|

- 积分
- 56
- 威望
- 56
- 包包
- 422
|
Chromatin Remodeling* g: s5 u5 @& ^; V# S4 F$ h9 h
0 r3 ?4 [8 L) `/ b
Contents
& J& u. \$ [/ K+ o! O3 T0 P0 HPreface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v( y* a5 a% j3 Z& t9 o: A% z' n! _
Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
, R* D& e! C5 `/ K1 Strain Construction and Screening Methods for a Yeast Histone H3/H4
4 m: X5 K) Y9 S$ @Mutant Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
, @0 h. k6 h3 K9 q& j$ } {2 EJunbiao Dai and Jef D. Boeke
* i- X4 A m; i$ K2 Measuring Dynamic Changes in Histone Modifications and Nucleosome
9 e! d9 {6 Z5 E s* M/ j9 KDensity during Activated Transcription in Budding Yeast . . . . . . . . . . . . . . . . . . . . 15' A- B) M2 T; I- A1 O
Chhabi K. Govind, Daniel Ginsburg, and Alan G. Hinnebusch
! w& U3 c7 ~- a Q( m: I3 Monitoring the Effects of Chromatin Remodelers on Long-Range- k* V* ^( r: t& V
Interactions In Vivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29! c5 B0 w1 [/ \$ o2 o0 f5 ]
Christine M. Kiefer and Ann Dean
3 h( J# b# G) G4 Measuring Nucleosome Occupancy In Vivo by Micrococcal Nuclease . . . . . . . . . . . 47
# N9 g. r' ]$ R3 z! PGene O. Bryant
6 d; C% ?4 D* d4 p1 R! s5 Analysis of Nucleosome Positioning Using a Nucleosome-Scanning Assay. . . . . . . . 638 c' [1 V3 v* ^ K, K) G
Juan Jose Infante, G. Lynn Law, and Elton T. Young
: x# u; r; Y9 i- ~: A6 Assaying Chromatin Structure and Remodeling by Restriction Enzyme
& q/ Q+ y |$ ]3 P% L2 aAccessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89$ n9 |7 y! E. Y1 {1 h
Kevin W. Trotter and Trevor K. Archer
! u0 E1 T+ c: x8 F3 _5 M7 Generation of DNA Circles in Yeast by Inducible Site-Specific
7 }$ V2 g6 N( m$ {; zRecombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
0 k8 a- _6 w2 t. }! [4 \/ ?. IMarc R. Gartenberg9 l8 E" h% s4 P& n& }
8 An Efficient Purification System for Native Minichromosome
z; G4 M+ c( A5 Ffrom Saccharomyces cerevisiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
0 [9 L: v5 x9 H+ s$ }8 s ]Ashwin Unnikrishnan, Bungo Akiyoshi, Sue Biggins, and Toshio Tsukiyama
- P* Z8 I( w% H: T3 }9 Simultaneous Single-Molecule Detection of Endogenous C-5 DNA" a; s* ?( Y& z
Methylation and Chromatin Accessibility Using MAPit. . . . . . . . . . . . . . . . . . . . . . 125; D4 p6 F, l6 m+ n0 u
Russell P. Darst, Carolina E. Pardo, Santhi Pondugula,
5 T3 v# S) `6 b$ l. i# bVamsi K. Gangaraju, Nancy H. Nabilsi, Blaine Bartholomew,; f: e) a" t4 U7 z- D- ?
and Michael P. Kladde
9 M8 F# g& p7 ?1 |10 Analysis of Stable and Transient Protein–Protein Interactions . . . . . . . . . . . . . . . . . 143
2 P" n& ]! ]3 a- N" H. hStephanie Byrum, Sherri K. Smart, Signe Larson, and Alan J. Tackett+ |- W5 I' e9 o R
11 Monitoring Dynamic Binding of Chromatin Proteins In Vivo. n2 o* p: y/ m4 C+ c; W. K5 `
by Fluorescence Recovery After Photobleaching . . . . . . . . . . . . . . . . . . . . . . . . . . . 1531 H/ k& [* m0 c6 C6 ~6 u
Florian Mueller, Tatiana S. Karpova, Davide Mazza,5 B [$ @8 {7 a% a
and James G. McNally
% `) r7 g1 l; [4 f: f12 Monitoring Dynamic Binding of Chromatin Proteins In Vivo by Fluorescence
: A, M+ D T( n5 P2 ECorrelation Spectroscopy and Temporal Image Correlation Spectroscopy . . . . . . . . 177
' Z) T. [ Y6 N% [0 IDavide Mazza, Timothy J. Stasevich, Tatiana S. Karpova,
) z% t8 K1 T. X4 X; zand James G. McNally. Y$ t o8 m3 {% k6 u) Z/ {
13 Analysis of Chromatin Structure in Plant Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
# [! X Y0 r/ K6 E1 `7 o% fMala Singh, Amol Ranjan, Krishan Mohan Rai, Sunil Kumar Singh,
6 K* c9 w% I( f& p9 S7 G$ VVerandra Kumar, Ila Trivedi, Niraj Lodhi, and Samir V. Sawant
* G( ]. a- C& ]! _* o' {/ K& h14 Analysis of Histones and Histone Variants in Plants. . . . . . . . . . . . . . . . . . . . . . . . . 2257 e# ?0 p8 y+ M/ J% ^2 q& ^
Ila Trivedi, Krishan Mohan Rai, Sunil Kumar Singh,' n! O6 |7 f& y( ~# q
Verandra Kumar, Mala Singh, Amol Ranjan, Niraj Lodhi,0 s3 G9 L2 {+ }4 R
and Samir V. Sawant# z& { n' A1 S! L. l- G: `1 a
15 Reconstitution of Modified Chromatin Templates for In Vitro
. |! U# T- Z1 M1 X9 rFunctional Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
+ U, S9 E! y o9 e, _$ U, a. kMiyong Yun, Chun Ruan, Jae-Wan Huh, and Bing Li0 R2 y+ u- s* Z( Y
16 A Defined In Vitro System to Study ATP-Dependent Remodeling
. ^- e, Y& M2 n( s( \of Short Chromatin Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255- v5 O* u u5 a9 J. {
Verena K. Maier and Peter B. Becker- X$ M: M, t9 X$ q% ]9 H# n
17 In Vitro Reconstitution of In Vivo-Like Nucleosome Positioning3 e, N1 j; i2 u1 S2 R
on Yeast DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2713 z; N& r; w5 I6 O; k0 P
Christian J. Wippo and Philipp Korber$ O1 h: g* R* q2 I8 \8 }3 x
18 Activator-Dependent Acetylation of Chromatin Model Systems. . . . . . . . . . . . . . . . 289
/ V/ |. A' @0 wHeather J. Szerlong and Jeffrey C. Hansen
/ [9 K8 } `: r19 Mapping Assembly Favored and Remodeled Nucleosome Positions
8 W2 h; m2 u9 h1 Xon Polynucleosomal Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
( { @( s" ]: ~ a( p QHillel I. Sims, Chuong D. Pham, and Gavin R. Schnitzler
6 X: w5 h- ]; z5 \20 Analysis of Changes in Nucleosome Conformation Using Fluorescence
3 I& S( h3 C2 H$ q2 x9 K8 aResonance Energy Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
8 g) ]" _- A% r3 o7 LTina Shahian and Geeta J. Narlikar
, V' J$ Z' g) D& I1 Q* o( [21 Preparation of Nucleosomes Containing a Specific H2A–H2A Cross-Link
& t, O1 |/ |* ~Forming a DNA-Constraining Loop Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3513 x0 p% Y s* b- R+ ^2 }! ~, [
Ning Liu and Jeffrey J. Hayes5 Z/ C' W1 N P: ]9 V
22 Sulfyhydryl-Reactive Site-Directed Cross-Linking as a Method for Probing8 F( u& k% x2 u. G( B- [
the Tetrameric Structure of Histones H3 and H4 . . . . . . . . . . . . . . . . . . . . . . . . . . 3738 g/ S: t5 H3 M" N0 U: B) B, v
Andrew Bowman and Tom Owen-Hughes( ~. M1 u, B0 ]6 v- F
23 Genomic Approaches for Determining Nucleosome Occupancy in Yeast . . . . . . . . . 389
& c( T7 ]9 M, v. i* N UKyle Tsui, Tanja Durbic, Marinella Gebbia, and Corey Nislow
$ E) n9 f% h( D24 Genome-Wide Approaches to Determining Nucleosome Occupancy
5 ]2 |( t- P( b$ S' sin Metazoans Using MNase-Seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413& ^, \4 K( h/ y, P
Kairong Cui and Keji Zhao
0 _0 W, C. j8 f3 L25 Salt Fractionation of Nucleosomes for Genome-Wide Profiling . . . . . . . . . . . . . . . . 421( K+ {* C4 ~* p
Sheila S. Teves and Steven Henikoff& _$ y. J6 N4 L' L
26 Quantitative Analysis of Genome-Wide Chromatin Remodeling . . . . . . . . . . . . . . . 433
, y4 p$ u1 n( ZSongjoon Baek, Myong-Hee Sung, and Gordon L. Hager
9 t. [3 H; V' p! Z: R( ~: Z c& O27 Computational Analysis of Nucleosome Positioning . . . . . . . . . . . . . . . . . . . . . . . . 443! j; F! k0 ^ b7 ?9 b) V; ?: L8 X' @
Itay Tirosh# Z* r3 j8 b; u: ^
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451: w' J- J, o, g, J/ r
|
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
|