; B(n9). Error bars indicate s.e.m. DEVELOPMENTknown as Ptprc; Fig. 6H), and 13% were erythroid (Ter119+; also
0 L' S4 {0 F. g! yknown as Ly76; Fig. 6H). Interestingly, the EYFP+ population) P, C! X3 }7 X( ?- R2 J
segregated into two populations of varying EYFP expression (Fig.! ]3 W+ v+ S- c1 h
6D). Ter119 primarily marked the EYFP-low population, whereas
# S5 R# Z) J8 s% W2 rendothelial and other hematopoietic markers primarily marked the# x, L& Y! B0 W6 E' J3 e' |) i
EYFP-high population (data not shown). This suggests that the
0 X! ?- y" q) T) lRosa reporters are expressed weakly in erythroid cells and might8 a/ h) R0 f+ U0 x$ x. E5 n) P  V
therefore inefficiently mark this population.
. h* [& a. D' c" KER71-EYFP-expressing cells give rise to
" F4 m) D$ `! zmyocardium in the Er71 mutant
3 {+ b# y7 I8 Z$ I, cTo determine whether ER71 reporter-positive cells could produce
0 m! ?* q! N( f2 g# f2 {alternative lineages in the Er71 mutant, we crossed the Er71-Cre! ]& I% I. o# b
and  Rosa-EYFP alleles into the  Er71 mutant background. As2 N# [8 F7 _- }$ I1 x- `( L
observed with the ER71-EYFP reporter, Er71 mutants carrying the
. Y+ ~! Y7 `! O$ iEr71-Cre and  Rosa-EYFP alleles displayed altered EYFP* n: E8 ?6 }* m- {: `7 \
expression patterns. Compared with the Er71 wild-type embryos at' p3 k" J3 Q$ P0 B% _
E8.0, in which Rosa-EYFP is expressed in the yolk sac, vessels and4 O# j" Q, F/ j2 N9 E
heart tube (Fig. 7A), the Er71 mutant embryos had robust EYFP+ q% ]2 \- `4 B" C
expression localized in the allantois, posterior mesoderm and: y, B, b; c" |0 r4 {9 L  e
paraxial mesoderm (Fig. 7F). We speculate that the increased8 H* a+ z1 q/ X' d, P: N; c
expression in the allantois and the posterior mesoderm is due to the0 D& g: s! n* P
progenitor cells differentiating to alternative mesodermal lineages,
7 L# h- |& a0 D' x8 n3 Wperturbed migration patterns, or a combination of the two. Embryos
* i3 C* h9 i# G4 V4 ~were analyzed using immunohistochemical techniques for co-
. [; L2 h( ]4 T* Aexpression of EYFP and Nkx2-5, a cardiac transcription factor,
8 Q3 D+ G1 K# A  V8 B6 IEYFP and desmin, or EYFP and troponin T, a cardiac sarcomeric8 u4 m7 M, `. }8 K, d" N3 o! w
protein. In wild-type hearts at E8.0, EYFP was expressed in the8 c8 P3 ~" P7 _2 \) y3 ?( }8 @- u
endocardium, the major vessels such as the dorsal aortae and in% i" ~$ n* N: T/ [1 q1 \
hematopoietic cells within the heart (Fig. 7B-E). There was no1 N: O7 w1 F( Z6 d9 I* o
overlap of EYFP expression with Nkx2-5, desmin or troponin T.+ [& `# d; M$ b0 {' ^5 u2 Q2 K
In the Er71 mutant embryo, the vessels and endocardium were
3 L' ~$ a+ W* o. l& u7 d5 Zabsent. However, EYFP expression persisted in the heart. In the7 ~1 l1 X+ t: N) N* H
heart of the Er71 mutant embryo, all EYFP-expressing cells had an! ?4 K( t  K0 a. H
Nkx2-5-positive nucleus (Fig. 7G,H). Some of the EYFP-
. B& p4 d6 ~% [expressing cells were also positive for the structural proteins
1 P( V- w5 b0 s, \* @, }2 x8 |( ]) H* Jdesmin and troponin T (Fig. 7I,J, arrows). These results support the
  r0 ]  ~" o$ E9 T/ |6 s/ Qnotion that the EYFP+ cells are capable of differentiating to the
/ Z) A0 {8 Z7 ]& E$ Xmyocardial lineage in the absence of ER71. It is likely that
( C; I* }5 d' V" O' K0 [) n" K3 Zprogenitor cell populations are also capable of differentiating7 k) u! `9 t- M* O
toward other lineages depending on the context of the spatial and
' Q) h9 d. o4 v& t6 otemporal cues that they are exposed to during embryogenesis.7 a6 c! o6 T& T: ]
However, the heart is one of the few organs present at E8.0 and+ [* J/ C+ t3 n: N
Er71 mutant embryos are nonviable by E9.5. Therefore, the# M$ W; Z# ~  ?& s
lethality of the  Er71 mutant limits our ability to evaluate the
% V1 S" L: ]  [) \7 Z3 qcontribution of EYFP+ progenitors to other lineages that develop7 V2 ?! y/ }/ Y" K' ~
later during embryogenesis.
5 A0 m! L' j% R! n8 o  UER71 overexpression suppresses development of
, n" {( r' H  T+ Jthe cardiac lineage  U6 V: U2 S0 @% G) O7 q
To complement our analysis of the  Er71 mutant embryo, we
: f: ~( E1 Z9 H2 s' Q8 w! ~% Boverexpressed ER71 using a doxycycline-inducible embryonic; w$ G6 Q. W) f% b6 G
stem cell (ES)/EB system. An ES cell line in which expression of
+ \' ?$ j# N6 y8 ^' dER71 can be induced by doxycycline treatment was generated by
4 Y6 g. H7 }( v6 G( O; S8 ma cassette exchange method (Iacovino et al., 2009). ES cells were
+ {+ R% y2 W9 J" Ginduced to form EBs in differentiation media and cultured for 10. @1 _7 O+ Z2 a/ B8 {1 `  F5 N  t+ h0 l
days with or without 0.5 mg/ml doxycycline from day 3. In the& `) M* S& t- d; l. M) P+ ?2 w* v
ER71-overexpressing EBs, we observed a decrease in the
3 [& a# a$ O- o0 mexpression of troponin T, which we quantified by comparing the
+ @0 ~- d3 y0 r. `5 g- mpositively stained area with the total area of the EB (Fig. 8A-E).
# p) C& w# t; DWe also observed a decrease in cardiac gene expression (Nkx2-5,! N. t3 o7 F$ M
Tbx5 and  Gata4), as quantified by qPCR analyses (Fig. 8F).. t, u; h# g+ u( g3 c+ m
Finally, we quantitated the ability of the EBs to beat with edge
' F4 Q& w, K2 A* ]detection. The doxycycline-induced EBs had a dramatic reduction
2 \( a9 o$ A% u6 l3 q5 s7 C0 ^in contractility (Fig. 8G) and in percent shortening (Fig. 8H).
$ ?$ x. G3 f/ d4 B5 O( F& b' rCollectively, these results further support the notion that ER712 l6 Z1 r, y1 C" E( c
suppresses the myocardial fate of mesodermal progenitors.
- _. ]* ]  N+ {4 D+ w% `: U4 }/ T8 v0 _7 dDISCUSSION! ~, {9 Y4 `4 H6 H' }$ Z- x
An array of signaling cascades and networks govern the fate of. o. b4 w) W( L4 J" p) n
progenitor cell populations and their contribution to mesodermal
! x/ V7 k7 f& d" {lineages during embryogenesis. Recent studies have demonstrated
& L5 \( _) a6 A4809 RESEARCH ARTICLE ER71 governs progenitor fates$ h8 |# h4 u7 d# B# z! r( f
Fig. 7. Genetic fate-mapping studies in the Er71 mutant show that the affected lineages give rise to myocardium in vivo. (A,F)Whole-
! Q0 `( Q$ ]8 H$ ~3 e, ]- Vmount images of Rosa-EYFP expression in Er71 wild-type (A) and mutant (F) mouse embryos. The red line indicates the plane of sectioning for the
1 R( U3 w& R  @! `( ~corresponding panels. (B,C,G,H) Immunohistochemical analysis of EYFP and Nkx2-5 shown at low (B,G) and high (C,H) magnification. (D,E,I,J). E, `, ]6 ]) f0 A. |; p) F
Immunohistochemical analysis of EYFP and desmin (D,I) or troponin T (E,J) expression. ys, yolk sac; h, heart; al, allantois; da, dorsal aortae; ec,% d. B: R( z5 v" R  E* N
endocardium; mc, myocardium. Arrowheads indicate EYFP colocalization with desmin or troponin T. Scale bars: 200m in A,F; 20m in B-E,G-J.
- R' l3 x0 z% U7 ]6 n0 y$ ^DEVELOPMENT48109 {9 q& n! m2 C9 w1 z9 d; X
that various progenitors give rise to multiple mesodermal lineages.$ t1 z6 S9 }# f1 Z# a
This broad developmental capacity is evident from the fact that
# K* {- O, ^- w7 ?2 J7 k5 e" Kmultipotent progenitors have been shown to differentiate to diverse! y3 w  r% Y3 R
lineages, including hematopoietic, endothelial, cardiomyocyte and
  `1 a1 a7 N# h& \  \* l' Msmooth muscle lineages. We have previously demonstrated that
% o4 `( M1 J$ \% d' s/ W) GER71, a member of the Ets transcription factor family, is essential7 s+ F# R" q2 g$ S' s
for the development of mesodermal lineages. Er71 mutant embryos. K) W+ a' [8 D) K# [* W
lack hematopoietic and vascular lineages and are nonviable. Here,
5 Q& w" ^. p) Y$ J2 e0 xwe have further defined the role of ER71 during mesodermal3 {% Y2 V# a, _; k, P
patterning and have made three new discoveries that advance our
4 @! F3 r9 `6 r$ imechanistic understanding of mesodermal fate decisions during
9 z  p# v9 x& ^) h; [development.
3 F) E/ X0 m# PFirst, we have defined the expression pattern of ER71 during
; e# \, q% t1 `embryogenesis using a newly generated transgenic reporter
8 E1 j- r+ a5 b' W- R6 omouse model. Using immunohistochemical techniques, we( l0 z) O9 u) G- z' ~
demonstrated that ER71 is largely co-expressed with Tie2 in! P+ S7 l2 Y! M8 Z# K: `
endothelial and hematopoietic progenitors. In the absence of$ c/ z( R3 ^8 X
ER71, we observed that these progenitors are expanded in
4 t3 O; A% j  z/ a9 |+ G. \number but do not represent the hematopoietic and endothelial
% y5 j2 w, I0 `6 olineages; rather, they are redirected to other mesodermal
5 \! M+ k! U3 N3 rlineages, including the cardiac lineage. These data also show that$ J. |: E7 _3 G4 _7 e
ER71 is not required for the initiation or maintenance of its own
! ]% M" B6 W' @- B7 aexpression. In the absence of ER71, this increase in the number" d1 D+ J5 N$ L+ z. t3 C4 l
of progenitors (EYFP+ cells) might represent a delay in cell
* U- u/ g  q% N9 Q. ~9 acycle withdrawal due to the lack of distinct mesodermal lineages% ^6 O- g9 v* ^4 k& n) O1 A" I
(i.e. hematopoietic and endothelial lineages) or, alternatively,
- v. P2 H$ _$ _6 O9 _- K2 `decreased programmed cell death involving these progenitors.0 J6 ^! a7 n3 N( _+ v5 k  v
We did not observe an increase in apoptosis in the Er71 mutant
- m: m# D$ f5 E: v- e# Vembryo compared with its wild-type littermate control (Ferdous( Q0 H7 |9 A: h6 y/ I& V. k
et al., 2009). Thus, we hypothesize that the progenitor cell
* P. U% k( {7 p  cexpansion in the absence of ER71 is a result of the lack of) X. S- w$ R: U% ~9 L: P
cellular differentiation to hemato-endothelial lineages.
4 t, e* |/ w* n! D. o+ d6 pOur second discovery defined the fate of the ER71 progenitors2 L: v& T$ C' c
in the presence and absence of ER71. Using genetic fate-mapping5 G5 m( M. X/ h0 E9 j& R# K
strategies, FACS and whole-genome analysis, we demonstrated that
+ \* w6 M  J3 ?$ a' xER71 progenitors give rise to hematopoietic, endothelial and
% c' l% K/ R1 z8 t6 Rmesenchymal lineages. In the  Er71 mutant background, these
; ^0 o$ O$ f& X6 C1 d8 N; Cprogenitors (EYFP+ cells) produced other mesodermal lineages,
( Z1 T( P$ K: j+ d% Z* aincluding the cardiomyocyte lineage (supplementary material Fig.4 M4 F8 n7 ~) z% k& T) D
S6). Moreover, our FACS and transcriptome data supported the
7 I) R" \8 M% d, s$ Nnotion that paraxial mesodermal programs (transcripts enriched in1 I6 U6 I' Q: ^/ Q+ A' g' N  h
the skeletal muscle lineage) were increased in the Er71 mutant
' W' e) A7 B  \  O9 E, }progenitors. Accumulating evidence suggests that the cardiac and
% t0 X5 g* H. v0 s' Q, i" H/ V3 Nhematopoietic lineages develop from a common progenitor and that* v$ }! T' M0 o$ i6 n
the specification of these lineages is inversely regulated. We( R/ j8 ]6 a8 s+ Y5 E
recently demonstrated that Nkx2-5 has a dual transcriptional
: [$ t* B% ?5 O* G% g! |regulatory role during embryogenesis as it represses Gata1-0 F" U8 |& d, R& q: |
mediated hematopoiesis and promotes cardiogenesis of the
) h/ M) e& h& a# }! A9 Cmultipotent mesodermal progenitors (Caprioli et al., 2011). The- o5 ]' ^. `% j- S8 D# K' B
results of the present study further support the plasticity of the
3 J- X" Z/ l. Q  ^1 SER71 progenitors and their capacity to respond to cues and- \3 O9 ?+ Q4 C) I' _
contribute to other mesodermal lineages.  @& X+ l: P* V) w" u
The origin of endocardium relative to the myocardium has) V+ O9 c% w: t" q8 ?! J
been controversial (Harris and Black, 2010). Studies in zebrafish- `; Z  o# m/ a
and chick suggest that endocardial and myocardial lineages are# C& X1 }* V- x- O" M1 V
distinct from the point of gastrulation, and there are no- W$ ~4 P' K' J: ^4 h+ i+ o
multipotent progenitors (Cohen-Gould and Mikawa, 1996; Wei7 F7 q. n6 h* I& z7 n( V" G" C$ R0 S
and Mikawa, 2000). By contrast, lineage-tracing studies in
8 J+ A! \+ q3 i/ gmouse embryos and ES cells suggest that endocardial
% ~6 Y( ~. D% }4 }2 Sprogenitors are specified as multipotent progenitors in the$ J9 |( }! }; _  K  m6 l5 i
cardiac crescent and cell fate is later specified to either
/ v1 L( ^6 E# I- q9 Oendocardial, myocardial or vascular smooth muscle fates
: a# s6 L6 g6 l% ?5 M(Kattman et al., 2006; Misfeldt et al., 2009). In our novel ER71-
4 d: X+ b8 \3 g2 q* G) F7 ]1 oEYFP reporter mice, we observed weak co-expression of Nkx2-
6 `7 j# ]+ X) r5 protein and EYFP in the cardiac crescent at E7.75. However,) }! d" t: s7 b, n& Y
lineage-tracing experiments showed that cells that expressed
; W# T4 m" c  M0 u, v- ~% _3 VER71 during any point in their development did not become
4 s" o$ v) c% {. Fcardiomyocytes. By contrast, Nkx2-5-Cre lineage-tracing' K" l& A$ j$ v
experiments show that at least some of the endocardial lineage
" i/ ?- p/ c6 b& L- g) D  S/ O/ \$ Bderives from cells that expressed Nkx2-5 (Stanley et al., 2002)./ u0 J0 p8 b7 n5 n1 U8 F
Taken together, these observations favor a model in which
0 F1 `+ |& f( T9 Ycommon progenitors of endocardial and myocardial lineages are" E# a' ~" T" H9 r- e7 K7 Q
specified as Nkx2-5+ cells in the cardiac crescent, but those that% w* {& ~! {: a  I  X/ h
RESEARCH ARTICLE Development 138 (21): z9 C: F# i2 H+ t% ?' R  f
Fig. 8. Overexpression of ER71 in differentiating EBs inhibits
  W; J# S5 W4 p3 ~2 P( qcardiac development. (A-D)Sections of representative EBs either
& L* l& K2 |" D2 Duntreated (A,C) or induced to overexpress ER71 (B,D) stained with5 u( R/ V5 `8 t( v, t  R
Hematoxylin and Eosin (C,D) or anti-TnT (A,B). (E)Quantitative analysis of; g3 }1 C. ]! L# r
the troponin T-positive area in 33 induced (Dox) and 42 untreated
, m6 Y7 x+ `/ P. M) O# z+ Isections. (F)qRT-PCR confirms that representative cardiac program+ P' E: P- q2 O! c
transcripts (Nkx2-5, Tbx5, Gata4) are downregulated in ER71-. T# p$ |2 o; C: D, v/ D
overexpressing EBs. (G,H)Extent of contraction and relaxation after 2
% d6 R. F$ R( f: Hseconds of stimulation (G) and percent shortening (H) are reduced in- F. l; l7 @1 A: d/ G" `" Z+ b0 w
ER71-overexpressing EBs. ****, P<0.001; *, P<0.05. Error bars indicate! y8 L$ f) E( W% P
s.e.m.: l1 }; z& M, U
DEVELOPMENTwill become endocardium will downregulate myocardial
9 I- h% \, R+ A; ~7 l) C' d, Y  R2 \potential, including the expression of Nkx2-5. Once ER71 is
) i& p  E0 \7 z$ D- N% Vexpressed, the fate is restricted to endocardium, and not5 b# G# |" P; O$ S2 a% u5 _4 I
myocardial lineages. Future studies are warranted to decipher the
+ h  m! J- t# _3 {; Hmechanism that governs the specification of endocardial cells
6 O+ o( v) ]; w" }+ s, k* hwithin the cardiac progenitor pool.
9 F3 J* u( }" `% W: fOur third finding is that ER71 overexpression repressed cardiac
+ R( a" \( V6 c  Z/ n  Cpotential. These results support the notion that ER71, like Nkx2-5,! P6 s; {2 ~9 Q% u! T' V
has reciprocal and overlapping dual roles in the specification of
7 i3 i( q1 ^, u7 smesodermal lineages. Our previous studies demonstrated that
1 A  f' u: ]) ]8 z: _7 h8 N: H$ R8 tNkx2-5 overexpression suppressed hematopoiesis, but not the) `1 I' Q) u' b
endothelial program (Caprioli et al., 2011). We further defined that& N$ q1 T# k+ F, z6 S
Nkx2-5 could, in a context-dependent fashion, transcriptionally
6 X1 C# ?( X3 E0 Eactivate  Er71 and promote endocardial lineage development
8 d% _) p  j8 b(Ferdous et al., 2009). Collectively, our previous studies and recent
7 k, D9 G; N2 Yresults support the notion that distinct transcriptional networks can,8 D1 E- l/ \1 D3 h/ C* _0 C+ Y/ B
in a context-dependent fashion (and dependent on the local
% C8 s; ^0 J$ z( Y, V% _# q$ qenvironment), activate a hematopoietic or endothelial program and( J0 |# ^5 D6 C% |: Q- c" q
antagonize the cardiac program. These studies further emphasize6 Z2 c9 p- E: B) }; F
the plasticity of progenitors and their contribution to distinct
0 r* ]" i' L& s1 [$ |6 s0 n, h! `lineages.8 t* o* i& ^6 p6 f4 H/ Z
In summary, our data support a dual role for ER71 in the
, W: f4 B5 O- A: {% d5 dspecification of the endothelial and hematopoietic lineages and the: J) p& h- x9 T0 B, P8 W
suppression of other lineages (i.e. myocardial and paraxial( d. ]8 b; d/ n3 L$ v
mesodermal cell fates) (supplementary material Fig. S6). Our
/ b( U9 p! D, y( z8 zstudies further support the notion of multipotent mesodermal
; K/ r  I9 `, s* k( eprogenitors that are dependent on transcriptional cascades and other
% ]. H0 C! x# [cues to direct them to populate one or more lineages. Moreover,  g( Q- Y: s) K$ z/ p9 {
our studies reveal that global deletion of a single gene (i.e. Er71), l# W: }5 j# ~; }( r& \
aborts one or more lineages and redirects the cells to other lineages9 g$ e: [; i9 N0 D: Y& V7 @/ c5 {
that would not typically arise from those progenitors. These studies; x# n7 Q' }9 A# o& h# F
further our understanding of the regulatory mechanisms that govern) V# D& _0 @0 k+ m, T( l( x
mesodermal cell fate decisions and embryogenesis.& X$ N8 K1 F/ t2 w: f% s
Acknowledgements  @8 }! y) f- \( _5 w4 K
We thank Jennifer L. Springsteen and Alicia M. Wallis for assistance with, E  Q  ^- B3 N
histological analyses and animal care.
; Z7 V8 T/ q- {* }$ Q( YFunding
' r1 q2 }, S. P" PFunding support was obtained from the National Institutes of Health [U01
2 t0 e# s9 `# u2 _; B- \HL100407 and R01 HL085729 to D.J.G.]; and the American Heart Association
, q) h, w0 b, |( B8 y0 K8 F[Jon Holden DeHaan Foundation 0970499 to D.J.G.]. Deposited in PMC for' w9 X# x8 x# ^- M& J$ w
release after 12 months.
1 L, `6 P" ^5 K# x% I' r8 wCompeting interests statement1 ]0 V7 D5 t5 ]5 g' o
The authors declare no competing financial interests.
5 @. r& ]: ~, YSupplementary material; c& {* b, _% N) O) S- [, ?
Supplementary material available online at
: E# u" Q4 i5 R( r) O/ S7 t! vhttp://dev.biologists.org/lookup/suppl/doi:10.1242/dev.070912/-/DC1
0 d, G9 R+ r# [3 kReferences" b1 C+ F8 M9 R- d# u
Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a/ N9 p' m& M! x2 I' S: u/ r, P2 ?
practical and powerful approach to multiple testing. J. R. Statist. Soc. B 97, 289-
5 {: J1 T% I$ V5 M- J9 t# x- L0 \- j300.
- W) ?  n+ V# k$ Z; Y% cBondue, A., Tannler, S., Chiapparo, G., Chabab, S., Ramialison, M.,
( Q- E) p5 P* P: R# G0 JPaulissen, C., Beck, B., Harvey, R. and Blanpain, C. (2011). Defining the+ j; ]( K7 n" a% X. F3 D$ [( P: _
earliest step of cardiovascular progenitor specification during embryonic stem# W4 ]0 \% x7 N. V, k4 m& ?8 i* b
cell differentiation. J. Cell Biol. 192, 751-765.
7 W, K& A' I9 Q" k3 c% XCaprioli, A., Koyano-Nakagawa, N., Iacovino, M., Shi, X., Ferdous, A.,- w( d1 i1 n: P: S: @
Harvey, R. P., Olson, E. N., Kyba, M. and Garry, D. J. (2011). Nkx2-5' a+ X% a/ N9 F6 Z& J
represses Gata1 gene expression and modulates the cellular fate of cardiac6 p; @( w  z7 C& B8 |- M
progenitors during embryogenesis. Circulation 123, 1633-1641.
% J8 d- E2 X) Q. G# x; y: oCarbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B. and Lewis, S.- w' ^- ?5 p' [1 z$ P% W: C
(2009). AmiGO: online access to ontology and annotation data. Bioinformatics8 W4 c6 _; j$ J# s
25, 288-289.
* u8 X# o, Z6 x7 @3 DCohen-Gould, L. and Mikawa, T. (1996). The fate diversity of mesodermal cells
% P' p8 ?% H( W$ x! j' @+ A1 x2 a9 vwithin the heart field during chicken early embryogenesis. Dev. Biol. 177, 265-7 B. O2 E* t2 u0 C. b
273.% a& H. Z9 ^; z  |$ Y  x1 v4 O8 ^/ n
Davis, L. A. and Zur Nieden, N. I. (2008). Mesodermal fate decisions of a stem2 }* q: [* @! _. _
cell: the Wnt switch. Cell Mol. Life Sci. 65, 2658-2674.' W- z- ^2 t+ q0 s$ f$ D
de Hoon, M. J., Imoto, S., Nolan, J. and Miyano, S. (2004). Open source6 N1 t6 m4 o5 V7 ~
clustering software. Bioinformatics 20, 1453-1454.
$ e0 U  V( `1 N3 B* rDe Val, S., Chi, N. C., Meadows, S. M., Minovitsky, S., Anderson, J. P., Harris,; N  I; y4 M9 W  V3 H& A0 j3 k3 G
I. S., Ehlers, M. L., Agarwal, P., Visel, A., Xu, S. M. et al. (2008).
; a# S$ i, Q- U) P& K( ZCombinatorial regulation of endothelial gene expression by ets and forkhead
6 |7 Q3 v: z: Ktranscription factors. Cell 135, 1053-1064.
9 P& F" q2 v6 zDowns, K. M. and Davies, T. (1993). Staging of gastrulating mouse embryos by  I" i4 M, f! i5 Q
morphological landmarks in the dissecting microscope. Development 118, 1255-
; J8 P) R0 N$ K# y7 _0 A. _3 {1266.
: P. _4 r  W8 w, tDumont, D. J., Yamaguchi, T. P., Conlon, R. A., Rossant, J. and Breitman, M.4 U9 c- o0 b9 k$ B3 t% `
L. (1992). tek, a novel tyrosine kinase gene located on mouse chromosome 4, is
( G1 z5 T  W: W2 pexpressed in endothelial cells and their presumptive precursors. Oncogene 7,
  g. Z5 q1 e" y/ W# C: P1 d1471-1480.
) [4 g; v( _" C  K" z3 `5 R, _; ZEma, M., Takahashi, S. and Rossant, J. (2006a). Deletion of the selection& Z0 U4 g( T8 \; x) h
cassette, but not cis-acting elements, in targeted Flk1-lacZ allele reveals Flk1- b# {5 k0 t2 T  U
expression in multipotent mesodermal progenitors. Blood 107, 111-117.3 |; V9 A- {1 v/ G  t: g
Ema, M., Yokomizo, T., Wakamatsu, A., Terunuma, T., Yamamoto, M. and
! H/ L2 T' S" U1 r$ u. n+ O7 m0 s: `4 s2 qTakahashi, S. (2006b). Primitive erythropoiesis from mesodermal precursors5 _! ]# ~& {' d! c0 d
expressing VE-cadherin, PECAM-1, Tie2, endoglin and CD34 in the mouse& `* I8 l2 ^' B
embryo. Blood 108, 4018-4024.
- g6 h; \$ i: b4 FFerdous, A., Caprioli, A., Iacovino, M., Martin, C. M., Morris, J., Richardson,: X3 M% ~  u( X" v. I
J. A., Latif, S., Hammer, R. E., Harvey, R. P., Olson, E. N. et al. (2009). Nkx2-& c4 ]7 R  ^% q$ C' I
5 transactivates the Ets-related protein 71 gene and specifies an endothelial/& v$ P2 g- ?2 P/ V( r! g
endocardial fate in the developing embryo. Proc. Natl. Acad. Sci. USA 106, + |, k& W) ]* q- |/ Y
814-819.
8 F) v# [5 q% ?Harris, I. S. and Black, B. L. (2010). Development of the endocardium. Pediatr.$ \7 g: Y: E$ t" G
Cardiol. 31, 391-399.
. m" B9 a; F  r' f3 [Iacovino, M., Hernandez, C., Xu, Z., Bajwa, G., Prather, M. and Kyba, M.
9 D, @0 _8 d& R0 S- S, C3 x(2009). A conserved role for Hox paralog group 4 in regulation of hematopoietic
7 X8 y  f  |8 C, o( Yprogenitors. Stem Cells Dev. 18, 783-792.- n+ T2 k& x$ a& S  R8 c
Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J.,
3 d" \5 C3 O* {7 a1 K. V) W0 _Scherf, U. and Speed, T. P. (2003). Exploration, normalization and summaries2 q' M/ D; N# M5 T
of high density oligonucleotide array probe level data. Biostatistics 4, 249-264.
! Z' g9 N6 K; Y, @Ivey, K. N., Muth, A., Arnold, J., King, F. W., Yeh, R. F., Fish, J. E., Hsiao, E. C.,
- q+ l, w3 e9 ?& ^5 B5 }Schwartz, R. J., Conklin, B. R., Bernstein, H. S. et al. (2008). MicroRNA" t4 s! C7 s/ d- U6 Z/ `7 x
regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem* N. O9 L0 z9 ~; b6 z6 ^7 m
Cell 2, 219-229./ _) E+ w5 }: m3 s
Kataoka, H., Takakura, N., Nishikawa, S., Tsuchida, K., Kodama, H.,
' v( P5 b$ _$ e( A* U6 ?6 @! \Kunisada, T., Risau, W., Kita, T. and Nishikawa, S. I. (1997). Expressions of$ c2 I8 y. l1 P  J1 z1 i
PDGF receptor alpha, c-Kit and Flk1 genes clustering in mouse chromosome 5# }/ e: s& D& x; N
define distinct subsets of nascent mesodermal cells. Dev. Growth Differ. 39, 729-
/ F1 U) O; m; j: u3 c740./ _9 ^: g* g: B( t- q7 b
Kattman, S. J., Huber, T. L. and Keller, G. M. (2006). Multipotent flk-1+
$ ?6 [6 ?, x9 O. ncardiovascular progenitor cells give rise to the cardiomyocyte, endothelial and
8 |( c* _+ f4 xvascular smooth muscle lineages. Dev. Cell 11, 723-732.! T" P# K4 E, F9 T" F4 Z9 M, r
Kaufman, M. H. (1992). The Atlas of Mouse Development. London: Academic* {$ t, G$ Z+ l; N' G2 N3 \
Press.4 o& b9 H: W  l
Kennedy, M., Firpo, M., Choi, K., Wall, C., Robertson, S., Kabrun, N. and
( h/ O7 Z2 z4 t  t0 q& B6 UKeller, G. (1997). A common precursor for primitive erythropoiesis and
- \! u" \* T- ^/ Z! `definitive haematopoiesis. Nature 386, 488-493.2 H( Y8 Y+ A; ~2 G6 [: `
Kisanuki, Y. Y., Hammer, R. E., Miyazaki, J., Williams, S. C., Richardson, J. A.; b  r, _7 G- p. C/ ^$ y
and Yanagisawa, M. (2001). Tie2-Cre transgenic mice: a new model for
8 v' a* d4 F: l. nendothelial cell-lineage analysis in vivo. Dev. Biol. 230, 230-242.
# `4 t# i/ ^2 P- ^$ W6 k8 L1 b: l+ ULee, D., Park, C., Lee, H., Lugus, J. J., Kim, S. H., Arentson, E., Chung, Y. S.,# l# L3 T/ h0 z$ {
Gomez, G., Kyba, M., Lin, S. et al. (2008). ER71 acts downstream of BMP,  H3 u# h  @  t6 J# H9 U
Notch and Wnt signaling in blood and vessel progenitor specification. Cell Stem# S7 W" ^6 y' `& X
Cell 2, 497-507.# i) o  x# e9 \& Z
Li, W., Ferkowicz, M. J., Johnson, S. A., Shelley, W. C. and Yoder, M. C.
. e# Z* Z# i. Z  K(2005). Endothelial cells in the early murine yolk sac give rise to CD41-expressing9 U& K$ P$ _. u- [
hematopoietic cells. Stem Cells Dev. 14, 44-54.
# S/ B  j& {9 z* A- H0 a# ^$ sMisfeldt, A. M., Boyle, S. C., Tompkins, K. L., Bautch, V. L., Labosky, P. A. and. V0 E- o. R/ I3 c3 s' T
Baldwin, H. S. (2009). Endocardial cells are a distinct endothelial lineage/ ?6 Q* t! Q; Q
derived from Flk1+ multipotent cardiovascular progenitors. Dev. Biol. 333, 78-/ Y( F' {+ I: a' h8 O+ J* {, S( X  M
89.
  K1 Z% Q( f1 P5 T2 g9 Z" cMoretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y.," `" G( }1 v4 M& p' o- C2 |
Qyang, Y., Bu, L., Sasaki, M., Martin-Puig, S. et al. (2006). Multipotent! k/ u8 Z1 L& a, S$ @
embryonic isl1+ progenitor cells lead to cardiac, smooth muscle and endothelial- j7 U- s- n% ^' g  `
cell diversification. Cell 127, 1151-1165.
/ M, |. A' \" K/ r, U4 n" zMotoike, T., Markham, D. W., Rossant, J. and Sato, T. N. (2003). Evidence for
6 c( x# W, Z0 w/ Tnovel fate of Flk1+ progenitor: contribution to muscle lineage. Genesis 35, 153-8 N. E8 u" @- i$ V  g
159.3 E2 }3 N8 T7 H+ X
Omelyanchuk, N., Orlovskaya, I. A., Schraufstatter, I. U. and Khaldoyanidi,
+ N2 m0 Z5 n6 l- z0 dS. K. (2009). Key players in the gene networks guiding ESCs toward mesoderm.
8 Y% r8 T6 ?( K7 oJ. Stem Cells 4, 147-160.
  a' l: {# \  EPark, M., Yaich, L. E. and Bodmer, R. (1998). Mesodermal cell fate decisions in8 c) E6 {2 X) p2 c$ F
Drosophila are under the control of the lineage genes numb, Notch and2 Z; B3 i- ^& `$ S; P. z
sanpodo. Mech. Dev. 75, 117-126.# k1 I' s& L" h7 N4 N; _9 S
4811 RESEARCH ARTICLE ER71 governs progenitor fates
( x9 p5 X9 V. f: {' ?9 }DEVELOPMENT48120 x0 Q; P# M' X
Sarb, S., Cimpean, A. M. and Grigoras, D. (2010). Tie2 expression in human
$ O9 x+ b" v. {% iembryonic tissues. Rom. J. Morphol. Embryol. 51, 81-84.7 h% i$ O& F& [% |" A
Schlaeger, T. M., Bartunkova, S., Lawitts, J. A., Teichmann, G., Risau, W.,
! U+ a; ^) R0 u$ bDeutsch, U. and Sato, T. N. (1997). Uniform vascular-endothelial-cell-specific
0 a+ |: H3 p2 w) T' R- q" Z5 `gene expression in both embryonic and adult transgenic mice. Proc. Natl. Acad.
/ W7 _1 d: w) m- n& O. f( l- \8 A& FSci. USA 94, 3058-3063.5 h$ X- y" n% E5 h& L" F8 b* c, `
Schnurch, H. and Risau, W. (1993). Expression of tie-2, a member of a novel+ O/ n, d8 J4 v8 I
family of receptor tyrosine kinases, in the endothelial cell lineage. Development
: k$ K4 [* Y! ?6 ?1 h119, 957-968./ V: D5 z, Y$ ^: [/ K) x9 ?
Smyth, G. (2005). limma: linear models for microarray data. In Bioinformatics and3 k& ?) r/ p* H6 H1 X" |( ]) g
Computational Biology Solutions Using R and Bioconductor (ed. V. J. C. Robert
# i9 I5 }3 e% wGentleman, W. Huber, R. A. Irizarry and S. Dudoit), pp. 397-420. New York:
5 |& K0 S1 Q9 `" Y$ p1 d9 g1 u( sSpringer.
- @, h" r4 y# L$ YStanley, E. G., Biben, C., Elefanty, A., Barnett, L., Koentgen, F., Robb, L. and
# L. [6 ^! {  S, l. d$ U% }7 XHarvey, R. P. (2002). Efficient Cre-mediated deletion in cardiac progenitor cells
# M/ X# n* p1 g/ I: ~0 o/ xconferred by a 3UTR-ires-Cre allele of the homeobox gene Nkx2-5. Int. J. Dev.* Z! r! S8 l( u/ _. D
Biol. 46, 431-439.
: d. y8 U4 e' C" l! p% iTakakura, N., Yoshida, H., Ogura, Y., Kataoka, H. and Nishikawa, S. (1997).
8 d" r7 C5 v1 l7 O' q9 ?PDGFR alpha expression during mouse embryogenesis: immunolocalization- i  H( R+ j. Z: {
analyzed by whole-mount immunohistostaining using the monoclonal anti-, `7 c0 ]4 r# R' D6 v- x
mouse PDGFR alpha antibody APA5. J. Histochem. Cytochem. 45, 883-893.
+ L1 W/ b3 G2 |, v: e/ j; w- q. ]Wei, Y. and Mikawa, T. (2000). Fate diversity of primitive streak cells during heart
. o8 S' A: s7 N+ A" Q" n$ l" |field formation in ovo. Dev. Dyn. 219, 505-513.) R  b# [- D9 }$ @( P0 q
Wu, S. M., Fujiwara, Y., Cibulsky, S. M., Clapham, D. E., Lien, C. L.,: K. x0 d/ e  A* Q7 W1 {5 c, j! y+ Y
Schultheiss, T. M. and Orkin, S. H. (2006). Developmental origin of a1 P( A8 w& u# B1 w/ g) a+ I5 S8 t
bipotential myocardial and smooth muscle cell precursor in the mammalian8 Y% I, P7 O# _, O. c" L
heart. Cell 127, 1137-1150.' X; G% W- [& U& ]. O
RESEARCH ARTICLE Development 138 (21)1 ?4 `8 ^) Q; ^! o8 I& z5 b
DEVELOPMENT
已有 1 人评分包包 收起 理由
细胞海洋 + 5 欢迎参与文献互助

总评分: 包包 + 5   查看全部评分

‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2025-5-9 03:43

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.