
- 积分
- 56
- 威望
- 56
- 包包
- 422
|
Chromatin Remodeling
& L: ~& |# t/ F& q0 r- z! V2 R m$ \: s# \) K/ B# m
Contents, [: P) d+ a) g4 b6 n
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v7 J" x% g% C0 M4 ~4 q
Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
. B2 S0 r o5 q, d" u5 i# `1 w1 Strain Construction and Screening Methods for a Yeast Histone H3/H4
3 S% O( n5 g3 Y' S5 o6 ~ iMutant Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
9 @: K3 o) ?$ F D7 q' D% `& pJunbiao Dai and Jef D. Boeke
; Q D/ I. k4 u) p$ d4 l( O8 W2 Measuring Dynamic Changes in Histone Modifications and Nucleosome4 q7 H, ^# E0 K0 T# E
Density during Activated Transcription in Budding Yeast . . . . . . . . . . . . . . . . . . . . 157 s' ^0 O+ I% ]" p4 ~/ k
Chhabi K. Govind, Daniel Ginsburg, and Alan G. Hinnebusch2 n( T2 c& }- u. j. O: K
3 Monitoring the Effects of Chromatin Remodelers on Long-Range, G3 T3 k5 a4 ]6 l3 `) m( j" I* S- [
Interactions In Vivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
" u# j3 x/ u* X" j0 hChristine M. Kiefer and Ann Dean
5 F5 [$ B: p; f4 a) x3 U4 i4 Measuring Nucleosome Occupancy In Vivo by Micrococcal Nuclease . . . . . . . . . . . 47# l7 K+ [/ {' [0 A% f4 \" g
Gene O. Bryant
6 z/ R9 S3 a1 l* X" r6 d5 Analysis of Nucleosome Positioning Using a Nucleosome-Scanning Assay. . . . . . . . 63
( M0 Z& h/ ^4 S m4 |Juan Jose Infante, G. Lynn Law, and Elton T. Young9 _7 b" B m5 a; A6 Y1 N/ T
6 Assaying Chromatin Structure and Remodeling by Restriction Enzyme
& ]2 y5 J* H( ^5 j6 hAccessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89& }' L. Q$ `- q1 y
Kevin W. Trotter and Trevor K. Archer& n- h0 K$ _2 c$ i8 P* o5 D: I9 ?
7 Generation of DNA Circles in Yeast by Inducible Site-Specific8 P/ V1 T8 q9 D1 N
Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
* [/ `& Y+ O" SMarc R. Gartenberg
8 Z$ r# M( s/ S8 K8 An Efficient Purification System for Native Minichromosome
7 S" e/ p9 Q8 t& f0 Tfrom Saccharomyces cerevisiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153 s! Z1 n2 R$ j* p& e9 t# l/ Y
Ashwin Unnikrishnan, Bungo Akiyoshi, Sue Biggins, and Toshio Tsukiyama
- s' x9 u" o6 z$ ^* r* Z9 Simultaneous Single-Molecule Detection of Endogenous C-5 DNA' s0 O' |% b- G6 X1 I0 T
Methylation and Chromatin Accessibility Using MAPit. . . . . . . . . . . . . . . . . . . . . . 125' R; V: L0 F ^0 L, X/ w
Russell P. Darst, Carolina E. Pardo, Santhi Pondugula,, }: z7 } j" W% R
Vamsi K. Gangaraju, Nancy H. Nabilsi, Blaine Bartholomew,
" U6 l4 _; R7 L1 V& I5 @8 @and Michael P. Kladde
, p3 N4 {3 g4 v0 T0 k8 J3 B' x10 Analysis of Stable and Transient Protein–Protein Interactions . . . . . . . . . . . . . . . . . 143. o2 C& q0 N2 W& d: O3 t
Stephanie Byrum, Sherri K. Smart, Signe Larson, and Alan J. Tackett
+ K& x/ D0 [) P$ y0 u1 y11 Monitoring Dynamic Binding of Chromatin Proteins In Vivo
% b# W; i, Y Q3 B. Bby Fluorescence Recovery After Photobleaching . . . . . . . . . . . . . . . . . . . . . . . . . . . 1539 k( P$ W! [1 T# j* j3 I
Florian Mueller, Tatiana S. Karpova, Davide Mazza,) J- W. e* Q% p8 m' K
and James G. McNally
# m1 I3 d/ [6 P5 E12 Monitoring Dynamic Binding of Chromatin Proteins In Vivo by Fluorescence# k( e6 w" C0 Z4 F; U3 x
Correlation Spectroscopy and Temporal Image Correlation Spectroscopy . . . . . . . . 177
5 g* m9 u' B7 LDavide Mazza, Timothy J. Stasevich, Tatiana S. Karpova,5 t% W" H! x& }1 A" {0 X
and James G. McNally
+ k3 A$ i8 A$ m% u2 Q13 Analysis of Chromatin Structure in Plant Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
/ }& _+ V8 [5 m( N/ J7 X0 m$ g: P2 O( GMala Singh, Amol Ranjan, Krishan Mohan Rai, Sunil Kumar Singh,
! b; S2 C: ?: i$ VVerandra Kumar, Ila Trivedi, Niraj Lodhi, and Samir V. Sawant& d% R+ m" {4 [* x
14 Analysis of Histones and Histone Variants in Plants. . . . . . . . . . . . . . . . . . . . . . . . . 225
/ C. P4 A# k0 L/ R, s5 |Ila Trivedi, Krishan Mohan Rai, Sunil Kumar Singh,
4 a/ n! Z, @5 K G0 Y% T9 ]Verandra Kumar, Mala Singh, Amol Ranjan, Niraj Lodhi,, N$ L" U: h$ w7 k$ U6 K; p; l* q
and Samir V. Sawant5 `0 b w# |. r; k+ \4 l8 U
15 Reconstitution of Modified Chromatin Templates for In Vitro
# l1 I W+ Q' u* x* Y. e- {/ NFunctional Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 L$ B+ `9 U9 B/ e/ e! v
Miyong Yun, Chun Ruan, Jae-Wan Huh, and Bing Li
: |( q1 O6 b+ U; f, `& I16 A Defined In Vitro System to Study ATP-Dependent Remodeling
, E( S( W( X5 @: nof Short Chromatin Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
% Y8 |: c& i2 F6 ]Verena K. Maier and Peter B. Becker
3 J2 L% ]3 O6 n/ _" D/ [$ V17 In Vitro Reconstitution of In Vivo-Like Nucleosome Positioning
1 Z# {& G/ U! q5 ?) L0 _on Yeast DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
- \" I4 p% [) o$ {0 z OChristian J. Wippo and Philipp Korber7 D. d/ ~& V5 C& b* G
18 Activator-Dependent Acetylation of Chromatin Model Systems. . . . . . . . . . . . . . . . 289! [. j4 P2 N/ T
Heather J. Szerlong and Jeffrey C. Hansen s/ x# X! X0 {
19 Mapping Assembly Favored and Remodeled Nucleosome Positions d: `: J% g. U5 n3 m! I4 k1 k
on Polynucleosomal Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
4 s0 c* v7 |) @' J. HHillel I. Sims, Chuong D. Pham, and Gavin R. Schnitzler! P1 C- Y ^9 ^, x* H) n' L- A
20 Analysis of Changes in Nucleosome Conformation Using Fluorescence
' B& K! n' D+ ], ~, X9 kResonance Energy Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
1 f2 J8 j& c3 Z2 ?0 STina Shahian and Geeta J. Narlikar9 f& x' [& l" W& `/ t: d8 r+ @5 V/ A
21 Preparation of Nucleosomes Containing a Specific H2A–H2A Cross-Link/ ` |7 L2 g/ H
Forming a DNA-Constraining Loop Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
8 b( H" N6 A' K# q- D; CNing Liu and Jeffrey J. Hayes
* o" I) b# A9 Q; A! b22 Sulfyhydryl-Reactive Site-Directed Cross-Linking as a Method for Probing, q# }4 d3 k4 P6 `
the Tetrameric Structure of Histones H3 and H4 . . . . . . . . . . . . . . . . . . . . . . . . . . 373
, v0 g' n, H5 l+ b" ~Andrew Bowman and Tom Owen-Hughes
, T4 O9 j8 g# E# B/ r23 Genomic Approaches for Determining Nucleosome Occupancy in Yeast . . . . . . . . . 389
) g8 ]3 u( i0 Y+ j# fKyle Tsui, Tanja Durbic, Marinella Gebbia, and Corey Nislow0 K- c' V! J: i" g* D! V7 d, }
24 Genome-Wide Approaches to Determining Nucleosome Occupancy# g( t/ O7 j( h' O' `' d4 K
in Metazoans Using MNase-Seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
3 ]! `" q+ c$ r* ^2 V# \Kairong Cui and Keji Zhao
5 R; k' H7 x& ~; w25 Salt Fractionation of Nucleosomes for Genome-Wide Profiling . . . . . . . . . . . . . . . . 421
/ \5 L: H7 n A# M% S$ [Sheila S. Teves and Steven Henikoff
* _, a% O! l6 Y, c$ V$ k26 Quantitative Analysis of Genome-Wide Chromatin Remodeling . . . . . . . . . . . . . . . 433( Z1 \* q) L+ I' ]
Songjoon Baek, Myong-Hee Sung, and Gordon L. Hager
) u$ L0 S3 N# e27 Computational Analysis of Nucleosome Positioning . . . . . . . . . . . . . . . . . . . . . . . . 443- B) A8 T L7 F$ r1 k
Itay Tirosh1 h6 w+ e) F4 L" Z( l
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451) g) _4 s$ p6 ^7 }5 t
|
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
|