干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
干细胞之家 - 中国干细胞行业门户第一站 干细胞之家论坛 干细胞文献资源库 藏经阁 Mesenchymal stem cells within tumour stroma promote ...
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 501223|回复: 242
go

Mesenchymal stem cells within tumour stroma promote breast cancer metastasis [复制链接]

Rank: 1

积分
威望
0  
包包
8  
楼主
发表于 2012-5-17 17:15 |只看该作者 |倒序浏览 |打印
Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the, T  E& r, L  _' ]
tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour' V2 l3 S' c0 I! n( e
pathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived humanmesenchymal stem cells,
# b- r& f6 v3 M# g  Hwhen mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their' F! L% s3 I0 w+ ]
metastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour4 a' K% _. H" B6 L2 Q' v
xenograft. The breast cancer cells stimulate de novo secretion of the chemokine CCL5 (also called RANTES) from4 q! s# Y/ d) t3 a4 I( T. g- Q
mesenchymal stem cells, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and' T) R( r' b5 L2 l- ^5 P. |* i
metastasis. This enhanced metastatic ability is reversible and is dependent on CCL5 signalling through the chemokine
$ B9 L7 b" f! M1 p2 o  Vreceptor CCR5. Collectively, these data demonstrate that the tumour microenvironment facilitates metastatic spread by
8 \1 x. M9 U5 ^eliciting reversible changes in the phenotype of cancer cells.* |% u. q, y" E! ~5 Z; V
The origins of the invasive and metastatic phenotypes of carcinoma
4 w  K+ u& u9 ~* W: Scells have been the subjects of intense investigation. Whereas some$ p# j6 P, Y# e& F+ D0 _
current models depict these phenotypes as cell-autonomous alterations0 W4 [% f& S( P5 n! g" I1 n
specified by the genomes of cancer cells, alternative views propose) |: C' w% y- c8 k$ ]
that metastatic traits are acquired through exposure of epithelial
* X# b- q6 G$ z% O1 m9 Acancer cells to paracrine signals that they receive from mesenchymal
6 X5 s6 S( D% [  P8 K- @# Mcell types within the tumour-associated stroma. Although several3 u/ u" N) `& W: K$ s
lines of evidence demonstrate the contributions of stromal cells to
& {7 z- x. p, v2 M. Oprimary tumour growth1, direct experimental demonstration of the
# b- m- F4 ?% a! h' u1 @) s& dinfluence of these various cells on the metastatic abilities of cancer
! u& V& n* ]$ U6 z. Z/ y2 M# scells has been difficult to obtain. This is due, in part, to the complexity
. D0 A. d1 u. U0 _of the mesenchymal cell types that are recruited into the stroma, and* d" Y6 c2 x2 c8 y1 u
to the elusive nature of the putative paracrine signals that are, t% M3 y' e$ [8 p% a* b8 N
exchanged between the mesenchymal and epithelial compartments0 K+ {1 v# k! f- Y# {" n* w7 a4 \
of a tumour. Recent reports proposed that the bone-marrow-derived2 c. z6 {" o2 v0 u: G  I) m8 L! }
mesenchymal stem cell (MSC) is a cell type that is recruited in large5 C6 b: U" s( @' m* K6 C
numbers to the stroma of developing tumours2. To characterize better+ y! C5 u% R; W' k/ a/ j
the role of this stromal cell in tumorigenesis, we set out to determine9 `1 }" L3 L2 A1 j) I
whether MSCs could supply contextual signals that serve to
* l( T' R9 Q1 [3 D+ Wpromote cancer metastasis.
" V& i5 p# Z8 t1 F- [. uMesenchymal stem cells are pluripotent progenitor cells that contribute
- L* r; C8 t- i: |' s  lto the maintenance and regeneration of a variety of connective
1 Q! J& [' o' ~% utissues, including bone, adipose, cartilage and muscle3. Although' o7 r( N: O4 U; @( J) f& @) w
MSCs reside predominantly in the bone marrow, they are also distributed, A9 c) A' c! s2 f9 V1 E0 N
throughout many other tissues, where they are thought to4 ]' q+ f1 ]$ V3 A9 c
serve as local sources of dormant stem cells4,5. The contributions of' o7 |+ e/ `/ [7 H
MSCs to tissue formation become apparent only in cases of tissue
3 O" f1 A- _9 n, @: _remodelling after injury or chronic inflammation. These conditions
! t8 {" P7 v5 A) z. eare typically accompanied by the release of specific endocrinal signals
+ r  `' k% Y4 E5 s5 hfrom the injured or inflamed tissue that are then transmitted to the
/ A9 ^# G; u& Y+ `0 zbone marrow, leading to the mobilization of multi-potent MSCs and  O/ o7 ~: R5 x" M. u" E- Y
their subsequent recruitment to the damage site6. For example, MSCs
; t* E' A, ^7 W4 N8 S7 bhave been shown to contribute to the formation of fibrous scars after) l% S/ N: C6 f
injury7.
& `3 {! V9 g! U( ^0 ^The formation of breast carcinomas is often accompanied by a' w$ a: Z3 }: f7 s5 l
well-orchestrated desmoplastic reaction, which involves the recruitment9 H& p9 _) {1 N- \0 y
of a variety of stromal cells with both pro- and anti-tumorigenic
" m( }) Q  x. H7 C( oactivities1. Such response closely resembles wound healing and scar1 D! p# G/ B8 x+ }  R# C# h
formation, and entails the constant deposition of growth factors,
8 }* Z; l3 f# q. u! |: L* Gcytokines and matrix-remodelling proteins that render the tumour
: Y: Y( _" h2 }: w6 V0 Xsite a ‘wound that never heals’8. This suggests that, similar to sites of$ H) y  a" V+ f; j
injury, actively growing tumours recruit MSCs through the release of
1 |/ O" s% ?1 S6 g3 g+ [various endocrine and paracrine signals. Indeed, as we have found,
( [4 O$ ^' Y8 U, ~) E4 Q8 \) o8 d: `mouse stroma prepared from developing human MCF7/Ras or8 U3 C1 `8 o" W2 X. r
MDA-MB-231 breast cancer xenografts is rich in cells with an ability
/ N+ U( }+ `) D' oto generate fibroblastoid colony-forming units (CFU-F) in vitro
3 L/ o- A5 y6 V  t(Supplementary Fig. 1a), a hallmark of MSCs3. The absence of such. a$ f$ Q9 U' ~8 e% n
colonies from control Matrigel plugs or from neighbouring tissues
" {. k; L- h# x/ o/ T& F0 K, q(negative control; Supplementary Fig. 1a) suggested that endogenous
% h" f, z1 A* k# o& S* vmurine MSCs localize specifically to sites of neoplasia.
. ^; C; x' d2 l9 p9 H7 i2 {To investigate whether human breast cancer cells also have the
4 G( {2 }5 {1 V( B2 }+ l# Xability to attract human MSCs, we established a transwell assay
- v, X! y2 ]1 \- ]/ \in which bone-marrow-derived human MSCs were allowed to- j' B& e) D$ x. P
migrate towards media derived from MCF7/Ras or MDA-MB-231
: n' H0 l. ^" C3 p6 t8 Jcultures. We found that human MSCs migrated much more avidly
7 i" c; S4 |  g; M9 c! ?2 F2 f(,11-fold more) towards media derived from these cancer cells3 a- b9 M# `8 z5 g0 }* I7 Z' i8 G4 [
than towards control media (Supplementary Fig. 1b). More importantly,1 q7 g9 {7 `4 C6 T
green fluorescent protein (GFP)-labelled human MSCs
) v. F' E. L6 k+ k( _infused into the venous circulation of mice bearing MCF7/Ras9 w0 m" s, l0 i) E
or MDA-MB-231 human breast cancer xenografts localized specifically
/ ~% @9 W9 v( Jto the developing tumours, with no observable accumulation
; a2 N/ z/ h3 Cin other tissues, such as the kidneys (Supplementary Fig. 1c), liver% g! _+ z. F! ]' b% k- z
and spleen (data not shown). Such findings indicated that MSCs
) X8 V5 l% C  W' m/ g1 {are specifically recruited by subcutaneous breast xenografts, and corroborated' b7 |( x- ^0 A6 d
recent studies that described the localization of systemically9 E$ |. B9 Z: \, P8 Q- f
infused MSCs to other types of malignancy, such as gliomas9,10,
5 O8 Y, ], l: I4 B, D: r( bcolon carcinomas11,12, ovarian carcinomas13, Kaposi’s sarcomas14 and, M, t  Y* b( m0 c
melanomas15.MSCs enhance breast cancer metastasis! ~- w& E+ t, Z4 n" h9 W, b
To investigate the functional consequences of the heterotypic interactions
. t7 U2 T" J+ u9 \9 ybetween MSCs and mammary carcinoma cells, we established
% E2 M6 n, C- b' |a xenograft model in which GFP-labelled MCF7/Ras, MDA-MB-231,
2 O: l9 v. w  O( }+ _/ z7 ~MDA-MB-435 and HMLER (see Methods) human breast cancer
( d9 f9 ^$ S: h! Z6 Wcells (BCCs) were mixed with bone-marrow-derived human MSCs9 c5 m. V- l* S5 Z9 z, L+ }3 Q. a
(hereafter referred to as MSCs) and injected subcutaneously into( S1 z, N) F( _) a; R  t
immunocompromised mice. The growth kinetics of the MSCcontaining
1 H% t: K1 e+ b& B" Qtumours (BCCs plus MSCs) were compared to those of! y) W7 v( E- W  o9 O
BCCs injected alone (BCCs) over the subsequent 8–12 weeks, after
% u0 e0 ^; a6 Gwhich the histopathology of the resulting tumours was studied.) Y) {6 ~# O9 N. E5 {& `
We found that MSCs accelerated the growth of MCF7/Ras
: o5 G' |% l# {  x! G. M; Y. atumours without affecting the kinetics of MDA-MB-231-, MDAMB-
9 U& X* T4 \8 I9 f435- or HMLER-containing tumours (Fig. 1a). More importantly,
; J3 D# y/ {. ]( l. swhereas mice carrying tumours composed only of BCCs
; v4 o4 K8 }$ E: c! ]. q/ D" I+ nexhibited few microscopic metastases in the lungs (Fig. 1b, d), mice
% i' D! E3 t& N) A: Dbearing the mixed MCF7/Ras1MSC, MDA-MB-2311MSC, MDAMB-) u2 b1 Q9 _2 D6 k0 U
4351MSC and HMLER1MSC tumours displayed a marked8 _% F4 t' F3 G2 H# C
increase in the numbers of micro- and macroscopic lung metastases# n6 U4 }; s3 x2 \% r
(Fig. 1b, d). Normalized counts of the metastatic nodules in the lungs% r/ s4 ]6 V) k8 \
of BCC1MSC-bearing mice compared to their BCC-control littermates
' P. d. ~8 w: W, F4 n$ ^revealed two-, three-, four- and sevenfold enhancements in
) \! ]: o1 G/ U7 C* T. j) I' l" O% {the overall numbers of detectable HMLER, MDA-MB-435, MCF7// O5 F8 u; }. w! A
Ras and MDA-MB-231 metastatic deposits, respectively (Fig. 1c).  j$ y9 p: V8 e; C; j
Furthermore, in contrast to the MDA-MB-231-bearing mice, the2 \% H5 X, v$ r$ p) z5 {- T! B
MDA-MB-2311MSC-bearing mice showed metastases to various0 P  g1 a$ G& b  G
other tissues, including the mammary glands (Supplementary
9 L! O9 ]! s$ |2 \+ |- \$ cTable 1). Although all four of the tested cell lines exhibited enhanced" m+ f$ {# @( N0 ~
metastatic potential after admixture of MSCs, we chose to focus4 F5 i' U2 p* @
further analysis on the MDA-MB-231 tumour model, because it" [( X# J! @; T9 ^& n
displayed the greatest relative increase in MSC-induced metastasis7 e: f2 m$ n! O: d$ N
without any concomitant effect on either tumour cell proliferation
1 y- }5 _: U: N; E8 L4 d(as revealed by Ki67 staining; Supplementary Fig. 2) or overall primary! w+ s0 h7 u& L% ~- c- F6 }: l
tumour growth kinetics.
; W+ p6 q; \! r8 d8 `9 h9 J7 |We note that admixture of other types of mesenchymal cells—5 C9 l6 Z# b  p- V# [- k' }
specifically WI-38 or BJ human fibroblasts (Supplementary Fig. 3
  ]; x  f# S: u& Nand data not shown)—to MDA-MB-231 cancer cells before injection
4 [  X% [2 c' W; {. N/ [( {into host mice did not result in either enhanced growth kinetics
. U! e( o8 v  j! F7 [) ~# h* G(Supplementary Fig. 3a, b) or increased numbers of lung metastases
4 C6 p8 v, _" [% q* Z; Q(Supplementary Fig. 3c, d). Taken together, these observations indicated
- a$ r6 s. [3 t$ c( ithat the metastasis-enhancing powers were a specific property9 M( {! ^. A" L3 U, m) B
of admixed MSCs or derivatives thereof.8 S! [4 E. n( B, ^+ f4 r
Reversible metastasis
! S; g5 C9 ~  V3 j8 O7 EImplantation of MSCs either contralaterally to MDA-MB-231 cells or
' Q2 A* I6 G: k: Y! Din nearby separate sites of injection did not affect the metastatic
/ W' v3 {3 i, npotential of the resulting primary tumours (data not shown), indicating3 `' s- @+ c7 f4 s) N; U. h
that MSCs could enhance cancer metastasis only when they+ d# V. `+ O# h* N; K
were in close proximity to the engrafted BCCs. This influence might
% c4 O0 I7 n' g$ |0 u& ybe ascribed to various effects that MSCs exert on the commingled
& y3 h4 N$ e3 X2 Bcarcinoma cells. Thus, the MSCs might favour the outgrowth of rare0 O! y( t+ v, O# R* b
variants within the MDA-MB-231 cell populations that exhibit
$ e; o- N% G" `! W4 _% Punusually high metastatic powers. Alternatively, the MSCs might
1 ]6 L# `; g. w) l% k  tcause otherwise weakly metastatic MDA-MB-231 cells to acquire
+ Z% u) n6 J% G* [% {0 eenhanced metastatic abilities. This latter mechanism suggests the
% s& [- d+ @4 \7 k5 n! F: Hpossibility that the acquisition of the metastatic phenotype might; I# a) z$ O4 x: B
be reversible, in that carcinoma cells might revert to a lower metastatic. L! x* `  C- Q. ]! B; w
state once they were no longer in close contact with MSCs.
9 |1 Q; `- R% m6 o9 R0 mTo resolve between these two mechanisms, explants of MDA-MB-
- Y2 @) c8 X3 ], H231 cells were prepared from BCC plus MSC primary tumours (Texplants)
+ _" w/ f6 {9 J. yas well as from their derived lung metastases (L-explants),
8 g* \; P+ V/ qexpanded in vitro, cleared from contaminating stromal components,0 B! v$ X3 F+ s7 ]% x, w0 W/ i2 y
and then re-injected into subcutaneous sites in host mice in order
6 _8 _( Z% |1 [4 L+ p7 Z; ito evaluate their respective metastatic powers (Fig. 2a). Although
$ V2 N. c, y* i( K, S$ T/ xthe growth rate of the resulting L-explant primary tumours was; I+ R2 J0 i# `4 J" M
marginally enhanced compared to their T-explant counterparts6 F' t: Z9 ?. G
(Fig. 2b, c), these L-explant cells were no more metastatic than the  \8 t4 o. }" J0 R
parental T-explant cancer cells (Fig. 2d). This suggested that the
! {/ h2 r- _1 {7 qa
% d7 Z) L+ \) h, M4 O2 mc d
5 a0 b, k. u6 U. e7 ]Days after injection
6 k; S. d; C# ^$ A1 M# `+ Q" dTumour volume (mm3)( X* V2 t; |: b7 e# D/ G1 X
10 17 24 31 38 46 72 80 89 13 19 26 33 40 47 54 61 68 75 81 10 19 24 31 38 46
( A( m2 Z& v) P2 I" \b  k  i9 q6 q+ n% ^1 ^7 Q5 ]
1 mm 1 mm
8 A' M/ }$ A0 M* |- K2 z1 mm 1 mm
( M4 A. E: e/ a0 p5 q# D3 T300 μm
- ?/ x  V  w  P( L1 G4 kHMLER HMLER+MSC
2 ]: t* G- _0 Y  {+ EMDA-MB-231 MDA-MB-231+MSC8 [: T$ U- p1 `. k4 t2 h+ J
MDA-MB-435 MDA-MB-435+MSC1 N3 B' N- G  `5 [# I/ I3 c7 V
MCF7/Ras MCF7/Ras+MSC6 o  ~5 z* y0 A  y
100 μm
6 N1 W/ B; U- Z+ h7 u3 \' c300 μm
, k. p8 }: N: m- I100 μm
! M: h5 g" S' t  Z8 WMDA-MB-231
) R. W# p4 `4 G5 H9 q! t+ l$ N) NMDA-MB-435) C! }1 L2 J* Z0 n
MCF7/Ras
8 L6 }4 z( ]3 |& |/ A**
$ c- F* g5 N! c- Q; E" U3 PMetastasis index (fold): @$ O; C7 a; Q. `" t) D
08 O9 w' t: b; k; g# k
1
- f6 b8 w# F* K  v; U- A3 v- s2  w) g! l' Y7 E$ k+ }8 Z
3
4 w+ W: |# i/ C4
3 e9 V% [# a) z1 l; K5) L) l  Y+ o9 z$ `( V* m! K. `8 t
68 o9 C' L# W9 Z3 S0 ?! f5 p1 Y
74 A$ U3 D, @6 \4 |( a2 ~) K: l! T
8
8 e% m# t) t9 T% u3 [# W97 F2 P. y2 M0 Z3 @& H
** z* \7 l9 c3 p" U% @4 m) `: l. A
**
" a3 J$ t6 f- j; K**
; E# t4 w* J$ QMSC – + – + – + – +$ u% D5 ]4 s: ]- m
*
9 L, R; E4 K, w% ZHMLER% [: p' y, q: r1 U" k% q, L  a
700 1,200
4 A  R( ?; f, e/ N" E' ~1,0006 W' k% q& n! O% L& z
800
6 P/ ~% q( {+ ]9 \- g7 i600
+ H: K3 w( r! x400
1 g8 t# v0 y7 ~* c6 X% V200/ o6 X) X: ^7 a
0
6 |$ i- W0 h# d" G; h8007 N1 u) R! ?) D  g# j2 t
700* h( |. _( u2 S3 R, n# n7 h
6005 w8 b7 f! ~) u! E3 b
500
& T# ?* j' X6 e: q5 G( t" ?400( P# y/ o/ G7 A& O* z9 Y: ]
300
& |2 Q. b$ {; N4 K  J200
7 x2 F; E! L: v3 L; K9 O6 c100- Y% Q* ~: a  I$ q( o
0! m7 q! L" P  Z$ |7 P
3,500
# R% f+ J: s  k9 t0: u! M8 K  p! X
500
: y2 \& f& z& ~, G* E1 a; G1,0001 @2 q" n! T8 ]- G
1,5005 M+ U* E- U  F4 Z& v! y
2,000$ j7 Z3 B9 ~  x! M% u2 g
2,500. f3 h: V/ q: f: o0 G
600 3,000. C8 [4 C5 k( m* C: x! c
500  J( b3 Y& D4 }3 c% F
400( _! N- z6 h7 g' d1 s7 c
300
! Z  Q- @4 A) ^# n( r200
! I# |/ U% Q0 U( J3 x1007 @6 G% u4 U& |* \1 d
06 D- p8 m0 v$ j
0 21 31 38 49 56 63 70 78
( V' X6 `; I; p  H6 D0 ]* `MCF7/Ras alone7 e6 ?8 v) P1 [+ w$ Q5 ?- g% W. Q
MCF7/Ras+MSC! ?& U. v/ t# x; H3 Z( `' e6 F' y
MDA-MB-231 alone: }# X5 O! L7 v
MDA-MB-231+MSC, W- r1 u1 U# {  t" O
MDA-MB-435 alone
5 `" j3 Y$ l$ {6 S9 P8 X" k  gMDA-MB-435+MSC( ^* \/ s  q# n; u
HMLER alone! {3 Y8 r; S0 V5 j9 V
HMLER+MSC
" K6 t5 Q. C- _  oHMLER HMLER+MSC& S3 u* k6 q* Z4 O6 m8 m
MCF7/Ras MCF7/Ras+MSC3 E% ?! J/ h0 H; a( o4 j
MDA-MB-231 MDA-MB-231+MSC# y0 n$ @1 P3 e7 g- C: a6 [1 r
MDA-MB-435 MDA-MB-435+MSC# s: a0 T1 V; t/ ^$ s5 Y% z
Figure 1 | MSCs promote breast cancer metastasis. a, Tumour volume
3 A9 z# }! w9 z) i8 Kmeasurements (mean6s.e.m.) of 500,000 GFP-labelled BCCs injected
+ B4 `7 a* V$ n4 s7 f2 Fsubcutaneously into nude mice with or without 1.53106 MSCs.
: ?& w  a4 y$ p& x3 f8 E( Y! g1 WRepresentative data from multiple experiments are shown. Diamonds, BCCs( G6 d! V% r3 R/ L9 M
alone, n55–7 mice per group; squares, BCCs plus MSCs, n55–8 mice per
# n: x1 |2 E  pgroup. b, Representative bright-field/fluorescence images of lungs of mice
: L5 W! z9 f, I8 z$ B" wbearing the indicated tumours. Cancer colonies are in green. MCF7/Rasbearing
% n( \4 l6 x8 b9 ^2 u2 y  ^8 o/ omice were killed at approximately day 150 to allow these tumours to8 y4 ~$ k, G$ b/ H+ }
grow to comparable sizes to their MCF7/Ras1MSC counterparts. c, The4 S6 Q* e. d+ R* Y5 Y/ U% K! E( Y
lung metastasis indices pooled within each cohort of mice in a are expressed, A/ x) n, i( R
as fold increase (6s.e.m.) over controls. Data shown are representative of
/ B- U! H) L9 q# v" J1 R; `multiple repeats. Asterisk, P,0.01, double asterisk, P,0.05 using onetailed
8 ?4 f  g* @2 N2 y( U" {! DStudent’s t-test. d, Representative haematoxylin-and-eosin-stained
8 L+ ]& R2 i' X  Zsections of lungs of mice bearing the indicated tumours. Metastases are1 f0 I7 q1 p7 k0 }" t5 m& X
delineated by a dashed line.MSC-induced metastatic powers reflected a reversibly induced trait
+ ^8 c  }+ g6 Oof the MDA-MB-231 cells, and that the ability of these cells to metastasize
4 e) t) Q# _7 ^( [5 v& Mto the lungs was a consequence of their ‘education’ by MSCs in9 K7 N# n2 N. ]" a& T" p* p7 o
the primary tumour rather than the selection of rare variants of2 ^8 X* E/ o& n8 v' I, I4 W
MDA-MB-231 cells that display elevated metastatic potency in a& h/ @/ J: e2 @3 v
stable fashion.0 g' k" f3 i! C0 I
The effects that the MSCs exerted on the BCCs might have3 Y5 P0 P; S5 X1 g
occurred within the site of primary tumour formation. Alternatively,
' |0 u4 d( g. d6 e& Q, ~) u- ethe MSCs might have accompanied the metastasizing BCCs! \/ B' e9 {, r4 K$ b
to sites of metastasis formation. To distinguish between these two/ m& U$ j; x5 u, I0 e
possibilities, we admixed ds-red-labelled MSCs to GFP-labelled, ?  X3 Z1 j6 [8 f
MDA-MB-231 cells and implanted the mixture subcutaneously in
; G4 X" X5 q, q: x$ d% A; h8 ghost mice. We found that the tumour-derived lung metastases contained% i! D3 C! d4 W" s) S/ e
green-labelled MDA-MB-231 cells but no detectable redlabelled
4 D' [* B% U- x; s) O) z/ A4 gMSCs (or their derivatives; Supplementary Fig. 4a) when
! o) U" S+ a+ m. j0 o! `scored 4, 5 or 6 weeks after primary tumour implantation. The9 d* }/ C  x$ v9 P8 m1 K9 ?# l& a
absence of red-labelled MSCs from the lung metastatic sites cannot
; q5 X" h9 c; ^& fbe ascribed to an inhospitable lung parenchyma, as MSCs that lodge
( C2 ?1 u, a& Z" v3 Xin the lungs of recipient animals after tail-vein infusion survive in that5 p( G% {# I# f' {; q
environment for ,6 weeks after injection (Supplementary Fig. 4b).* o& h1 N' v5 y4 n, t
Hence, it appeared that the admixed MSCs do not migrate in large! x  a, ]% @& h1 t2 W# T# S
numbers to the sites of metastasis, and that they exerted their prometastatic
& |) g6 b" V! D+ l3 Geffects on BCCs in the context of primary tumours.( ?& o% O( D& K  h, j. r$ F" E
CCL5 in MSC-induced metastasis, J4 @) M7 ]! E* m
The aforementioned observations indicate that MSCs supply locally! M' U1 i* h4 Z. y2 m
acting paracrine cues that induce BCCs within primary tumours to$ q* E3 E: c) F4 R) G; y6 v! c
metastasize. To understand this crosstalk better, in vitro co-cultures
4 z2 G- {+ U7 u4 f6 Bof MDA-MB-231 breast cancer cells and MSCs were established and
& ~( S  _& n9 Z1 [their conditioned media were screened for the levels of various cytokines,
) e* Z8 I! {- `7 r% Mchemokines and growth factors using the Luminex-based Bio-
) l6 W* |7 x) L7 Z2 L& APlex suspension array system (Fig. 3a). In some cases, the resulting( \. e; j; Y0 t. o/ S/ h: A1 G4 @! r
a
# ^/ u" G+ g7 O; F) y! ?- {# {- v5 lb c d
! a9 H3 `4 Z7 GDays after injection
, D# Q/ {( D% J+ H  ~; ~& s! N! }Tumour volume) b8 g$ L( B6 v% d. g
(× 100 mm3)
1 L- k! V% n! b' n5 }0
/ _6 t0 J+ i+ {- ?5
2 ?! T% h1 c- I' y. Q9 b103 X. f+ O, `1 D
15' ?# _& c; o8 v1 d/ A' L
20
2 M/ U8 t, K2 @& K. M, ^5 t25. h" g8 W7 B) V
14 17 21 24 28 31 34 38 42 45 48 66 71 77
& D7 W2 V5 A2 F0 Z3 [/ l: u# @Primary tumour explants
2 Q/ s5 m1 H2 T4 J, g& O& P7 `* cLung explants  v/ y- d3 y+ |2 }$ P# G" K
MDA-MB-231
8 J) t0 B; `! x4 {+ JMSC
' ]. T* G2 f& k5 F; V+
0 w$ J) S+ T& j( v% O: i& Q! M2 jLung explants
' C& t8 n6 R' ^  nPrimary tumour8 J, u' I( y/ l  _
explants1 P& o. h3 r( e& t, L. r' Z1 A
Antibiotic
! g  w7 M3 J6 r% hBCC selection
  S$ K8 w$ s  z$ c; e! m/ R3 BT-explant& q3 E1 }  q/ c* C
L-explant0 `; \; S7 H) z  t) u9 X7 m3 k
T-explant& v6 z! m, t) `# F$ _
L-explant, d9 F+ T, N; T/ U& k/ [
Tumour mass (g)
* Y: v1 W  {1 y! i, A3.0& ~, {! K' Q. ^# d
2.0
' V+ k# U7 _3 }+ v1.0, n# Z! w( f- e/ }6 y6 X1 |# I
0 0
) V0 c. b+ W6 ?6 g" k8 Y0.4
8 F2 T4 l4 b# R% f& Y9 j) m9 \0.8
/ X& d+ \! g8 H: j1.2" k" {2 p( j. H1 j  A; J+ l
1.6# n( i+ b' j& S. L7 v, L5 P6 G
2.0' V( ?; }+ x9 Y& r9 ~
#5 F( u% l: t" \, K% N2 [7 y
Metastasis index (fold)
1 ]  }& d/ `% @* t) |7 I##
; m- ~) g- I. t$ g! bFigure 2 | MSC-induced increase in the metastasis of MDA-MB-231 cells9 C, l8 P  V8 q6 z
involves reversible mechanisms. a, BCCs were recovered from lung or
* ~; ^8 H6 v5 k3 A1 hprimary tumour tissues, cleared of stromal contaminants by culture in6 V4 G) m: F% S" H3 o) A
blasticidin-containing media (5 mgml21), and re-injected as primary
( z- p/ n# o1 s8 |subcutaneous tumours in recipient animals. b, Tumour growth
$ ]- ~+ x) M) R: i(means6s.e.m.) of 500,000GFP-labelled lung-derived (L-explant) or primary
0 H% l" {* u# L: }6 N% Xtumour-derived (T-explant) MDA-MB-231 cells inoculated subcutaneously.) d# U; |5 p" Y0 k
Data shown are representative ofmultiple independent experiments in which
' w  k. `/ S3 ?% r- b( Ufour different paired batches of L-explant and T-explant cultures were assayed7 _2 {( ]# ~/ @4 f* W# f! v! `
in parallel. MDA-MB-231-T-explant (n58 mice); MDA-MB-231-L-explant
, \+ G  `* F7 T+ g(n510mice). c,Masses (means6s.e.m.) of tumours in b.Hash,P.0.4 using8 C4 K; ^  Z* Z: a+ v5 A
one-tailed Student’s t-test and indicates no statistical significance. d, Lung: Q# x5 |% D1 T! P+ ?
metastasis index of mice in c. Doublehash, P.0.3 using one-tailed Student’s
% r. `) ]+ o1 R4 u; A7 C0 L( It-test and indicates no statistical significance.
" S+ q# {( C) r8 }5 i+ za8 Q/ z* v1 w" E! M
CCL4. E9 S. ]) T0 L
bFGF/ h8 [& T4 ~0 j; t. z
VEGF
" |8 p0 Y% h8 A! i2 z9 w3 FIFN-γ
$ d9 ]+ r9 k0 [% q0 ITNF-α1 ~& x" o2 k0 u  i( E+ ]) P" _$ S
G-CSF/ h3 g; R1 y6 ]* U: m! d! {7 V
GM-CSF- f4 I. R- n7 M7 z
CCL3
, _$ |! J6 E7 O$ I0 l0 DCCL5# _: U9 i* K$ h7 v
MMP1
7 N" f* b4 l' VMMP3% r! f* e( P2 F* G( \# [
MMP9* j- @6 |% v' f8 ~+ W
MMP13
+ p' H, F, H8 j0 ]# s  q0 AIL-1α4 P) f+ M/ W. M1 }6 b2 ~! q
IL-1β5 s; }1 f6 k. F1 G" Y. K& e4 L
IL-4
8 s% ?3 p( S/ q' p8 PIL-5* L% M/ F- _% X2 U& n7 F+ o- I7 U! d
IL-6
; k+ e4 I. u5 N8 j: w# N3 C% ~: @! EIL-72 G0 ^4 W8 s+ c& y6 D1 z- t4 g4 k
IL-8
- [, Z5 x" V/ o% J( aIL-10) u! r" R$ U7 [0 e7 e
IL-12
' Q; b+ C6 |+ _6 G2 S( z9 E& TIL-13
' H. A. D3 H! G' a* [$ s* o9 t6 xIL-17
) d. @0 }8 H9 ~7 fIL-2
7 K5 C2 L. T; K, kTGF-β
$ S+ j# m. _" q2 @3 p4 G4 _Fold induction
" P/ y: G+ l! HMSC alone
) h7 C: h/ @) r1 H  M8 |MDA alone
6 ~$ G3 E  I6 ?MDA+MSC (2:1 ratio)2 P6 ]' c# e6 `8 X* d
1 * * * * * * * * *6 m! f% X/ V2 K; o1 l5 u3 ?
3
' @" u; W! G" _% l5
0 c( u& C: j+ N+ T( I: _& o) S75 _" C' c3 o* T2 o, H6 @, v$ R; [
9, I- _& z2 b1 q$ ^& z2 ~& E) ]
11. ?$ `. _: U( p9 M6 z2 r1 M
13/ n6 }5 T0 L, e2 r
60
% C8 W0 m  l0 ob c# v/ @1 r9 c1 T% Z" O0 P  C
0.4 μm
' o* f/ B; u, W# A2.0
! p6 Q2 s) j# B* d9 k2 K1.88 h1 |  L; |. x4 Y3 I& G$ C
1.6
: I, n  O' q0 z3 U3 I8 p! Y1.4
, j5 y: g: e& S0 q9 }: O, P1.21 A! s& h" ^- o7 d- ~1 ~/ m
1.0
" d8 r9 Z" S% j* T0.8
# z9 z: Z- ]; g) _' H5 x  a+ r0.66 h& W2 v" F1 O4 e0 v
0.4
. `9 i' R9 i% F1 g( G0 t7 n  e0.2
, c, b+ P0 P# T% ?: Y. Y! d0 0
6 Z2 {& f+ s  L3 N3 `2 Y5: ^- A9 O; W# O
10
2 `  B% C- I/ ]$ v' M* B# |156 m! }  d3 `% W* S* t$ d5 q; z
20. l3 u5 `8 S7 n! {: ^+ c
25$ R( ~0 r% L, U! {
30
1 f: [% z  o: c  a354 [' h- w  Q" G6 p" O
40
* l5 H# q6 g0 Y' _& k: [9 n+ p45
+ C7 k5 _1 E2 u2 p50
+ `/ r: t& ~# V& ^2 a' H: }d1 d2 d3 d4; z9 y, v7 [" V8 K& ?; W2 `! f
MDA alone
2 N2 n: j8 |7 N; nMSC alone
! H, o0 u; V* K( DMDA+MSC
6 F# p  U6 K$ }CCL5 levels (pg ml–1)* H* K. ~1 o6 x. Z8 v3 y
Co-culture* A7 ~9 T" }$ W% i/ m" G; {
Fold CCL5 induction. ~$ A  [, c/ I" O. ^
MDA alone) `9 K) A/ z$ c. j7 }8 |
MSC alone
1 B+ J# [7 [5 t6 l7 E% z/ G: M; ~2 n7 ~MDA+MSC: ?# w( M' F( b; m( h
d
: d! N0 s$ V6 u7 x) WCCL5 (A.U. × 100)+ T! s$ n, s4 M, q5 l
30% A$ H# a9 w& H2 L8 K  N: j$ T
25) Q0 d; d5 Z+ M9 V
20! R0 s4 A3 @* J3 q% e: {$ }
15
; m, W3 @1 E+ [10
8 r2 x- l5 O, q3 Z) \7 \5
# P' G5 }, t: Y8 Z1 s2 a% g, m3 y0
1 n1 z4 N0 o' N& B) w9 i, }+  G8 S# G; X  B0 H1 U
MSC.c
0 \  L1 o$ B, A6 c3 _! d+- z' y/ R4 N8 V& g# \
MSC.1) E+ g# e7 P( U
+; I0 X9 p. }1 E( d/ }
MSC.5
+ ]; i/ Q) c9 N; U4 L5 ]MDA
* p7 l( k0 e+ {MSC5 j! R3 f2 u6 v4 A0 |+ H! Z0 P
MDA.1
( f% W5 F$ R+ e+ a: c7 M4 JMDA.c
: k5 c; H4 u4 `+ r8 T$ DMDA.56 W! I: m/ O- J' \( H/ f6 _# |! H
TC-MSC. ?7 x  ~7 R: V
MSC (from MDA tumour)1 ]# ^* {! @5 m: ^) n, K
BCC (from MDA tumour)
5 O/ ~3 |& h- [( G9 A. cControl (MDA/CCL5)
% e' j* y( q1 a1 kCCL5
: p, P  \" Z+ P5 }, dGAPDH
8 _( k. [: z0 r' `7 k7 \0 W0 qe- v* E5 l$ ^0 Q$ k5 G
Figure 3 | The interaction of BCCs with MSCs causes a rise in the levels of
, ?5 M, O8 z, o1 O, D$ LCCL5. a, MDA-MB-231, MSCs, or MDA-MB-2311MSCs were cultured in
: C6 D  R7 }6 S" A. Pcompletemedia for 3 days. The levels of various factors in the cell-free culture4 X' q" g% F8 k; P3 l+ R+ i
supernatants were measured by xMAP Bio-Plex cytokine arrays at day 3, and, l; V/ U  c. m- O: V9 z
were normalized to the levels observed in the media of BCCs cultured alone.
, _  H- M  r9 W' [* q4 uData are expressed as fold induction6s.d. of triplicates. Asterisk indicates
" X' B+ r# M2 y5 Y$ j, Pundetectable levels. b, CCL5 ELISA on the media of MDA-MB-231,MSCs, or
: d; ~6 r+ g# d8 Y( B, zMDA-MB-2311MSCcultures (1:3MDA:MSCs) at the indicated time points.# c% ]2 J( P/ P# I4 F/ J' _5 H8 E  j
Data points representmeans6s.d. of quadruplicates. c,BCCs were separated
6 g2 }7 I7 ]8 c0 Cfrom co-cultured MSCs by a 0.4-mmmembrane. CCL5 levels were probed by3 m' I! C* [: ?6 o
ELISA on the culture supernatants. Data are expressed as fold induction over
9 U) G5 X  s$ T+ olevels seen inMDA-MB-231 culture supernatants (mean6s.d. of triplicates)." ^. J+ `9 }: p' S  }" q# R6 p( a
d, CCL5 ELISA on the supernatants of MSC-siluc (MSC.c), MSC-siCCL5.1
0 N  T. U- l/ ^) [! ]) H0 K: U(MSC.1) and MSC-siCCL5.5 (MSC.5) co-cultured with MDA-MB-231-siluc3 C( n2 K% U: H
(MDA.c), MDA-MB-231-siCCL5.1 (MDA.1), or MDA-MB-231-siCCL5.5% ~$ M7 H  f9 M9 h5 q
(MDA.5). Data are expressed as means6s.d. of triplicates in arbitrary units
' B1 Y) {4 D; M( y(A.U.). e, RT–PCR analyses of CCL5 in MSCs and BCCs sorted from  t4 }5 V* j6 _5 s& W  [
GFP–MSC1MDA-MB-231 tumours (3:1 ratio) 4 weeks after tumour
8 x* u( h/ |* ^: e4 B' eimplantation. Tissue-cultured MSCs (TC-MSC) and MDA-MB-231/CCL5) N/ g1 b5 b3 F1 j1 n! B2 k: C' _
cells were used as controls. GAPDH was used for equal loading.levels of certain released factors (for example, interferon-c or8 b) k5 Y: y2 S( N
tumour-necrosis factor-a) reflected the additive contributions of# n1 C) b' k' T! G. [
the two cell types when cultured on their own. Notably, the levels
6 P% z3 w9 e3 R& ]of only one cytokine, CCL5, reflected a synergistic interaction
9 q2 i6 x2 \8 g- bbetween the MSCs and BCCs, as it accumulated to levels ,60-fold# A1 y2 I/ |! c! q! H; i& _
higher than those produced by pure BCC cultures (Fig. 3a). This# X' W, }% T( `0 U1 r4 d
cooperative induction of CCL5 was proportional to the numbers of
1 q# a. G, h. v& I! x" q- s8 AMSCs mixed with the BCCs (Supplementary Fig. 5a), and was apparent+ R9 |4 u4 d5 M& y" J6 d
as early as the third day of co-culture (Fig. 3b). Moreover, this3 m. s( k# g, K( x) T& m1 s5 P% g
induction required close physical contact between MSCs and cancer3 r* j9 d2 `4 V  l+ e3 E
cells, because it failed to occur when the two cell populations were
8 `  L/ ~6 Z* ]; j4 Zseparated by a permeable membrane (Fig. 3c).
2 r3 s, v: [* v: Y2 M8 X8 W7 CWe undertook to determine the source of the CCL5 produced  S$ G8 B; J$ u0 D+ H# h! K; t: `
under conditions of co-culture. To do so, we stably reduced the
# k4 m" t' Y- n: T4 `3 h1 Nexpression of CCL5 in MDA-MB-231 cells by.80% using short+ A0 ?2 ]2 \3 ?
hairpin (sh)RNA (variant siCCL5.1; Supplementary Fig. 6). Importantly,
) A5 D# `1 S) C9 ~however, subsequent co-culture of these MDA-MB-231.1 cells
. q: F1 L8 r1 P, ]with MSCs continued to allow accumulation of CCL5 in the culture
. v+ p- c2 s5 \: w* Asupernatants to levels that were comparable to those observed in the6 B# c/ L6 @! d8 R9 O& E. T
co-cultures of MSCs and control cancer cells (Fig. 3d). This suggested/ ~1 h! r/ V3 D* S! _
that the source of CCL5 was the admixed neighbouring MSCs.
% Q) B- p' p4 K& w/ u8 @Indeed, inhibition of CCL5 protein expression in MSCs using the
& i1 |5 y# W( V' B) bsame shRNA hairpin vector (MSC.1; Fig. 3d) resulted in more than& U3 D# g1 M3 t# d1 D& H; ^! f
75% reduction of CCL5 protein levels in the co-cultures, indicating# X9 A$ V0 E( M: j9 s
that the MSCs were the major source of the CCL5 observed on coculture* u2 E2 r+ z6 y; b, c1 f* d
of the two cell types. In support of this conclusion, analysis of
6 G5 r* P* y* B# uCCL5 levels in the media of MSCs or MDA-MB-231 cells separated' n8 w  N7 z- O
from one another after 3 days of co-culture indicated a strong induction0 w0 T- O4 l) J% y* H
of CCL5 in the culture of MSCs, but not that of BCCs (Supplementary
+ H* D6 |) f: p: R/ \2 F" J1 rFig. 5b). Finally, polymerase chain reaction with reverse
( y' ^  b  T0 a) T! a8 J7 k/ g$ Ytranscription (RT–PCR) analysis of the RNA prepared from these coculture-* ~; @$ o/ l( J# Y8 Y' y
derived MSCs (Supplementary Fig. 5c), as well as from the' j7 E" I1 K& z8 l
MSCs isolated from MDA-MB-2311MSC tumours ,4 weeks after' i: t& ?9 a9 T2 Q
tumour implantation (Fig. 3e), indicated a strong accumulation of
- O  @, h+ x5 a4 j+ |$ w" aCCL5 messenger RNA, suggesting that an active signal transduction' p  @' H1 r+ J* Q+ t1 t; {4 ^
pathway is triggered in MSCs by the nearby BCCs.- A$ T$ G$ L0 }+ ^
A series of observations has linked CCL5 signalling and cancer. For, I3 X- z7 P6 n# p
example, CCL5 levels in the plasma of breast cancer patients have- \7 G0 ~3 I3 W% H* Q
been correlated with the severity of the disease, and localized CCL5
# ?3 u; U1 q7 m+ t) W5 X% D. kprotein expression was found to be elevated in invasive tumours
4 N4 t/ ~  |" u, Y# y7 G' Q9 T2 Swhen compared to in situ ductal tumours or benign lesions16,17.! _& `4 T; {2 m! y* ^9 A  T( O
However, the precise contributions of CCL5 to cancer development
) X3 u! S2 {. B) z6 r$ xand progression are poorly understood. To investigate further the
/ U4 x7 v1 R7 L! A! |$ B& Npossible causal role of CCL5 in cancer cell metastasis, we overexpressed0 E: s4 a6 T0 ^5 n6 u! j
this chemokine in the MDA-MB-231 BCCs (Supplementary
8 H' k+ o4 o% h& y# VFig. 7a) and analysed its effects on cancer cell growth and5 _1 L; Z/ \( h5 z: k; q
tumorigenesis. The overexpressed CCL5 did not confer any proliferative
* J" E/ i. J1 O0 a) }advantage on cultured cancer cells when compared with9 X9 u2 y7 g. ~! g4 q
those lacking such overexpression (Supplementary Fig. 7b), and had
( l. v% }5 X( x# S+ d0 Q# K0 gno effect on the ability of BCCs either to grow in an anchorageindependent
* o, L" |6 T% y; ^9 W) Tfashion in vitro (Supplementary Fig. 7c), or to form  B7 c& C: g1 g
primary subcutaneous tumours in immunocompromised mice (Fig.
7 n  ~1 z! ~( t1 K" S, a4a). However, these tumours exhibited a ,5-fold enhancement in
" i+ t- l; @8 f. ttheir metastatic potential when compared with control tumours
' Z" ~$ P0 A, ?2 J. D: ylacking ectopic CCL5 (Fig. 4a). Similarly, overexpression of CCL5
' V" x% R5 [3 @5 d; ~! Vin WI-38 fibroblasts sufficed to enable these cells to promote the
* v% `$ ]# u. v, J. Y1 ametastasis of admixed MDA-MB-231 BCCs (Fig. 4b), indicating that
# T( M6 b3 I3 b% M" I$ Q7 kthe actions ofCCL5 are responsible formuch, if not all, of the observed6 p6 h; \& C1 Q; K5 d
MSC-induced metastasis by the BCCs.9 i2 e. }* }7 f% g7 d" t* g$ B" N
CCL5 promotes lung colonization2 m- W6 h* k  _) @3 E; U3 V1 g1 \
Previous reports have described an important role for CCL5 as a- }" D1 i, f3 ?6 M. ?
chemoattractant for stromal cells, such as macrophages, that express
6 }: n6 Z0 E( |' a* f2 Aone of the receptors for CCL5, CCR5 (refs 18, 19). Furthermore,1 i, q. c% s5 Q( c$ A* x- T3 @; h8 @
CCL5 expression has been associated with increased tumour neovascularization,% T7 e$ _* l& j" _$ X
suggesting that endothelial cells, which express a variety
- T$ o- R$ L2 w- i+ |+ Rof chemokine receptors, may also be attracted by CCL5 to sites of
3 j9 R4 _0 m" Vtumour formation, thereby enhancing tumour angiogenesis20. Such
. s9 s2 O2 \& K9 u4 a) K* ~observations suggest that CCL5 may contribute to breast cancer  t( Y! l6 a7 F' e
metastasis through the recruitment of a number of stromal cell types
  H% g( d2 m7 Q; zto sites of primary tumour growth.
! `+ G$ {( j& A4 V( K1 O' GHowever, immunohistochemical analyses indicated that the
1 c5 x! L! |' P6 qMDA-MB-231 control and CCL5-overexpressing MDA-MB-231$ \; o# M" l- z* N$ P4 x
(MDA-MB-231/CCL5) tumours exhibited comparable numbers of
: p9 `0 y2 O& K" n& g; Dtumour-infiltrating macrophages and had similar vessel densities (as/ @9 [$ Y" o8 V/ X
evident by F4/80 and MECA-32 staining for macrophages and
0 o% F; L) B6 ^+ j/ \- Pendothelial cells, respectively; Supplementary Fig. 8). In addition,
9 u3 h1 W' A, w6 hwe found that ectopicCCL5 expression did not cause an accumulation: S4 r9 Z& R7 V7 J6 W8 a
of other stromal cells, such as SMA-positive cells, in the examined: B8 i6 `$ O( L5 b- H6 A; Q
tumours (Supplementary Fig. 8a). Together, these data indicated that
6 c5 _& Y& z( Zthe observed CCL5-induced metastasis could not be attributed to
2 B  A7 P, c; i6 wsignificant effects on the numbers of the major constituents of the
/ {/ s+ j7 o, t* t2 G7 S5 [8 fstroma or to the vascularity of these tumour xenografts.; t# C2 o7 k( t8 U) z. j1 W
Invasion and metastatic dissemination of carcinoma cells are often
' V. w* x1 u- a( x, [facilitated by their transdifferentiation through the process termed- U# \) p& t  j# b. y+ ^; D
d f3 a# H8 Y7 d! p" l! u
Bcl-XL
6 o, o/ ?2 C/ CBcl-2
0 v. {, O7 i0 a* Q+ v5 u4 P# Sβ-Actin
8 W0 h* X$ u8 W" d5 F" O, hS473-Akt, ~/ T% R  @8 t! E% Z
Motility
  X7 F& d  W; t3 ^0 L' J0.5%→10%
5 h4 v3 d- o/ B0 W* yLY – – + +
+ q& |1 k, t, m. s& A/ H* |8 D' Ig
, m9 q+ ^8 u0 sExtravasated clusters (mean)- ?* w, h* e. r; E$ O+ t
Migration (fold), w! t0 z  g/ u( \! z! X
*
/ S+ x6 W! H; N0 }, oe
% I1 v: O) z' x% ?3 f0
0 e, T: R- Z: [. M4 L% {/ AMDA/vector
) l$ X7 i# v. d5 oMDA/CCL52 J2 d4 ~/ _0 q" ~9 g
***. q( C' ^3 e! I8 V
Invasion
3 i& j6 X& O2 T& L10%→10%
+ @, [" ]# P+ `# M  s( K% gInvasion+ J- n* X% n7 u% j' U  D
0.5%→10%+ D" ^* u1 a0 I& t2 E
Migration (fold)
' s; `: d5 t0 t" z% D**
' n9 [) I& R" q08 X5 e# l4 K0 y/ T5 v' h, ]" C/ A
0.5
* X) f" {& H. s6 V+ h. `) d8 S0 f1.0* b6 b: |5 z3 E4 m
1.5
1 f2 T6 p& ^5 S7 Z3 b8 B2 M2.0
0 z% P- L" c0 y2.54 g& `1 }3 W* D* |# F
3.0
$ R8 h6 E8 [' I6 J  y3.54 a8 h6 N+ B$ s6 S& E0 @, N
*5 v+ \+ X4 t. M1 F- F' ~
MDA/vector2 G( ~6 d  Q; s9 |  X  Y
MDA/CCL5
3 h% p( ~5 X( i( xa b6 c9 m2 i$ `% L: ]( w# w* e
*$ G) j3 t  O3 b  w
Nodules per lung (mean)1 B& G7 j+ [; Y" q" i
c
' m9 b3 K6 t2 @8 j30/ ~. ~0 R- l) L" z9 b5 t4 D% E% ?
25
' H5 O+ O0 x6 l. p' V0 n) W% P+ W207 z' r9 H& s& x1 c, i/ g
15
! F( E  t: h: ~5 N& X10
$ @, ]" |; O- e) y3 m5
- y2 r) O$ y4 B6 G05 s* z3 g+ F0 m5 r& D" M
Tumour mass (mg)
' N6 f2 z' I; u+ n! F300 X, ?2 q$ b$ q8 v
25% H. G; _0 j7 ]
20
' [" l$ h" k( \) j15
/ M+ M( p% }3 E: {10
! E  c9 n5 E, b4 o. v5
" h7 M5 {; {. \7 n0 0/ ]! {/ [8 a! b* Z4 h3 k9 F6 U8 m/ Z
504 s5 I; `9 L2 G1 N  b
100
( X) s* J% Y- ], _8 I& z150
0 u8 h/ }) _8 M- P200
' {: ?, e# B: z( R250+ u$ P0 ]* ~9 [  g1 p
0
- w" W$ X- [& T% o0 v% O4 D50* F! B/ u7 m) e2 ?: S1 M: f
100/ `4 K/ w5 j: g! V' b
150. d7 ~+ J# I% R2 I* h' N. C* ^; y
200' Y% ?+ m* @2 G
250
& V+ |+ V/ I; U& s- a* v- A300
4 O6 T' n& [" h2 A* v4 @- Z) ]350
$ S& Y. C1 Z- {Tumour mass (mg)6 l2 z/ M$ x  g% M. g9 t* d% v( ?
Ctrl1 f0 ?, d& Y& @) n0 T
CCL54 j/ e5 w" C3 C/ j
Ctrl# ?% N1 F! V+ S2 F! J
CCL5' ?* _# X: Y7 h# l; \, e
Ctrl
' Q) g" I5 N) I5 e- a* S( h+ eCCL5/ a, M$ w# \- R
Metastasis index (fold)) G1 c4 @6 q2 ~. v; _; O( A* z+ B
Metastasis index (fold)
* T7 d) p$ u1 {/ X/ q03 u& x) }! u6 H, X
12 r: ?2 X$ f# a6 ~8 t
2% k0 X9 x  V4 {  l
3
/ c5 X4 R% z, X* m4
/ _& Z6 _6 D' s, O* z6 q. X5. v3 }2 k2 q. s+ U, ~% \
* 6
" f) x( N) y4 W. ?+ K9 [/ |04 r3 C- Z, I. Z: |+ H) ?
1
2 h* P: z- P. ]- \" }1 K, @2, o" ~. f2 d: V2 K8 ^2 O
3& K0 {& r9 U; M$ h$ K4 J
49 b( C/ k8 Y$ l% o% N7 l6 R
5
6 I. k$ ?3 F8 B# W! l# Q' }6( o. O" \7 m/ K$ K! y7 Q1 s9 E1 q" K
7
* `7 f1 N# I2 x' D* 8
" p$ t- O8 p: `7 r1 x$ _  o. cMDA/vector
9 d% g/ K( P& p# nMDA/CCL5( t$ S6 x1 z% ]2 [4 f
MDA+WI-38/vector5 }+ a+ O) U  ^% r+ \& ?  y2 f
MDA+WI-38/CCL5
' v% W* b8 W7 H# }5 c8 X4 G3 d9 n1& \% s8 y7 J. Y8 S& u
27 u5 O  v, J) c1 k7 e
3
; M5 @% z2 g: F: y. B4- G0 R" E5 m$ x: s" f
*# C( z( X: T8 b; ?6 T
Figure 4 | CCL5 enhances breast cancer cell migration, invasion and
# z4 \1 C+ E# V4 X! imetastasis. a, A total of 500,000 MDA-MB-231/vector (ctrl) or MDA-MB-
8 s0 k% i5 e4 G6 ~% O% G231/CCL5 cells were injected subcutaneously in NOD/SCID mice. Tumour
, l4 s( E: N+ Omasses (mean6s.e.m., n56 each group) were taken at 10 weeks. Lung3 L; {! b3 @8 ^) s( ?4 s$ U
metastasis indices are expressed as fold increase (6s.e.m.) over controls. Data7 {! r) ?: {; h0 o1 P8 h
shown are representative of multiple repeats. Asterisk, P,0.01 in one-tailed
6 d" N, D' x2 J, b% Y/ ]Student’s t-test. b, A total of 500,000 MDA-MB-231 cells were admixed to
7 R, M0 \. u0 Z' y% d; X& g250,000WI-38 fibroblast controls (WI-38/vector) or WI-38 fibroblasts( b/ J: ?8 ~. c# G' }  t
overexpressing CCL5 (WI-38/CCL5) and were injected subcutaneously in
9 @5 C+ \. h/ c" i7 U- lNOD/SCID mice. Tumours (n55 per group) were excised and weighed at5 `% Y8 d4 _$ j
12weeks. Masses shown represent mean6s.e.m. Lung metastasis indices are$ u" k) K0 A0 x" ^9 B9 o) f
expressed as fold increase (6s.e.m.) over controls. Asterisk, P,0.01 in onetailed
" a# q) S0 z- }  E, }5 \( ZStudent’s t-test. c, A total of 800,000 indicated BCCs were introduced4 E- z7 m/ {" l6 p7 c; w$ S
into the circulation of NOD/SCID hosts. GFP-positive cancer colonies in the
/ R' n; X) r( x/ y5 [+ H; Hlungs were counted 6.5weeks later. Bars representmeans6s.e.m. (MDA-MB-" A* ]% y6 L' N! D' Z2 c
231 controls, n516 mice; MDA-MB-231/CCL5, n518 mice). Asterisk,
5 Y: I+ W# m) K6 C% nP,0.01 in one-tailed Student’s t-test. d, Western blot analysis of lysates of+ [# g$ d* w/ G: g* m' z
MDA-MB-231 control or MDA-MB-231/CCL5 cells. b-Actin was used as a
+ @+ W. M  L: Q, {loading control. e, Transwell migration orMatrigel invasion assays on 50,000
: X) g: |1 U7 I" FMDA-MB-231 control orMDA-MB-231/CCL5 cells.Data are representative of' Z7 }( J8 L3 s8 m
multiple independent experiments and are expressed asmeans6s.d. Asterisk,7 n; O; q' {' n( I
P,0.05; double asterisk, P,0.05; triple asterisk, P,0.01 in one-tailed5 D5 h, x; n( u) j. G  F* i% _
Student’s t-test. f, One million GFP-labelled BCCs were injected into the tail* N% ], J5 q* r% h' @9 D  t
vein of NOD/SCID mice. Lungs were processed 48 h later and examined for0 a7 J; F( c& z
extravasated cells. Bars represent means6s.e.m. (MDA-MB-231 cells, n57# E4 f; ?# p; }. |
mice; MDA-MB-231/CCL5, n510 mice). Asterisk, P,0.01 in one-tailed! H9 i3 |& E5 r
Student’s t-test. g, Transwellmigrationassays on50,000MDA-MB-231 control
* T9 N5 L, j/ t; LorMDA-MB-231/CCL5 cells plated with or without the phosphatidylinositol-$ C% j% e( z" a7 ?7 O
3-OH kinase inhibitor LY290042 (0.5 mM); representative experiment shown;* i$ }& q8 R; }" E# N1 M( ?
asterisk, P,0.01 in one-tailed Student’s t-test.the epithelial-to-mesenchymal transition (EMT), in which cells shed  q( ?7 \! t8 A% a
their epithelial characteristics and acquire instead a series of mesenchymal: g( u4 v8 f' X1 a
markers that enable their invasiveness and intravasation21.4 z; x% o8 |: y
Despite their lack of E-cadherin and their expression of detectable levels. \$ P  E6 g* X( [6 p8 p; U
of mesenchymal markers such as fibronectin (data not shown), the/ @0 y) l/ \( r# m0 e
MDA-MB-231 cells studied here exist in an intermediary phenotypic$ h$ X* S  L) p( d! W7 Z
state of ‘partial EMT’, as they retain a distinctive epithelialmorphology
3 |/ h8 w) E# k" T& vin vitro and are still responsive to EMT-inducing stimuli in culture. In
9 g+ c" R! |$ n: v4 _% T% {fact, we observed that ectopic CCL5 expression did not cause MDAMB-( H7 _* @7 l' l" X3 H# ~) K
231 cells to undergo themorphological changes usually associated) s( d; d5 x! |" ^3 I
with an EMT(Supplementary Fig. 9a), did not cause rearrangement of* A# c' T; v$ g& n8 H5 T
their actin cytoskeleton (Supplementary Fig. 9b), and had no impact on
) t& O' z+ v! w3 |: [+ t: F& O& f8 X6 pthe expression of mesenchymal markers closely associated with the6 c: X$ Y" z( j
EMT process, namely vimentin, N-cadherin (Supplementary Fig. 9c). j, u* T3 Q9 c4 z, ~
and fibronectin (data not shown). These data suggested thatCCL5 does* Q8 f- o8 O; p
not directly promote the EMT programme of MDA-MB-231 cells." x+ ~, ?3 S+ \3 F: Q- t
We proceeded to explore an alternative possibility: that CCL5  s8 Q( h2 l. T! z
expression affected some of the later, critical steps of the invasion–/ [' _% K  l9 u) N+ ~
metastasis cascade, namely the lodging of cancer cells in secondary" O* {5 ~. {/ d# ]
organs and the subsequent step of colonization. For that purpose,( F: X# I4 J: a6 [) T% H- C" `
MDA-MB-231/CCL5 cells were injected intravenously into host. Z% G9 ~4 {3 Z! ^- u
mice, and the lungs of these hosts were examined ,6 weeks later
+ \. i# H; I% P  xusing fluorescence microscopy. These experiments revealed that: f9 B! h2 n' w2 z1 _/ c
CCL5-overexpressing cells indeed had a significant ,1.8-fold
6 g) H3 Q3 J! i; O4 l+ madvantage over their control counterparts in colonizing the lungs
% r' F- }! n8 p/ r) H(Fig. 4c), suggesting that CCL5 exposure has effects on later steps, N. |" c# q0 i/ v2 p. Y
of the invasion–metastasis cascade. We note once again that this+ \$ Z4 R0 a) t7 U+ z
enhanced tissue-colonizing ability was not due to CCL5’s effects on
5 @* O+ \5 i; ~6 p5 [' i* Pcellular proliferation measured either in vitro (Supplementary Fig.
% q; ~$ D/ r8 Z' _6 A+ ]7b) or in vivo (Supplementary Fig. 7g, Ki67 staining).4 w! W" o4 `0 f5 o# l- o
Because improved colonization can be due to enhanced cellular: j1 Q5 [8 Z2 L4 ~
survival, we tested whether CCL5 protects against apoptosis.. w! X: ^# K$ b! N
Notably, we found that MDA-MB-231/CCL5 cells exhibited higher7 @4 k' Z' v' {# s
levels of the Ser 473-phosphorylated, activated form of Akt, but
: I' y& j7 y! |' }6 J2 A  hexhibited no difference in the levels of other pro-survival proteins,
8 o" \) O3 _  c: @+ Q/ qsuch as Bcl-XL or Bcl-2 (Fig. 4d), or a reduction in the levels of* |$ b* T1 a8 n$ o+ D2 e7 s) T7 J$ a
pro-apoptotic molecules such as BAX or BAD (data not shown).
6 [8 v/ ?; l5 S( z# f0 {  z; ~Moreover, we found that overexpression of CCL5 had no effect on0 ~9 J5 O6 B- O0 X" N% c
the ability of MDA-MB-231 cells to withstand serum deprivation! h  N. x# X7 X1 [' A% y4 h
(Supplementary Fig. 7b), loss of substrate anchorage (Supplementary
! a2 F0 _6 k1 |! bFig. 7d), or hyperoxia (data not shown). We also observed that( T7 r4 Z  o0 Y; {) b4 C# T
ectopic CCL5 expression did not protect MDA-MB-231 cells from, ]) \3 [3 q' N% W" `
doxorubicin-induced apoptosis monitored using western blots for
; L1 v) V* W* a2 lcleaved caspase-3 (CC3) and cleaved PARP (as markers of apoptosis;
) {; h4 l/ ?7 E' V# ?4 A8 oSupplementary Fig. 7e), or TdT-mediated dUTP nick end labelling9 V) E, P/ }+ j; N; e8 j; }
(TUNEL) assays (Supplementary Fig. 7f). Finally, immunohistochemical. G9 t7 L4 `  P% ~5 w* c/ D" U
analyses on control and CCL5-overexpressing tumours
+ r8 f! N) Y; I. m+ W4 |/ orevealed only minor differences in the levels of apoptotic CC3-4 ?, I! x/ h0 v: Z! U
positive cancer cells among the examined groups (Supplementary3 M6 R: ]2 y  v/ s. [
Fig. 7g, h). Together, these observations suggested that CCL5 does
( S+ ^* Z$ U2 u2 j; wnot exert any detectable pro-survival functions in vitro or in vivo, and$ a& U$ ^# e  Y
that the observed enhancement of lung colonization was not a consequence
3 g& F! @' @' Y- Q& }4 f5 qof significant anti-apoptotic activities of CCL5.0 O0 ^7 T! F+ X$ }! l
Akt serves as a key relay switch for upstream signals that promote
' x4 L9 T/ V1 {both cell survival as well as cellular motility22. Because CCL5-induced
' Y  H+ w: w2 t0 ^Akt phosphorylation did not correlate with enhanced protection# g% a3 Y" b4 H  J( h! k
against apoptosis, we tested whether the CCL5-enhanced lung colonization% S/ j0 w3 |% Z6 Y
could be due to an increased ability of MDA-MB-231/- I' l3 Y/ h0 D
CCL5 cells to invade from the microvasculature into the lung
* j( O2 H" n8 T9 B7 K6 bparenchyma through the process of extravasation. Indeed, ectopic
( H6 u" O  V7 [5 f$ Fexpression of CCL5 enhanced the motility of MDA-MB-231 cells% F: V% Z7 o8 }# t5 @' H- \$ o6 P
through permeable Boyden chamber membranes by,1.5-fold as well) a. H/ j) Z# l4 x0 w
as the invasion of these cells through Matrigel layers by,1.6 or,2.5-4 w3 R3 G7 j# [! S. g1 T5 ~
fold in either high or low serum conditions, respectively (Fig. 4e).
+ Z( t: j* _9 g2 XNotably, when we flushed the lungs of mice 48 h after BCC tail-vein2 H2 S/ R; m& k0 X  {: i: D
injection—in order to remove most cells that remained within the
$ K# i& t: }7 z8 }" C" `# jmicrovasculature of the lungs and thus had not extravasated—we
! Y- {  n4 n* G7 n8 n4 j5 f  w) a/ n7 [found twice as many deposits in the MDA-MB-231/CCL5-injected! g: V6 |3 Q1 b, D# ^' v( b
group than their control-injected littermates (Fig. 4f). This indicates a4 `3 h" G0 C* H* }* l
clear effect of CCL5 on cancer cell extravasation.
- d3 \- H! v# s4 z1 B' k; QFinally, we investigated the role of Akt in mediating the actions of
+ ~% j) e6 D8 z' D8 [$ DCCL5 on cellular motility by using the phosphatidylinositol-3-OH
3 p% {; E3 p$ y: s5 gb silacZ
+ }/ @% Z4 j4 c. N7 Q* DsilacZ, m, F3 Y0 s2 b2 I
si809
) F1 x7 R! d9 z2 i& ~: {, vsi8091 W3 X6 x# A1 c- s: p8 A
si1866 |' y6 I; j6 P, k" g% S* T
si186/ V1 y' {% M1 x' w; {  S1 t: J
CCR5
1 S- Q4 j7 `1 z, {* C3 a  B) t. Z, b# zβ-Actin
3 X9 L  y3 \7 e/ j3 _a d8 h8 x$ v$ ?! x  o8 f( k
M. {# ?2 z# `4 C8 {: [% f* Q+ P2 r0 l' v8 z
+; i8 t  `; ]2 V* x% g
MDA+MSC+ i$ a# B1 {) Q5 ^! u! z2 h4 P. y
+ IgG; U+ i3 e2 z* X- x  d# \( p, r6 E
+Anti-CCL5 Ab
. N: J& G' \9 |# `/ Q! oMDA9 {3 ]- Y% D7 H) `* N; W
+Anti-CCL5 Ab
& k/ q& H  r7 \# w! @MDA+MSC
2 q3 l6 M# y1 B" j% j/ `# fMDA1 X& l, j9 r1 E3 {  }% `/ ?- t$ W
IgG
" v' i- A1 Y4 X1 A) h, Z$ [<) H7 N5 [. \" U8 V5 x) E( H
<7 _6 g% x! C, f# a4 ^, A
<
- E: e. @4 A9 w1 g6 w4 r<2 S/ {( ?' A$ M- F4 Z% u6 ]- b& o
<
3 t; C: R2 J& I& T* y0 P; [DAPI
7 z/ D- d- a7 c1 I4 PCCR5, ~! _/ A, _& t% J- F3 \
MSCs MDA MDA+MSC3 o% h" r: d5 Q7 _7 c" G5 I7 \
DAPI DAPI9 @& T, t# b, [- ]3 }/ r
CCR5 CCR5
  l# R0 _8 a& V) K& T5 I9 qMSCs MDA MDA+MSC0 a; ?1 s: U, P8 N
*
' o7 Q% O3 B/ v' b0 K% ^, [c
/ y  x3 _( Q. X& O6 k) Q  n2 NMetastasis index (fold)
0 n1 x) P& l5 HMetastasis index (fold)$ o  g7 Y2 \" W: s! {! I7 _
*
- v& J6 Z) i4 U  fControl siCCR5
* C" K. ?, ?9 r: Z* j- }MSC – + + +
: Q2 D$ ~! y! G4 j, L0
( V) W: D/ v1 ]: Q3 k19 ^% {7 q7 x) g& n0 ~; Z! f+ X! \/ X  B
27 E2 f8 H) q3 y6 @$ h
3
. U, x1 k3 e; h1 m4
0 q+ _3 f2 {2 }; o& z6 b5 e
6 Z- f' P; o, u. v+ + – –
7 n6 u  Q: b" U* PAnti-CCL5
  C! u3 q1 O+ M! \6 p) {* G0
2 S( S* O/ ?+ u8 D6 d( o1) H7 k' V2 n2 D
2
% W- g, K( i4 [3
9 q  R9 R0 P2 e+ U/ V1 `. G) x4
& s0 T, E  }) E! h" c1 ~/ Q+ @1 e5+ @. H" T: A" l, r+ ?. \/ h
6
# ^" g/ q! t' m- e. k1 G- ?– – + +
- ^1 B* A; C0 j0 ]  _) kIgG) w$ M3 ~0 i; F4 T. a" c
MDA
2 l9 ^$ I  {  n& Q! E" tMDA+MSC, d/ `% h5 `  V* J6 L
<9 j1 N" F# M8 t, r9 L6 W5 P
Figure 5 | CCL5–CCR5 interaction is essential
3 ]$ P1 [/ a+ G6 H+ R  wfor the MSC-induced metastasis.
1 w8 N; S* L' D; y2 [" T. h3 E" d9 Aa, Immunofluorescence analysis of CCR5- p* p* q  v( r& K4 x* C
distribution in MDA-MB-231 cells cultured with6 r5 `: m2 |0 d: V
MSCs. DAPI (for nuclei staining) is in blue;
3 R4 I6 K0 J0 l1 K6 f$ {: s( g8 R% PCCR5 detected in green. Arrowheads denote
# V& |" F) _! j& F5 c9 cMSCs. b, Western blot analysis showing CCR52 S. d  X! ~- l( o  F$ E8 B
expression in MDA-MB-231/silacZ, MDA-MB-
, A0 |2 Q6 G5 G0 j5 L231/siCCR5(809) and MDA-MB-231/' R5 R2 Y3 {( M8 V$ N/ X
siCCR5(186) lysates. b-Actin was used as a
/ X: q! d  N: F# U, I6 r5 Lloading control. c, A total of 500,000 cells of the
9 l& x* |8 W( @) W4 tMDA-MB-231 variants in b were co-mixed with  C& O2 g7 ~6 F% `, b
1.53106 MSCs and injected subcutaneously into9 h$ a' ?2 X& ^7 v
nude mice. Mice were killed when tumours
: a! H3 _, {5 J% I6 w6 wreached 1 cm in diameter and the metastasis
) }4 E8 G5 I' P1 z+ |2 Rindex was calculated for each cohort (n55 per) @( T; ^& S9 E! M2 l
group). Results represent means6s.e.m.;
# T5 Y/ u/ R  a. R0 d* a+ qasterisk, P,0.05 using one-tailed Student’s
# y  \9 Y, q: G& n# Z* Y6 `t-test. d, Anti-CCL5 neutralizing antibody or4 {8 Q& J3 s% I2 U4 q# K" h: ?
control IgG was administered intraperitoneally
' b$ }; c( o7 J& F5 L1 n7 ytwice weekly in SCID mice bearing MDA-MB-231" b- j. R' C  q4 q! g
(n59) or MDA-MB-2311MSC tumours7 G) s" g/ {" K$ q
(n511). Representative lung pictures of the" K' ]1 R  b' ~6 h
indicated cohorts are shown. e, Lung metastasis: o1 z- v- X7 B( S; T/ J* E
indices of mice in d. Data shown are
3 R& ^& ~. l! o9 F; _7 ]representative of means6s.e.m. Asterisk,& `# \. R. l3 }7 \
P,0.05 in one-tailed Student’s t-test.
4 J3 N9 Y) C2 n! K& akinase inhibitor LY294002. Drug concentrations that did not inhibit
" w& X9 @1 T1 K: H+ H* N6 _the basal motility levels of MDA-MB-231 cells blocked the elevation  S! |, ~  S( U3 @& m- @' x. K
of motility induced by ectopic CCL5 expression (Fig. 4g). These
0 }/ O$ s% n: G& {6 E& n, Qresults, when taken together, suggest that the observed CCL5-
# H, y1 [; L; Y' R  c' r& Kenhanced lung colonization could be ascribed, in significant part,
- }3 w% H& ~! o! Jto its ability to promote extravasation and/or motility of cancer cells# A, R' a/ M7 W0 a
at sites of dissemination rather than promoting the survival and/or9 s0 l3 h! i/ O6 D/ }
proliferation of these cells.- \, h2 V& s; @
Essential role for the CCL5–CCR5 loop2 l" ^8 q! _8 e. r: R* @4 G
CCL5 acts through three G-protein-coupled receptors, termed) _) O3 F0 n2 L/ d, V
CCR1, CCR3 and CCR5 (ref. 23). CCR5 has been determined to be
0 P: @" ^# `- z* \9 f" p' Dthe main receptor for CCL5 in MDA-MB-231 cells, as inhibition of its- R! M2 J2 n, Y% f" S9 W5 M, H9 `
surface expression through dominant-negative mutants abrogated
$ e. U# e$ {: J6 gthe ability of these cells to respond to CCL5 chemotaxis24. We therefore
6 w5 M  p6 W& g+ K( Z* sfocused our efforts on evaluating the importance of the CCL5–
6 q% B! _, S# i! _) S$ m4 QCCR5 interactions in MSC-induced metastasis.
/ ~; P) O$ b4 k% dWe confirmed that CCR5 is expressed by MDA-MB-231 cells and) S6 ]( @: {" R1 X6 c" J- l5 r' H
not by MSCs (Fig. 5a), supporting the notion that MSC-derived- c6 O7 z1 u3 A$ w: d
CCL5 acts primarily in a paracrine fashion on MDA-MB-231 cells
' D5 }. R4 ^- ], Oin the BCC and MSC mixed cell populations described above. To; y! r1 U; R7 |- |
probe whether the observed MSC-induced metastasis required
8 u) {- Q" \: i7 S2 {$ j' C7 ^, NCCL5–CCR5 interactions, we inhibited CCR5 expression in MDAMB-0 s3 [3 f' Y- Q, E1 R
231 cells by more than 85% through shRNA knockdown (ref. 25, P% y7 {# ]1 u
and Fig. 5b), and mixed these cells with MSCs before implantation
' q9 \/ W  p3 ?6 E2 B. Binto host mice. Indeed, inhibition of CCR5 expression in the BCCs,5 Q" f0 F$ Y. F* O# ]
achieved using either of two different shRNA constructs, abrogated
( z7 ~6 ^9 @9 z3 |5 qthe ability of MSCs to enhance the metastasis of MDA-MB-231 cells7 c2 k- I9 Y1 h
(Fig. 5c). Furthermore, neutralization of CCL5 protein using intraperitoneal
, G. M9 F/ m  M+ d7 Dinjections of an anti-human CCL5 monoclonal antibody
' [# n  {% J6 x$ Malso abrogated the MSC-induced metastasis by MDA-MB-231 cells8 Y/ K+ D: [, f, c
(Fig. 5d, e). In addition, MSCs in which CCL5 expression was inhibited) t; q, F7 L+ Q7 W4 W
by shRNA knockdown failed to promote metastasis of the7 Q, Y/ r% X. D
admixed MDA-MB-231 cells (data not shown). Taken together, these
  w0 a) c, d- F' z$ j4 Eresults underscore the critical importance of the CCL5–CCR5 paracrine
- f: U1 J: o9 R7 B) ointeractions in enabling MSCs to induce metastasis of the
9 }# M$ ^( [+ I8 [" pMDA-MB-231 cells." F# W; }: T* Z- `5 g1 c6 d
Discussion
' `) f" w6 u1 b* UCertain models of metastatic progression propose that cancer cell- r+ a# c' i  K3 a# y5 {2 K( b- {; m
invasion and metastasis from the primary tumour site are strongly' U, g' ?7 \& |
influenced by contextual signals emanating from the stroma of the
5 T; H' e* c1 B8 rprimary tumour. It follows that if carcinoma cells are subsequently
" j8 \- [0 {8 n+ F- ?4 udeprived of such signals, they may revert to an earlier phenotypic
* \8 L3 K, [  B) g8 b3 a- f3 {3 `state in which they no longer display the traits of high-grade malignancy.
7 R( Q* {6 [4 t8 ^; DIndeed, such a model has been proposed previously by others0 A9 K' G% a; Y2 Q. b
on the basis of indirect evidence21. Here, we demonstrate that at least
: I9 _$ f8 f  p: ~, e2 xone mesenchymal cell type, the MSC, can expedite tumour metastasis,
6 b; F" E' n5 Uand suggest that after primary human carcinomas recruit MSC
# V5 @( e: i% ^& j+ G( epopulations into their midst, subsequent interactions between the
0 A* }! W0 \; h; Z7 K6 A3 ^! |6 ?" JMSCs (or their derivatives) and the BCCs endow the latter with
0 h  \. ?! j6 v8 dinvasive and metastatic properties.
& w. \$ N: t7 t* i: |' ZAlthough the recruitment of labelled MSCs to tumour xenografts' D2 Y( u6 J, z% E+ X) Y) N
has been established in a variety of experimental models of tumorigenesis,
0 [4 A( ]' q2 `# r* P3 N" Uthere is currently no available way to quantify with any accuracy
3 ^. Q$ A  M. K6 uthe number ofMSCs in actual human tumours, in part because no set
) d9 p9 E. S/ U6 ]8 v$ Eof markers has been identified that can uniquely stain these cells without9 |4 G7 c  A0 L! C$ `7 t! _8 T7 m
concomitantly staining other mesenchymal types in the tumourassociated+ b- |  j7 B+ {2 ^) F
stroma6. Our demonstration that the stroma derived from  _0 W9 \# Q1 m! z. ?. _% K
tumour xenografts contained appreciable numbers of murine MSCs
+ |. u$ b3 Q" {  F" H4 ^indicates that significant steady-state levels of these cells aremaintained
0 J0 v1 V9 L3 f; tin developing tumours. Interestingly, the use of CD10—one of the2 ~# s6 X0 K1 U$ b8 z- T& {* f
markers associated withhumanMSCs—to purify cells fromthe stroma
0 Y, |& H7 P2 x& I) f. Bof human primary invasive breast carcinomas yielded a population of. C1 P, e9 u# ]: C6 c9 u4 P
cells that expresses a number of other markers collectively used to
4 u2 B, P# X" n' q1 p& k( X5 H1 Pcharacterize human MSCs (for example, CD44, CD105 and CD106;# h( _* _/ i4 s* ~! q
Fig. 6a). This suggested that, similar to tumour xenografts, human/ d% F8 E9 p5 o0 J) N
carcinomas also acquire significant numbers of MSCs. Furthermore,
8 O' f: o2 r0 j5 Y* swe note that CCL5, which is prominent in the stromal gene expression
4 y; y, ?+ `& k* ~1 M& E! Osignature associated with poor prognosis of breast cancers26 (SFT;1 b& t* J5 b1 {6 [! y
Fig. 6b, c), is also enriched in the leukocyte- and endothelial cell-free9 P. \- |7 {; Z6 H7 o0 H& l; r
stroma of primary invasive ductal carcinomas (Fig. 6d), specifically in+ i% E+ d  A/ B5 Z1 e0 T
the CD10-positive compartment27 (Fig. 6e). Collectively, these observations
6 _" R9 r$ j7 Xargue strongly for a significant association between stromal
) Y! m+ x8 C) ~0 A" QCCL5 levels, MSCs and human invasive breast cancers.* Y; J5 A$ {+ ?1 w9 H5 d0 t
c% J  {( d8 k+ s+ w& L# K
STT1969B
* ^. e0 l& x4 y9 @9 @( |& xSTT31260 A$ U6 w/ |) B& v* C/ ]
STT31243 Z* b9 r9 v9 f
STT656B: _8 d* B% f4 _8 k  t
STT1968B" a8 A$ f& z2 ~6 m9 o
STT3122
4 g- y+ B6 v6 F0 k/ y3 R7 d# ISTT3053
& a  e6 U' G: `/ p9 O6 @8 sSTT1986B
6 q) u( A2 n7 ^2 b+ a* E* SSTT8543 G+ E  Y9 H3 @) O
STT3125: h9 `, Z2 e+ g+ o6 y- {
STT1975
0 T6 [! ]" q& J* a+ Z: MSTT1987B9 {( L5 k' F) T- {4 r
STT1079
3 h8 S8 U, H7 h) T( @; iSTT638( E1 r. F3 s# I, W& W: A6 y2 [/ I4 t
STT17743 d& e! O! f8 \# {
STT1984
' P1 d; y  w3 S, uSTT1737C1 r( j& S; M5 u, D3 X" `4 H
STT3068
0 K& j, m2 R5 w% }, ASTT3120* Q+ Q! ?6 }, w8 {
STT850! \$ @* d7 E& G4 E
STT417B8 B) E( s" U* t. D2 p8 C, {
STT3119
# }4 i/ Q$ |' V- ?  }STT1776
- H" L. z; c: {0 TSTT1777B, r8 a* g5 G- [  B9 W+ P' Z. y
STT689B
6 ~! }- _7 `+ H; I( y) b$ NSTT1971
& |/ c& v  x6 }STT597# o$ d* s7 @2 H4 A  s# w
STT626
" w4 k) `/ X! Q1 z3 A. u$ @. YSTT154
$ X- [: X% t- g+ Q2 s3 {8 YSTT2774
- q+ S6 K  A, ^  |7 tSTT1966
2 s' L* `. ~; hSTT2776
. d! `, z/ O, C; OSTT27751 _% P' L/ {) p
STT27720 q  r2 G: ]( c" V+ m: }
STT1637
. v  [0 ^' k) t- bSTT1220C) i6 q5 \9 G1 |7 W0 q& @. {
STT-094B-13 T% x+ f' N0 ^5 y
STT6756 r. z2 g' {7 R0 p, w
STT2770
+ x) j: R& Z- i$ W/ \STT695B  l8 F( Q/ f# O  f2 b8 ~
STT1771
7 O5 C% t6 K& N5 ]STT1778, n2 V' I2 ^1 L) C
STT491
8 P) ?1 G+ T. L8 X% i& H0 n1 @+ iSTT1823
  O9 N" T! m5 e0 `STT200C
+ H/ z7 k) e* S, Y, u2 tSTT741B
/ N' w7 _  b% u! m- R  l8 ASTT335C
6 I" K/ `8 a: TSTT709B
3 J+ |2 [' g+ qSTT516D+ [- U, ~' k5 B1 m
STT607B$ K- P5 A' I4 r& B
STT680B0 a! @* G4 y% b* H
STT1148B
/ V6 l% k" B) d6 U- k. NSTT523B
; i: s3 C- j1 R1 `! D: Z* E1 ^STT526E
+ W' ~3 R0 T$ b  o5 n% ^STT742F
" P, \* t% x: Z0 T$ we- A, g1 C$ k- |1 d6 C, q1 V( c9 P
CD13
4 y" k& H$ ]7 K4 [' Q$ `( Z7 {CD29
& Y9 V3 u. \3 s9 A6 \CD44
7 A1 t; L0 h5 l" ?8 k8 sCD49e% Y3 o7 Q! ]% h8 `! X4 m! r! j
CD54
3 W- t6 t5 ^+ Q" G% h: p5 x* ZCD59
8 b# p1 {5 s; KCD63
4 t: w- L: ~- _2 gCD105+ i7 b* L# l! @: c; g  F
CD106% T9 n! p2 n* s8 M
Nestin
2 F; o& {) M- r3 C& zHAS2. p4 h  ]1 N% H
IGF2
2 i' g3 s" Z% ]$ o( {PLAU
5 |' G+ u! W4 h  oTIMP1
0 H9 X* d: m& s  DCAV1/ S6 u# H. Y1 K. ]: {# C
IDC-7+ n) P/ x, R9 y/ S3 v; Y. \
T112603
4 Q2 ^1 u) v: R' M& I& z4 PT392303
- G9 W$ W0 n3 P, ]4 s- @Normal Invasive& H+ {1 G  A$ J; G3 C! W& G
CCL5) `" e- n* b3 T# C
log2 ratios4 l0 V# l3 _7 a5 ]- x- p# L2 h
–2.0 –1.4 –0.9 –0.3 0.3 0.9 1.4 2.05 B+ @2 C, Z$ u' R6 q4 k
log2 ratios
3 e  }) x5 D! l# od
$ |5 H, b6 M- l+ d1 y. S–2
1 R9 `4 m# K" ^–1- A8 g  N, c* r/ X, O" |3 p$ V4 S: g
0 1 29 i! k$ m4 _3 `2 C
–2.0
) b/ F5 f+ A! f) E–1.5) Y% ]& Q5 d( s: E- s% m
–1.0
/ b1 e, U1 M8 b' `$ _–0.5
2 U. k: U& D1 Z0.05 }5 v1 b# H$ P; e
DTF SFT
% `! p0 Q% [% B; ?) mDTF# ~# a' L2 z7 I6 k: ]% T6 n
SFT9 D! h6 G+ H$ L
a b
) n0 X8 Y! n% y0 @  ^3 i% o5 WF
, d9 q' \4 b% B; C' ^/ hFigure 6 | Stromal fibroblastic cells of human invasive ductal carcinomas are
( o6 j7 N  ?( c5 xrich in MSC markers and overexpress CCL5. a, SAGE TreeView display of
( U- T. d, v2 C, ^9 y# RMSC markers expressed in stromal CD10-positive cells from invasive
7 ]3 y- q, d- F+ {tumours27. b, Soft-tissue tumourswere ranked byCCL5 expression26, fromlow( h  @, W* z6 I: t* _, I" N5 J+ E
(green) to high (red). Wide blocks indicate expression ratios of tumours
; p  s! N7 n, C- W0 w* [+ a' ]1 oclassified as desmoid-type fibromatosis (DTF; yellow outline, n510) or
3 u5 R: N* E! T- k1 \solitary fibrous tumours (SFT; blue outline, n513); narrow blocks are other. Y: x, j* D6 W+ k0 R# d
soft-tissue tumours (n532). c, Box plot showing that CCL5 expression is
+ ?, l. D5 Q$ o  uhigher (P50.004) in SFT than inDTF. The difference in log2 expression ratios
/ Q, T3 U( Q9 u9 |between SFT and DTF was tested with the Welch’s test. d, CCL5 Affymetrix
6 h8 \; C, V+ A  E' ngene expression in the stroma of human invasive ductal cancers compared to
2 G. R/ o9 b$ \: Uthat in normal cancer-free breast tissue (indicated as ‘Normal’; see Methods).
8 v+ U0 Y+ ?- t/ L2 ue, CCL5 expression is mostly restricted to the CD10-positive fibroblastic cells
8 h8 `& ^" u$ |( dderived from invasive ductal cancers. The heatmap shown is a cluster of; U' h6 x5 a/ C6 j: _
CCL5.genelist obtained as in a.Details of thepurificationmethodologies of the
$ w! N! y, e- R5 @9 V! xvarious groups indicated in a, d and e are found in ref. 27.Although we have focused here on CCL5 in the MSC–MDA-MB-; }  ]" h5 n# b$ \0 y
231 cell interactions, CCL5 seems to have an equally critical involvement
# x5 w9 l: {9 Y' _7 Bin the functional interaction of MSCs with MDA-MB-435; S, p- {* O% l2 n7 w( L0 ?0 W* Q
human BCCs. CCL5 levels accumulate synergistically when the two
# Y! L1 K% D' ^% ]2 s! kcell types are co-cultured together (Supplementary Fig. 10a), and- `4 O! X, ~8 Y
MSCs in which CCL5 expression was compromised by shRNA knockdown
+ J6 Q$ X3 c8 m+ O: S, jfailed to promote metastasis by MDA-MB-435 cells to which- U& R: R# Y" ~6 u, G4 T) j" m) t
theywere admixed (Supplementary Fig. 10b).With these facts in mind,
4 H, g0 k* y& Swe point out that CCL5 does not seemto be involved in regulating the
2 f. `: g$ x7 R' S$ |8 k+ CMSC-induced metastasis of MCF7/Ras or HMLER cells, which may0 `7 p! N8 O& Y/ c0 e9 D
depend on other paracrine factors such as VEGF and interleukin-8.& M3 u5 h  z- b3 Z8 e4 a# u# F0 @
Nevertheless, our observations highlight the recently discovered critical
$ c0 c6 i/ y; h: wroles of chemokine networks in malignant progression28,29 and suggest
5 A, F3 D# k' Y; a; h/ wthe possible utility of a variety of CCL5 analogues and CCR5 antagonists
' n# a" c3 ~8 j2 U) q; Gcurrentlyused in anti-HIVtherapy30 in treatingmetastatic disease.
% L* {$ h% A, U# {; WNotably, we have observed that MSCs induce the metastasis of cells7 A( k2 Z% Q* U. f+ r/ s  a# G
to the lung that are, on isolation and re-injection into recipient mice,
; ]# [: H# i" w# rno more metastatic than their predecessors in the primary tumour& z& Q% B0 K( D  ^/ z+ i0 H3 x+ i  J
(Fig. 2e). This indicated that acquisition of increased metastatic1 ^; k; v( {/ c- Q
powers by these tumour cells was reversible, and suggested that the3 m% Z! ]3 [. Q8 U0 h& p& h- T
maintenance of this phenotype depends on continuing contact with
8 u. T. _& S) L' D1 C( a0 I! istromal cells. If extended to other tumour types, the present results
1 a6 E/ L' r4 k( k5 S$ ihold important implications for the molecular analysis of malignant) h0 S) @+ I6 r1 I: Q4 x
progression. They suggest that many of the cellular functions associated/ I6 G: H6 b5 i% s2 Y; Y
with invasion and metastasis are often not expressed constitutively( }+ w8 ~2 X$ W# w  S5 A* Q7 D/ b
by carcinoma cells, but rather only transiently in response to. S- a" J. v  p7 r" K) v/ u
contextual signals that tumour cells receive from their stromal microenvironment.; N" k3 D9 o2 ?6 ?( Q1 c
If so, analysis of the gene expression patterns of bulk3 I# w+ k, z) E8 m9 I
primary tumour populations may fail to detect the expression of key1 O7 A" e) s0 K) |7 x
genes mediating invasiveness and metastasis, if only because they are& r4 {$ W' Y; J7 r& j1 A- @& }$ `
being transiently expressed in minor subpopulations of cells within
/ d& ?9 ^7 i+ s  V3 ksuch tumours. Additionally, attempts at determining the metastatic
5 G) F$ M+ ^. [/ M  I* _propensities of tumours may need to be focused on the genes and- k6 o# c+ Y/ \$ ~' J
proteins that confer responsiveness of primary tumour cells to stromal5 w3 s+ {) k# V1 {
signals, rather than on the genes and proteins that directly mediate* s8 n6 @; s/ D2 Y
the cellular phenotypes of invasion and metastasis.% t* a' }9 H, X2 G
METHODS SUMMARY
9 H0 ^( x  O9 S$ A% O) rCells labelled with GFP or ds-red, or harbouring various overexpression or0 k. ]# h+ Y( ~& Y! ]/ ^1 r2 U5 F+ a
shRNA constructs, were generated by viral transduction followed by FACS8 o; }! {% H. I* ^. s* G% e' I  C
enrichment or antibiotic selection. Xenograft experiments were conducted in5 Y2 _( b! p- a4 _1 \
nude or NOD/SCID mice and metastasis was estimated using fluorescence+ b, {1 M& {# k. X
microscopy. The levels of cytokines, growth factors and chemokines were
# |8 r) H) j0 c% w  x5 m% Fassessed by immunoassays. Migration and invasion assays were conducted using: F: _7 [4 U' x1 ]6 v
transwell chambers. Antibody treatment of tumour-bearing mice was conducted
1 i- Q; j  y6 s3 Mby intraperitoneal injections. See Methods for detailed information regarding
  ^: {4 w: w( Wcell culture, viral infections, in vivo colonization and extravasation assays, RT–$ Y/ f+ F" B2 _4 H
PCR, TUNEL and anoikis assays, immunohistochemical and immunofluorescence
+ U  m1 G% g% W& I  e8 W: Udeterminations, western blotting, and antibodies used.' ^  K* ^% l' j* P+ X
Full Methods and any associated references are available in the online version of2 R% j  ^( G, _* E' Y7 n( ]/ c
the paper at www.nature.com/nature.

Rank: 2

积分
97 
威望
97  
包包
1738  
沙发
发表于 2015-5-24 16:27 |只看该作者
好啊,,不错、、、、  

Rank: 2

积分
79 
威望
79  
包包
1769  
藤椅
发表于 2015-5-27 19:54 |只看该作者
我起来了 哈哈 刚才迷了会  

Rank: 2

积分
166 
威望
166  
包包
1997  
板凳
发表于 2015-6-18 17:42 |只看该作者
干细胞之家微信公众号
设置阅读啊  

Rank: 2

积分
98 
威望
98  
包包
1756  
报纸
发表于 2015-7-9 11:27 |只看该作者
这个贴不错!!!!!看了之后就要回复贴子,呵呵  

Rank: 2

积分
79 
威望
79  
包包
1769  
地板
发表于 2015-7-13 17:10 |只看该作者
任何的限制,都是从自己的内心开始的。  

Rank: 2

积分
101 
威望
101  
包包
1951  
7
发表于 2015-7-15 19:35 |只看该作者
好 好帖 很好帖 确实好帖 少见的好帖  

Rank: 2

积分
104 
威望
104  
包包
1772  
8
发表于 2015-7-24 22:53 |只看该作者
dddddddddddddd  

Rank: 2

积分
75 
威望
75  
包包
2118  
9
发表于 2015-7-29 10:27 |只看该作者
努力,努力,再努力!!!!!!!!!!!  

Rank: 2

积分
77 
威望
77  
包包
1964  
10
发表于 2015-8-13 18:10 |只看该作者
对不起,我走错地方了,呵呵  
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2025-5-6 04:33

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.