
- 积分
- 56
- 威望
- 56
- 包包
- 422
|
Chromatin Remodeling2 D M/ p. j# q7 I- E% C# B
5 N3 K8 t7 p' }& b" ZContents
3 ~& R, c! V, KPreface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
+ Y6 _( h+ z$ X) sContributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix+ b( H% a: C! V
1 Strain Construction and Screening Methods for a Yeast Histone H3/H4
' S& q/ ?+ y- X! z! g4 d) CMutant Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 u& E2 B6 M* l* G) X6 D
Junbiao Dai and Jef D. Boeke+ B% R; Y w$ j3 [( o
2 Measuring Dynamic Changes in Histone Modifications and Nucleosome
& u: W& j8 J7 v8 SDensity during Activated Transcription in Budding Yeast . . . . . . . . . . . . . . . . . . . . 15
) Y! o( U6 r; V3 F3 oChhabi K. Govind, Daniel Ginsburg, and Alan G. Hinnebusch
7 g! o1 @# \0 j4 z2 b/ D* R3 Monitoring the Effects of Chromatin Remodelers on Long-Range2 l" v& }( P6 O }7 b" r
Interactions In Vivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 X2 P# l! \" h9 u. X x
Christine M. Kiefer and Ann Dean
7 F# u# o9 L" p _ i( V4 Measuring Nucleosome Occupancy In Vivo by Micrococcal Nuclease . . . . . . . . . . . 47# K9 |% d- u5 l0 M0 I& T4 S+ _' @7 I
Gene O. Bryant: b2 k% c( P% ?& o
5 Analysis of Nucleosome Positioning Using a Nucleosome-Scanning Assay. . . . . . . . 634 _* h& W) y V* ]
Juan Jose Infante, G. Lynn Law, and Elton T. Young
' ?$ N+ V% ]8 M) z6 n& Q% i8 ]; ?6 Assaying Chromatin Structure and Remodeling by Restriction Enzyme2 Q' `. i' {; \- z; y4 e
Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 892 q9 O0 q, L, M( y. x8 B( N' `
Kevin W. Trotter and Trevor K. Archer" L+ l9 J3 [: }
7 Generation of DNA Circles in Yeast by Inducible Site-Specific
3 ~9 J h, p3 }7 t. uRecombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103# X# D( k8 i, J' E3 c" ~( `
Marc R. Gartenberg
6 x m( p- _4 T L6 w8 An Efficient Purification System for Native Minichromosome& o( [# L/ ^/ E2 \9 W( m8 G' E
from Saccharomyces cerevisiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115- g r4 V# l7 h2 G! a
Ashwin Unnikrishnan, Bungo Akiyoshi, Sue Biggins, and Toshio Tsukiyama
$ Z9 T9 j% m1 q& g8 H' {, D9 Simultaneous Single-Molecule Detection of Endogenous C-5 DNA
1 d% l/ ~5 G3 M; d6 r! QMethylation and Chromatin Accessibility Using MAPit. . . . . . . . . . . . . . . . . . . . . . 125
3 f! F# ~% W8 D( ~2 U* ?, mRussell P. Darst, Carolina E. Pardo, Santhi Pondugula,
# i! |- [6 p" g1 z. AVamsi K. Gangaraju, Nancy H. Nabilsi, Blaine Bartholomew,
B; |, w* h2 V" `and Michael P. Kladde
8 D2 x, L' p+ ?! M# @10 Analysis of Stable and Transient Protein–Protein Interactions . . . . . . . . . . . . . . . . . 1433 W- x) n1 |3 q- ]3 ^9 _
Stephanie Byrum, Sherri K. Smart, Signe Larson, and Alan J. Tackett( r) [# T5 H8 W! [! [+ C
11 Monitoring Dynamic Binding of Chromatin Proteins In Vivo
U# j) G ]; X& ~6 R( Uby Fluorescence Recovery After Photobleaching . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
& U8 E* M0 ^ `0 b2 s3 _Florian Mueller, Tatiana S. Karpova, Davide Mazza,$ Q0 s B# \) z6 v: C# ?
and James G. McNally
2 @5 ]: V* y2 A$ ?% X# K# E2 z0 d9 z# ?12 Monitoring Dynamic Binding of Chromatin Proteins In Vivo by Fluorescence
' w1 ~; T7 S2 @) bCorrelation Spectroscopy and Temporal Image Correlation Spectroscopy . . . . . . . . 177
4 U- C) ^) ]* }* f2 G# dDavide Mazza, Timothy J. Stasevich, Tatiana S. Karpova,1 s8 O2 j9 V$ ?/ l
and James G. McNally+ h+ E; U6 t8 D* p* t8 Y5 [0 @
13 Analysis of Chromatin Structure in Plant Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201% H% s3 \& `5 x3 L, i
Mala Singh, Amol Ranjan, Krishan Mohan Rai, Sunil Kumar Singh,+ K' q8 p+ B! b/ C: S8 z
Verandra Kumar, Ila Trivedi, Niraj Lodhi, and Samir V. Sawant
, }# X7 q7 a( s8 d8 }) @14 Analysis of Histones and Histone Variants in Plants. . . . . . . . . . . . . . . . . . . . . . . . . 225
/ h" z( y" V7 }0 r% H1 TIla Trivedi, Krishan Mohan Rai, Sunil Kumar Singh,
# V+ S5 h! ~) ?1 z+ V% ~: ?Verandra Kumar, Mala Singh, Amol Ranjan, Niraj Lodhi,
, s& P7 z( @% r% ^8 U* pand Samir V. Sawant) v1 ^2 g' r3 G6 ~/ O3 n' o; s) B
15 Reconstitution of Modified Chromatin Templates for In Vitro
) v1 s- X3 A# f# UFunctional Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
: h9 P3 Q( n# u# ^( ~/ o3 ?Miyong Yun, Chun Ruan, Jae-Wan Huh, and Bing Li8 e0 V T# `) [/ w& f6 Y
16 A Defined In Vitro System to Study ATP-Dependent Remodeling
+ K- A: R$ S) A- Uof Short Chromatin Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
( @, f# M3 F- W8 F1 Y: t: @Verena K. Maier and Peter B. Becker
! D) @' h3 Q9 Z/ L: v* N9 Q17 In Vitro Reconstitution of In Vivo-Like Nucleosome Positioning
0 T4 |3 C+ R) A+ g' t8 P2 Zon Yeast DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
/ p8 _7 ]( U( u( D Z2 \& @7 QChristian J. Wippo and Philipp Korber- Z* k" P. j7 A$ i
18 Activator-Dependent Acetylation of Chromatin Model Systems. . . . . . . . . . . . . . . . 289
+ y% Z% @7 y1 ZHeather J. Szerlong and Jeffrey C. Hansen' o0 ~0 Q4 w! D( Y% @. j) o- k
19 Mapping Assembly Favored and Remodeled Nucleosome Positions
B* l5 m9 l" u1 X {on Polynucleosomal Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311' j6 v m W8 C8 [$ l* E
Hillel I. Sims, Chuong D. Pham, and Gavin R. Schnitzler
+ B+ V) }+ {7 A) z0 G, x7 A20 Analysis of Changes in Nucleosome Conformation Using Fluorescence& G# z- ~% a5 |8 M, Y; t
Resonance Energy Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
) I+ I$ W1 t( E" hTina Shahian and Geeta J. Narlikar% q r- m' T$ I& ]+ H; l% [! T/ f
21 Preparation of Nucleosomes Containing a Specific H2A–H2A Cross-Link
/ |& x! ~; N% S; f, uForming a DNA-Constraining Loop Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
. L6 ]) P! f+ S# G. w7 I) DNing Liu and Jeffrey J. Hayes
) q& f# [7 T) K V0 {22 Sulfyhydryl-Reactive Site-Directed Cross-Linking as a Method for Probing
* `2 x5 j, [8 _, N; lthe Tetrameric Structure of Histones H3 and H4 . . . . . . . . . . . . . . . . . . . . . . . . . . 373. U+ K0 H# Z8 ], T
Andrew Bowman and Tom Owen-Hughes
7 b. e' r/ k. h# {23 Genomic Approaches for Determining Nucleosome Occupancy in Yeast . . . . . . . . . 3890 g3 _9 `2 Z; x: e M4 m4 `4 p( D
Kyle Tsui, Tanja Durbic, Marinella Gebbia, and Corey Nislow
8 b" X& ]) N+ F: c+ M2 ^: h; k$ J24 Genome-Wide Approaches to Determining Nucleosome Occupancy
7 K+ J1 [& b- rin Metazoans Using MNase-Seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
4 t% {. [: W$ n' z1 cKairong Cui and Keji Zhao3 ^0 [6 B3 n, f1 `) {; b P
25 Salt Fractionation of Nucleosomes for Genome-Wide Profiling . . . . . . . . . . . . . . . . 4216 j7 j1 L8 |1 R9 {, n" h
Sheila S. Teves and Steven Henikoff; F9 C o% |' ^9 T
26 Quantitative Analysis of Genome-Wide Chromatin Remodeling . . . . . . . . . . . . . . . 4332 G1 S( \9 Z( w1 E9 Z" y
Songjoon Baek, Myong-Hee Sung, and Gordon L. Hager
" U( o, q! c0 C27 Computational Analysis of Nucleosome Positioning . . . . . . . . . . . . . . . . . . . . . . . . 443
2 p3 ^) l+ G, A& U# i, T, tItay Tirosh, }9 A% ]( o/ P4 V5 V5 w1 v
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451. V+ H4 X7 o- u$ Y
|
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
|