干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
干细胞之家 - 中国干细胞行业门户第一站 干细胞之家论坛 干细胞文献资源库 藏经阁 Mesenchymal stem cells within tumour stroma promote ...
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 414957|回复: 227
go

Mesenchymal stem cells within tumour stroma promote breast cancer metastasis [复制链接]

Rank: 1

积分
威望
0  
包包
8  
楼主
发表于 2012-5-17 17:15 |只看该作者 |倒序浏览 |打印
Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the& R- f  ^6 |: Z) }
tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour. E# w7 Z! B4 D1 K5 z
pathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived humanmesenchymal stem cells,$ o( a' `" a7 J- T7 v, r5 U
when mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their
+ m+ Z7 \- q3 u) mmetastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour
4 u3 Q3 g5 P) V; y0 g- V& w) exenograft. The breast cancer cells stimulate de novo secretion of the chemokine CCL5 (also called RANTES) from
) C9 S3 S0 t5 A( F  ~mesenchymal stem cells, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and
, x5 A) i4 ]: x9 ^3 `- H) }. Y3 H; Cmetastasis. This enhanced metastatic ability is reversible and is dependent on CCL5 signalling through the chemokine
( A; s7 u5 p+ zreceptor CCR5. Collectively, these data demonstrate that the tumour microenvironment facilitates metastatic spread by; A' l! r; V/ W9 ^- z
eliciting reversible changes in the phenotype of cancer cells.4 P, \! I% T0 i; u5 {1 P& W( h
The origins of the invasive and metastatic phenotypes of carcinoma! M: i% ~2 G% C, P0 c
cells have been the subjects of intense investigation. Whereas some
- q% u( i2 O; L: j4 {, D2 Z' w% H( G; gcurrent models depict these phenotypes as cell-autonomous alterations5 y. N/ x: _. x3 Z9 z
specified by the genomes of cancer cells, alternative views propose
$ l! F9 V! R! n4 g& W% Jthat metastatic traits are acquired through exposure of epithelial$ q, R' s- J/ g% q, W
cancer cells to paracrine signals that they receive from mesenchymal1 T* y9 _0 E0 g" a1 u1 |& A) `
cell types within the tumour-associated stroma. Although several+ i' X, Q& X+ w
lines of evidence demonstrate the contributions of stromal cells to
5 k. Z1 \6 L" J6 t! E# \( {primary tumour growth1, direct experimental demonstration of the
4 B! J4 l* R3 J4 u  rinfluence of these various cells on the metastatic abilities of cancer+ a' J, I  w+ j& q
cells has been difficult to obtain. This is due, in part, to the complexity$ o) {1 f, S5 F/ Q
of the mesenchymal cell types that are recruited into the stroma, and
1 c( D0 v. D# _# L1 P' Ato the elusive nature of the putative paracrine signals that are
* q3 E% A: i* q" i- y( Yexchanged between the mesenchymal and epithelial compartments
* l) ?* A. X  Z. S  x% cof a tumour. Recent reports proposed that the bone-marrow-derived
% |: y4 p5 d, C8 C2 vmesenchymal stem cell (MSC) is a cell type that is recruited in large
2 k1 t6 b3 x$ |. l6 bnumbers to the stroma of developing tumours2. To characterize better4 O3 ]* e  v7 b( g+ C3 u( ^8 R
the role of this stromal cell in tumorigenesis, we set out to determine( Z( r' Q+ Z/ s8 W
whether MSCs could supply contextual signals that serve to
( E* w; Z. z9 d$ l' a% u$ L, \promote cancer metastasis.
' M1 k% ]5 y: K+ v9 h/ eMesenchymal stem cells are pluripotent progenitor cells that contribute, h- `, d$ A$ ?3 W( s. h: l
to the maintenance and regeneration of a variety of connective0 @) r& `) a, W' ?- u6 t  K& w
tissues, including bone, adipose, cartilage and muscle3. Although7 ?" l9 I3 }& O8 f/ v- ]* J2 }& H0 J
MSCs reside predominantly in the bone marrow, they are also distributed8 v' y% S. V  R4 o
throughout many other tissues, where they are thought to
/ A. W4 i3 v4 D9 _" g/ V: m" Bserve as local sources of dormant stem cells4,5. The contributions of( j: b3 y1 v, n' ~- a0 M
MSCs to tissue formation become apparent only in cases of tissue
% M+ H4 R6 H9 v# ?$ y% |! L& Nremodelling after injury or chronic inflammation. These conditions3 |0 G6 u* P1 z/ b6 R
are typically accompanied by the release of specific endocrinal signals
: Q( O# C$ y: e2 u; e) Gfrom the injured or inflamed tissue that are then transmitted to the' _2 Z, H  q0 `% J
bone marrow, leading to the mobilization of multi-potent MSCs and; i. w5 o5 J* Y6 W
their subsequent recruitment to the damage site6. For example, MSCs
, E  F/ A0 w! @# a9 ~0 p4 ~have been shown to contribute to the formation of fibrous scars after
* Q+ \, F5 h3 E- N* `injury7.
. e& Y) X5 n, A$ A# q. sThe formation of breast carcinomas is often accompanied by a
! P# {, W: H2 f* ~/ Twell-orchestrated desmoplastic reaction, which involves the recruitment
0 o# {  |: F2 z/ n$ h/ x& rof a variety of stromal cells with both pro- and anti-tumorigenic+ {+ H) g7 O8 e; W
activities1. Such response closely resembles wound healing and scar
8 T: L7 v: }6 @1 nformation, and entails the constant deposition of growth factors,
0 W: ~, O' [5 l6 e9 mcytokines and matrix-remodelling proteins that render the tumour
0 C- C) {1 F0 u! csite a ‘wound that never heals’8. This suggests that, similar to sites of& N+ t: G; z9 T
injury, actively growing tumours recruit MSCs through the release of
% [$ q1 s/ N! `, }2 B5 V- i* F0 a+ c! Qvarious endocrine and paracrine signals. Indeed, as we have found,
! }: C' u/ g3 ]4 y) X8 imouse stroma prepared from developing human MCF7/Ras or
2 j. T* y, m! r: k# D& q7 ?MDA-MB-231 breast cancer xenografts is rich in cells with an ability3 W7 X$ t( t; F
to generate fibroblastoid colony-forming units (CFU-F) in vitro
) L$ B$ l- _. ?- K0 V1 Y(Supplementary Fig. 1a), a hallmark of MSCs3. The absence of such" `1 \2 P4 K" e9 N; f
colonies from control Matrigel plugs or from neighbouring tissues
2 f, R; b/ p/ V2 m% q(negative control; Supplementary Fig. 1a) suggested that endogenous2 G9 ]* z! |8 C7 I( l
murine MSCs localize specifically to sites of neoplasia.7 a9 e* W: }7 h1 S8 Z0 y
To investigate whether human breast cancer cells also have the
" z" q7 e* O. b: I' a/ E! Q1 Fability to attract human MSCs, we established a transwell assay8 u# k% L4 ], {, _* B% {
in which bone-marrow-derived human MSCs were allowed to
6 e: P/ E  G/ e! Q' c; k! j2 Xmigrate towards media derived from MCF7/Ras or MDA-MB-2313 b4 H+ Z: a9 @
cultures. We found that human MSCs migrated much more avidly- _! @$ S# Z+ t% J7 ^
(,11-fold more) towards media derived from these cancer cells
/ N% A) k, C$ k5 _9 `6 dthan towards control media (Supplementary Fig. 1b). More importantly,
- \  Z6 ?* j4 Y# I$ rgreen fluorescent protein (GFP)-labelled human MSCs) L2 }  r) Z& j1 `
infused into the venous circulation of mice bearing MCF7/Ras
- P1 j4 e& a4 x3 b2 t4 q- \7 zor MDA-MB-231 human breast cancer xenografts localized specifically/ |& c* P2 o' }9 D5 v( o
to the developing tumours, with no observable accumulation
/ H" Q" |; c3 e4 m! ~in other tissues, such as the kidneys (Supplementary Fig. 1c), liver; j" {( m$ m6 X' L
and spleen (data not shown). Such findings indicated that MSCs  B  L1 i0 _: Z, I/ z- w! z6 \
are specifically recruited by subcutaneous breast xenografts, and corroborated
# G5 E% B) f. D! t6 N' J' R2 }recent studies that described the localization of systemically
9 k# h3 P. P4 L7 f/ @( yinfused MSCs to other types of malignancy, such as gliomas9,10,$ W  p( w4 l  e& K9 \, i
colon carcinomas11,12, ovarian carcinomas13, Kaposi’s sarcomas14 and
% X* }: G0 g. [7 k9 p! Imelanomas15.MSCs enhance breast cancer metastasis) u' M( F( l' {; ?
To investigate the functional consequences of the heterotypic interactions
) B8 p( W% b9 E8 i$ sbetween MSCs and mammary carcinoma cells, we established. W2 R" R! x$ H/ h2 Z: p3 F
a xenograft model in which GFP-labelled MCF7/Ras, MDA-MB-231,7 k* [& K1 |; }
MDA-MB-435 and HMLER (see Methods) human breast cancer! Q+ c* H+ T* A
cells (BCCs) were mixed with bone-marrow-derived human MSCs" k& `8 |. h6 G& a- d- T) U/ [8 A( n
(hereafter referred to as MSCs) and injected subcutaneously into) p0 ^# \0 ^7 {1 l5 `! ~& V
immunocompromised mice. The growth kinetics of the MSCcontaining0 z9 q/ T" y3 O" X6 B5 K! [
tumours (BCCs plus MSCs) were compared to those of5 |" l; z' X3 `/ h0 S  k5 m4 `
BCCs injected alone (BCCs) over the subsequent 8–12 weeks, after- F  D/ ~; A  R$ g
which the histopathology of the resulting tumours was studied.$ ^* m6 G- Q. X" Y: ]! q! `* O
We found that MSCs accelerated the growth of MCF7/Ras, ]2 Y2 G2 k0 x
tumours without affecting the kinetics of MDA-MB-231-, MDAMB-* T/ v" Y% Z5 _
435- or HMLER-containing tumours (Fig. 1a). More importantly,
* D+ e7 m5 c5 f& P& e2 lwhereas mice carrying tumours composed only of BCCs7 `0 ~, ?; W! @1 U5 M# D
exhibited few microscopic metastases in the lungs (Fig. 1b, d), mice/ ?) O4 W: @1 T9 g
bearing the mixed MCF7/Ras1MSC, MDA-MB-2311MSC, MDAMB-  x$ _) l: V  y& c+ h
4351MSC and HMLER1MSC tumours displayed a marked; R5 g# o; O" `$ g; A6 z3 a* u
increase in the numbers of micro- and macroscopic lung metastases' Z( b8 x1 y+ f9 w  M
(Fig. 1b, d). Normalized counts of the metastatic nodules in the lungs
  D. H, d0 T0 f7 D% _4 \2 tof BCC1MSC-bearing mice compared to their BCC-control littermates3 B% P2 ]  I4 A4 s
revealed two-, three-, four- and sevenfold enhancements in
: ?/ W; J3 v, y# F+ j4 Nthe overall numbers of detectable HMLER, MDA-MB-435, MCF7/
( o! k" ~  k- h% QRas and MDA-MB-231 metastatic deposits, respectively (Fig. 1c)." \( K/ M- J# p' _5 q7 {$ Y
Furthermore, in contrast to the MDA-MB-231-bearing mice, the4 [& `- b. q1 ~) f
MDA-MB-2311MSC-bearing mice showed metastases to various
) U9 S$ y" W- y6 W* dother tissues, including the mammary glands (Supplementary% X: U  l9 N0 F) K; X# H, a
Table 1). Although all four of the tested cell lines exhibited enhanced
1 X+ |$ O) F- q7 B- J) N$ fmetastatic potential after admixture of MSCs, we chose to focus# T; H( Z% m: Z  p2 U
further analysis on the MDA-MB-231 tumour model, because it% \  }' g1 m6 s
displayed the greatest relative increase in MSC-induced metastasis
. Z/ c0 o9 ?: Q1 B/ a7 _) B2 C7 lwithout any concomitant effect on either tumour cell proliferation* C3 c* J( ]' F/ [' o+ X
(as revealed by Ki67 staining; Supplementary Fig. 2) or overall primary
2 ~/ E7 b" z+ t5 Y/ a' |6 `tumour growth kinetics.+ h& |, v  R/ y6 p; h
We note that admixture of other types of mesenchymal cells—8 O! D. X( @8 w5 W+ Y% B
specifically WI-38 or BJ human fibroblasts (Supplementary Fig. 3
% o2 H1 J& u7 b+ c! v" a. M( h5 z4 Sand data not shown)—to MDA-MB-231 cancer cells before injection4 k. i6 H7 i/ h, C; l
into host mice did not result in either enhanced growth kinetics) U; t$ m& T$ }- E: _  X  {: [
(Supplementary Fig. 3a, b) or increased numbers of lung metastases
4 C% t4 }5 ^6 ~# I% M1 ~(Supplementary Fig. 3c, d). Taken together, these observations indicated
. H+ H* B1 i2 F- x% N. pthat the metastasis-enhancing powers were a specific property; y" k& ^+ V# Z& H* L9 O/ x
of admixed MSCs or derivatives thereof.# l; u& Y$ Q& ]1 K7 p
Reversible metastasis! @, c; t' I6 S0 w! R
Implantation of MSCs either contralaterally to MDA-MB-231 cells or" `$ B9 M2 s0 O
in nearby separate sites of injection did not affect the metastatic4 r/ v: r  w/ O3 _' a- h+ u
potential of the resulting primary tumours (data not shown), indicating
9 K8 e5 V4 H/ sthat MSCs could enhance cancer metastasis only when they* C. C9 f2 r  N+ a
were in close proximity to the engrafted BCCs. This influence might+ U* u8 v) p$ V7 o9 b
be ascribed to various effects that MSCs exert on the commingled. t" n8 y7 G! j* }$ V3 T
carcinoma cells. Thus, the MSCs might favour the outgrowth of rare
2 ?3 {1 v( ?" K& h/ pvariants within the MDA-MB-231 cell populations that exhibit
0 _" ^, d! b3 b7 F9 b" B8 yunusually high metastatic powers. Alternatively, the MSCs might* y. _- R5 f! d# U; {) N
cause otherwise weakly metastatic MDA-MB-231 cells to acquire
! i5 t+ `8 C1 F2 Xenhanced metastatic abilities. This latter mechanism suggests the
& s! Z6 h# `% A& e) Mpossibility that the acquisition of the metastatic phenotype might+ _+ \1 I7 T: j5 c: u/ Z) {6 t* D3 ?" e
be reversible, in that carcinoma cells might revert to a lower metastatic
# A0 f; H0 m1 Tstate once they were no longer in close contact with MSCs.; G9 V  }1 [7 l7 u; u4 G
To resolve between these two mechanisms, explants of MDA-MB-
+ _& f% M2 y& v+ z  Z; [  Q. {2 N231 cells were prepared from BCC plus MSC primary tumours (Texplants)  |1 ~$ L( @* w' P' h: }* y6 S  \
as well as from their derived lung metastases (L-explants),
# T1 q. Y) @* S1 Eexpanded in vitro, cleared from contaminating stromal components,
& l! G0 n! E. Q" e" ]1 u8 Oand then re-injected into subcutaneous sites in host mice in order
! Q5 \9 }8 h! n; _2 N+ [: cto evaluate their respective metastatic powers (Fig. 2a). Although  \# w; P( x& l/ [. ~
the growth rate of the resulting L-explant primary tumours was
  g" I2 n& V5 Q) S' z2 ~marginally enhanced compared to their T-explant counterparts
! r8 G& u/ l1 [9 d+ B(Fig. 2b, c), these L-explant cells were no more metastatic than the
$ R+ ?% r; Y2 B5 q8 Hparental T-explant cancer cells (Fig. 2d). This suggested that the6 c) H5 R! I- t8 E% }$ A
a$ ~& l% Y5 G; x: x# r  Q2 d* G
c d
& `; ]; _# N+ d' v( ?4 }, UDays after injection
2 I* O" R$ ~( [Tumour volume (mm3)
; l2 H& H  M. B. X9 x/ b9 q  F% Q10 17 24 31 38 46 72 80 89 13 19 26 33 40 47 54 61 68 75 81 10 19 24 31 38 46* t9 @0 Q: U9 n) }
b5 |' f7 A! U7 @- c
1 mm 1 mm9 }- g; l: J1 `$ Y' V  `3 A5 K7 x2 H& ~
1 mm 1 mm
7 e1 {+ m: L. d  x300 μm
0 |' }5 `4 v  v. W4 u5 YHMLER HMLER+MSC; Z% e, ?8 Q, f1 q& f; G
MDA-MB-231 MDA-MB-231+MSC" g/ e( ~* _" `+ j5 h; C
MDA-MB-435 MDA-MB-435+MSC; Q) z( d1 L" a0 ~5 S# M
MCF7/Ras MCF7/Ras+MSC7 X' |- }) _: m
100 μm* v0 @( t3 t3 i5 o( L, k
300 μm7 r1 m  Y. _0 m& n, i6 s- V$ u
100 μm
- ], U' v! B% pMDA-MB-231
2 m& f" V8 L  C; ~- T6 ?4 RMDA-MB-435
3 i0 p# B) y6 F# q4 s: p  v9 PMCF7/Ras# [+ }7 E+ Q4 k- V& z! D+ E6 }
**
9 V6 Y9 ?' K6 Z2 v" q) E# bMetastasis index (fold)
" C. z; `6 [6 U1 ~5 H7 E0- t0 y6 ^4 n$ k7 q: `! N  H2 C
1& ^+ _" u1 U+ v; Y$ Y
2$ G7 n/ e- H0 Y3 K5 w8 {. k. g' P
3
% v6 T. q! [" `8 D, N45 ^& {3 b# O9 y% Z$ q: i8 ^( _
52 Y) s- j! m% ~1 f) a
6# Z5 u9 H" \% ]9 d, S* H
7
  ~; {2 r! j. L! O6 m$ B- I8" m  [# c7 l9 ]2 j. x9 F
9
4 E  a# d9 Z8 y6 s! G6 o: J*
: i( \4 K' n1 L8 Z**
+ [  i- w5 p3 ]$ u**
: Z# D& j4 L$ n- E& rMSC – + – + – + – +
" t0 F( @! [( [9 |; `*
% N: Q8 N  c: s$ l, n+ g8 O5 ]HMLER
# ?, Z" _' X2 O: r- o$ }7 u700 1,200
7 U) J0 E3 y' |; f# n1,0005 C- f, T: g' O2 K8 t
8007 Z- f2 C: j! b7 x4 `1 F
600
) _8 m& w! e: b" v6 a: F400# F$ ~/ L" U' k  `( l: I% J) _" ]( B
200
5 i* X* @  L0 ~& p0
' l7 j- I+ p3 d+ }! u800
0 m& h$ x9 p9 P! v700
9 N6 N  @2 w4 `1 _7 _$ n6000 p/ d# R, N& W( ?4 v6 k
5007 y( z( I( e* O+ I: t
400  e% ~5 ^4 a9 \( w7 B2 E% V  u! ^8 d
300
' t* b* f$ m# @9 D200
4 [9 U! I7 f* w* |100
6 ]5 c5 S' X: L0
! r: S' o! m( \+ s/ }" f& s3,500
/ _  J) y% D( x1 @3 ~0
1 Y2 W% y" o: c2 B% E: n, ?* \/ @+ ^500
# _9 C  \9 e9 ~, C; s1,000
1 l) `, r) ]$ s; M2 H; k1,5006 {  p8 F6 @7 O+ L( Z' p
2,000
* O8 ]5 d) }; P8 H/ R' F# u2,500' o( Y6 t2 G( B; m" G: Q0 ?
600 3,000
0 S- |  O3 z  r5 k' Z500
- ^5 l# c6 p: Y/ k+ q/ J! p: h400
, M' M+ h; U/ f8 S0 f' b3007 v: w; f" @. Y' m7 {5 F" [5 C
2006 i3 D( N$ i' W+ T1 r1 d
100' H  t- \& x! C) F$ f1 d
0
: g8 O5 I( O7 {0 21 31 38 49 56 63 70 78
- b4 H5 j8 V: pMCF7/Ras alone
! f/ M$ r5 u1 C. LMCF7/Ras+MSC" G  t% [" t7 ?7 {/ Q
MDA-MB-231 alone
2 p( T7 Y2 e0 t+ [/ rMDA-MB-231+MSC
1 p8 B8 i3 l; gMDA-MB-435 alone
; ]3 ]8 V: F9 w' G, |6 q2 R  ZMDA-MB-435+MSC- F1 T9 H' d0 x9 y# `
HMLER alone
; h* r' g$ a* ]HMLER+MSC" h, {/ T; h4 k
HMLER HMLER+MSC6 ]* Y) v5 R- J6 r
MCF7/Ras MCF7/Ras+MSC
2 I- U! O* y4 yMDA-MB-231 MDA-MB-231+MSC+ @  y) ]1 a& a8 u, r( _
MDA-MB-435 MDA-MB-435+MSC
* t+ W( Z5 A: ^1 WFigure 1 | MSCs promote breast cancer metastasis. a, Tumour volume2 w# z# T! Q+ G( m
measurements (mean6s.e.m.) of 500,000 GFP-labelled BCCs injected! i2 \1 O% H: S2 e) z
subcutaneously into nude mice with or without 1.53106 MSCs.) P6 M# Q: X/ l5 [1 N, [
Representative data from multiple experiments are shown. Diamonds, BCCs* e7 e- x) U7 U. \1 r
alone, n55–7 mice per group; squares, BCCs plus MSCs, n55–8 mice per
8 p9 W0 H% H% u4 \8 \$ O+ A: ^. M, O. e3 Xgroup. b, Representative bright-field/fluorescence images of lungs of mice- |- b, M& k6 {7 s' ?4 R
bearing the indicated tumours. Cancer colonies are in green. MCF7/Rasbearing
/ Y% {+ K8 j' e  A1 a( Umice were killed at approximately day 150 to allow these tumours to1 Z" Q* Q  [8 K3 W( E
grow to comparable sizes to their MCF7/Ras1MSC counterparts. c, The
7 E- S8 Z/ R' V$ Y4 _4 Glung metastasis indices pooled within each cohort of mice in a are expressed
1 a+ V4 x$ {5 V3 p  }as fold increase (6s.e.m.) over controls. Data shown are representative of
* l7 q/ P* f$ |. w- `multiple repeats. Asterisk, P,0.01, double asterisk, P,0.05 using onetailed) k" J$ i" Z, b* z& w: X
Student’s t-test. d, Representative haematoxylin-and-eosin-stained
( K/ c) ^+ _' Gsections of lungs of mice bearing the indicated tumours. Metastases are- l0 V7 g. i1 ^
delineated by a dashed line.MSC-induced metastatic powers reflected a reversibly induced trait+ k( p+ [) q, K4 J1 E* m
of the MDA-MB-231 cells, and that the ability of these cells to metastasize7 l. m" H% v! e* V2 a
to the lungs was a consequence of their ‘education’ by MSCs in0 u- `. g4 y( g, s
the primary tumour rather than the selection of rare variants of6 c6 s, E, O# @/ Y
MDA-MB-231 cells that display elevated metastatic potency in a
. m5 q7 ]6 p: ?- C. ?* N; cstable fashion.* V3 L# S- _! V$ x) ]* ]1 r
The effects that the MSCs exerted on the BCCs might have
+ `: F+ N* Y- k: c( ^8 h" \# }" C, Ooccurred within the site of primary tumour formation. Alternatively,
4 I' @2 t  k7 t2 V3 Athe MSCs might have accompanied the metastasizing BCCs
9 g2 N" E& V$ [( E) hto sites of metastasis formation. To distinguish between these two
: R! n3 d. q8 c. C2 Z' p+ hpossibilities, we admixed ds-red-labelled MSCs to GFP-labelled, A" w2 r1 |0 f1 N  E' h6 ]5 Z
MDA-MB-231 cells and implanted the mixture subcutaneously in
  w( |9 c5 p: X& l  _8 Ohost mice. We found that the tumour-derived lung metastases contained
3 R& J- z* _% m: fgreen-labelled MDA-MB-231 cells but no detectable redlabelled
# v7 A4 p3 s. T( N, Y  MMSCs (or their derivatives; Supplementary Fig. 4a) when  i3 O- j1 C* w- m* o
scored 4, 5 or 6 weeks after primary tumour implantation. The
7 X9 v9 [1 o% _5 a' eabsence of red-labelled MSCs from the lung metastatic sites cannot
' |1 y# @; I. @0 ^; C/ \* b+ Bbe ascribed to an inhospitable lung parenchyma, as MSCs that lodge! X- u* R9 z$ N( s
in the lungs of recipient animals after tail-vein infusion survive in that% W# O3 w* [7 k& j
environment for ,6 weeks after injection (Supplementary Fig. 4b).
( I" J. @7 V. mHence, it appeared that the admixed MSCs do not migrate in large  ~. K& e& H, n+ F8 ~1 \# W, C' l
numbers to the sites of metastasis, and that they exerted their prometastatic7 }0 a/ e) i* x0 g. R2 |' o$ v3 d9 d
effects on BCCs in the context of primary tumours.8 V) w) \! j0 l. \7 w
CCL5 in MSC-induced metastasis
4 y2 E( D. G9 P3 v5 BThe aforementioned observations indicate that MSCs supply locally$ b& Q9 k* w: I
acting paracrine cues that induce BCCs within primary tumours to
9 s$ U2 C7 S! |3 e) m% tmetastasize. To understand this crosstalk better, in vitro co-cultures
5 w; G% F) |8 Cof MDA-MB-231 breast cancer cells and MSCs were established and
6 W' Y5 z$ _/ i1 l& Y, c0 x- R) s& Btheir conditioned media were screened for the levels of various cytokines,
+ V. q: [5 @5 J" N9 |chemokines and growth factors using the Luminex-based Bio-
! D/ h% X* Y+ `2 ]) Y, }: q- UPlex suspension array system (Fig. 3a). In some cases, the resulting) _' k6 Z5 }1 t3 p+ I( x, Z+ o
a
# X2 U, h  y! _+ W  {b c d
+ f1 P- e; h3 s1 lDays after injection, c/ V! a1 H/ [9 {& }! `
Tumour volume
9 g, }6 h  ?' F(× 100 mm3)
" g" |) z& N% V$ }05 E& e5 H  X7 s
5% {# o4 ]& Y: d) b% k# i. ]% Z
10" j5 l2 Q) I5 m/ q7 k* c& L1 v0 H
15
) x. K- k6 K7 _! @6 a+ P4 [1 z20
8 N! v" o2 e" q; r" w9 c25, E; R( K/ r( t! S; r# J
14 17 21 24 28 31 34 38 42 45 48 66 71 775 `, Z! c$ F& {% Y& J5 g6 `5 G" e, I
Primary tumour explants' K4 [) h. P7 @) g
Lung explants9 U9 I% ^) r$ E* j4 c+ N0 M' U
MDA-MB-231
; p: z1 N( D0 P! n; {1 P& r& F1 l& XMSC0 ]! B! w& N0 t6 |
+
/ I- b; t7 }: W; t1 U2 pLung explants
8 B2 ^& Y7 D/ b/ vPrimary tumour5 g: h6 x. ^/ l
explants
8 y: {4 r1 n- X6 T; V" x: T. b+ u! }Antibiotic+ B2 Y. q) ~6 a2 I$ Y
BCC selection; ~5 c6 m8 _8 s' R6 c6 v
T-explant
5 G6 F1 w& C" [  S" Q8 mL-explant8 @# K3 K2 H% P$ y( A( i
T-explant: P$ R3 S' F2 ~5 d4 L
L-explant4 Z0 w0 J$ D5 i) J1 [
Tumour mass (g)/ V0 q; J' ]- V8 ^% ^
3.0
" b4 q0 j" I- f, s# i2.0
+ S# Y- B' `/ Y* I, b% r1.0
2 H5 j9 V7 t) F2 o, @; N0 u* n0 0' M  T5 m- B4 a
0.4
  ~0 q; y' F0 K& m! S) O" ]% N0.81 ~' S6 W8 ^- B: o2 E% G, F
1.2" H6 t- u/ L: h, l9 u" V5 O
1.6: X( N6 X3 r" t; n2 _; r- v
2.0% J7 u6 Q7 Z2 t+ _
#
- s9 o; N8 q% h1 }. SMetastasis index (fold)
1 S/ W' C: A. q. G' [##
8 L& F5 k2 c! m  H% IFigure 2 | MSC-induced increase in the metastasis of MDA-MB-231 cells' O+ E! X+ Z9 s: X
involves reversible mechanisms. a, BCCs were recovered from lung or
; Z" ]/ s1 \/ x9 w! vprimary tumour tissues, cleared of stromal contaminants by culture in/ K" r5 ~7 M( V5 L3 q$ O4 F
blasticidin-containing media (5 mgml21), and re-injected as primary4 a; J0 L/ g! G7 ^' d! L- s$ Z+ O  m
subcutaneous tumours in recipient animals. b, Tumour growth' |0 |4 }2 Z: w2 j
(means6s.e.m.) of 500,000GFP-labelled lung-derived (L-explant) or primary
  C9 f$ q& Z4 Y( D3 F/ T* t  o( Dtumour-derived (T-explant) MDA-MB-231 cells inoculated subcutaneously.
7 N7 O0 N+ B# E- Y9 j9 r% J7 c. H; ]/ eData shown are representative ofmultiple independent experiments in which
  @. t. Y$ x' F" Q* gfour different paired batches of L-explant and T-explant cultures were assayed
" S0 R% S) m8 O8 N3 R( B$ t* W5 o; Gin parallel. MDA-MB-231-T-explant (n58 mice); MDA-MB-231-L-explant
7 [6 [% V( L9 k$ Y" H; ?(n510mice). c,Masses (means6s.e.m.) of tumours in b.Hash,P.0.4 using
4 B) i, s2 c/ S& x) Lone-tailed Student’s t-test and indicates no statistical significance. d, Lung
9 c; g2 z4 t* h  m+ E$ H2 ?3 |metastasis index of mice in c. Doublehash, P.0.3 using one-tailed Student’s
) C# p! V4 I1 Y8 ~: k# h6 {! kt-test and indicates no statistical significance.
" L0 I1 Q) N# u  L/ Y; q) C3 ^a8 Q; e# V0 \3 Z
CCL4
2 a% x" Y9 }( Y/ k/ M2 BbFGF
/ `' b' N* z8 TVEGF. I3 T2 ?3 \8 v; f# G. [9 t: h
IFN-γ* f0 L: x' t1 w) m9 ]) y
TNF-α
6 }1 _, y6 _9 {/ ]3 {G-CSF
2 M# @+ e2 r2 [" {4 X) z+ I: _GM-CSF
! p/ D' a' m3 y9 U6 ^CCL3
# i: c/ D$ c. G" y& W  ?CCL5
2 T, S$ x- ~1 x; ^1 RMMP1/ t4 Z* H+ Z2 ~2 M" S; `
MMP3
# ?# O; `0 U; `' d1 ~+ BMMP9" g6 d# U$ C- r, N* o# _) n
MMP13* y3 P4 F/ h! L" C: D3 n
IL-1α, ~3 y2 A, q; k* S6 \
IL-1β6 L5 }, C8 A0 E7 H$ g# Q6 k
IL-42 Q; ^6 b: F6 ?6 o, r! m9 l, _
IL-5& D, n/ o" Q4 p1 v7 e1 x" r
IL-6
( [; q! Z) U: d8 SIL-7' v% B) c: @* C$ S# j
IL-89 h7 Q# l5 g) i( T% r" ^
IL-10
8 v2 G+ |, `: M/ O  J+ b; [3 qIL-124 [$ H5 v, X% z! W0 Y
IL-13
& {" v( e/ T5 c! G& `IL-17
! t; I7 l: m+ Z0 \" l2 y. eIL-22 t4 p, M: Q3 R
TGF-β+ Z4 O3 f( e: Q4 i4 x4 h. J! z) |
Fold induction
+ v1 r$ w' T# P; jMSC alone
8 _, H( U% N1 n6 F" D5 |+ fMDA alone% Q9 W0 u" x) Z9 |& b' d. ^; {# e
MDA+MSC (2:1 ratio)
$ o# Z7 n4 C, _6 h- ~' S: ^1 * * * * * * * * *1 R! P  k, Z6 O
3+ g) D+ c' R5 H" D  K6 T6 n
50 W5 U" i- w+ a; G) [1 G
7; k/ ]& y1 g6 I4 ~2 o0 g% P! c
96 I4 ^6 R: X& U7 ?
11' z% P" T3 G; t& @% x4 I
13
( X( C7 F5 S" U# s600 S" B$ ?: v  r* b2 `% E0 q5 O/ O
b c
$ {. Q0 i# l" k- N# |0.4 μm& I. a' q; U7 G2 y
2.0
1 |* m3 x( ^8 Q) x) A4 U1.8
5 p7 {+ e; v3 a+ O* _9 S" t1.62 {4 Y8 d2 x6 d2 \
1.4
1 ]1 K& T0 u1 Q* D0 @. {, B1.2& c# M" J, w' F" W& {8 G: p5 C
1.0" u5 O! _) i# N  P0 f" |3 S
0.8
) i8 _0 p4 C/ _* K2 X' H% s6 y7 o0.68 X: v( Z" s  ~* X, N& {, `
0.4
3 H/ X* f  X5 H0.2+ O6 Z1 L& s4 a
0 05 v3 W7 |+ w' h, M4 j- l' D
56 b6 d6 T, Y% ~) G' J3 v
10
+ f7 q7 w4 P' k+ N15  r( O9 J) p' Y: O8 Z
20
, A! |) }% ]5 y! [25* [5 [/ f2 Q% v; [4 ?( v: k% N) ^
30
' X3 k4 D0 L2 q4 c358 f& `& M3 P% a7 p
40( d) u6 e+ S4 }$ b- s; j3 a' |
45
3 l' S4 e; @8 P4 E50; o! Z* X( v) ~
d1 d2 d3 d4
' e, R' y  T0 o% B: C% \MDA alone( A: P7 g( i; a, E
MSC alone9 I# k: n7 j  Z# D5 A
MDA+MSC
; B, q! R$ y1 D9 |: b5 dCCL5 levels (pg ml–1)
  k4 E$ l# U) CCo-culture& V  Z: ]0 m1 C2 X0 Q' d
Fold CCL5 induction
$ F/ u2 d4 F) l' v2 XMDA alone
# K4 D* I% E6 G6 i0 _) yMSC alone
; b9 m5 ~) w: i  m9 O1 W! _; PMDA+MSC- O7 t7 q: \+ m7 \
d: v4 C  \) o: y' F3 m0 ~( f
CCL5 (A.U. × 100)6 P0 x# L, I# b0 ]& S' s
30
  S6 c" @  A( A$ W25
9 O' c. R; x% v' {3 X. K0 H20
! Y& G2 y4 S- P* D1 |% V+ y15
! w7 g- q* v7 I/ \& Z10
- ~% J' Q& h* A8 X/ H# C( N# l4 S5; ?( P2 D1 _" \; p
0
0 X" `5 n) l" _# ~  k0 O4 ]2 }+
: v( M; V( B2 z9 c( K+ t! kMSC.c" W8 n3 v, y% K
+
5 s& }; R- N* q$ C; G1 u6 jMSC.1
4 K9 y% P0 r7 {/ Y+
9 h7 B. ^3 }4 `# E+ T- AMSC.5/ m) E. V  ~$ A( g) |9 v5 e
MDA' t. v! ?: w: ?# F# g, h
MSC4 u1 O7 I* {; G. ~: b6 {
MDA.1) z& I5 f4 Q3 D
MDA.c; K8 b9 S: |7 k; `4 z+ H, Q
MDA.5& X# m$ J; c7 [
TC-MSC
5 S6 x7 B: e+ t# o1 u+ YMSC (from MDA tumour)
" ]" z. i* n; N+ QBCC (from MDA tumour)) {0 Q. f7 m7 E7 }1 D2 z: o9 v/ a
Control (MDA/CCL5)9 N: |  W6 }0 i, Y. v
CCL5: W* `  F) h9 f$ a$ h2 x0 [
GAPDH( w: F! k1 y: P2 I$ ^' D$ n
e
+ x& o( |+ v) [  V9 M! g4 P) J$ WFigure 3 | The interaction of BCCs with MSCs causes a rise in the levels of$ |1 k6 M5 Z" [5 L0 ~
CCL5. a, MDA-MB-231, MSCs, or MDA-MB-2311MSCs were cultured in
5 Z: n2 O" a" c  d7 z+ q1 zcompletemedia for 3 days. The levels of various factors in the cell-free culture
/ j0 M* F1 T( J0 Tsupernatants were measured by xMAP Bio-Plex cytokine arrays at day 3, and& C$ i5 Z! z5 K" e+ H& u
were normalized to the levels observed in the media of BCCs cultured alone.
+ }/ b; T3 k& r; @Data are expressed as fold induction6s.d. of triplicates. Asterisk indicates
! N7 F9 k0 L" E$ Q6 Y+ X3 G) h  f5 I3 Vundetectable levels. b, CCL5 ELISA on the media of MDA-MB-231,MSCs, or( P9 N# Q! c: e4 Y! B
MDA-MB-2311MSCcultures (1:3MDA:MSCs) at the indicated time points.
# D* s9 ]) n7 m1 X% m2 l1 a/ AData points representmeans6s.d. of quadruplicates. c,BCCs were separated$ W( {) i# I* h0 |; T, v
from co-cultured MSCs by a 0.4-mmmembrane. CCL5 levels were probed by) N8 D1 d4 m! o& s- k& l/ e+ d
ELISA on the culture supernatants. Data are expressed as fold induction over3 [- e/ G4 Y# s
levels seen inMDA-MB-231 culture supernatants (mean6s.d. of triplicates).
/ J4 r3 T" G1 t  N7 o4 ^d, CCL5 ELISA on the supernatants of MSC-siluc (MSC.c), MSC-siCCL5.1* d  {- Z/ `! o- s
(MSC.1) and MSC-siCCL5.5 (MSC.5) co-cultured with MDA-MB-231-siluc2 {$ r* |+ ?# X2 k) Q$ @' Z
(MDA.c), MDA-MB-231-siCCL5.1 (MDA.1), or MDA-MB-231-siCCL5.5( |$ A* P5 n4 i: X6 F
(MDA.5). Data are expressed as means6s.d. of triplicates in arbitrary units
: S: [( J6 h; ]  o5 H  d8 x0 v(A.U.). e, RT–PCR analyses of CCL5 in MSCs and BCCs sorted from4 q, C/ A8 Z2 w9 N; P
GFP–MSC1MDA-MB-231 tumours (3:1 ratio) 4 weeks after tumour
1 `+ O# X* Q6 W) I: o6 }9 Y0 m9 limplantation. Tissue-cultured MSCs (TC-MSC) and MDA-MB-231/CCL5( Y! t! L! Q5 `! V( _
cells were used as controls. GAPDH was used for equal loading.levels of certain released factors (for example, interferon-c or
3 Q" v0 ]4 d. L4 N, ^: {. [% Ntumour-necrosis factor-a) reflected the additive contributions of
7 t  t6 f8 R" Z( a( J! ?! B' g3 M# l# Pthe two cell types when cultured on their own. Notably, the levels
& B6 P& M' A" P% p* \of only one cytokine, CCL5, reflected a synergistic interaction
3 m* O- i5 _2 }8 Ebetween the MSCs and BCCs, as it accumulated to levels ,60-fold0 [  a+ o1 t  |/ G
higher than those produced by pure BCC cultures (Fig. 3a). This
6 I0 y1 u$ m3 W7 s4 Y0 q) e. \cooperative induction of CCL5 was proportional to the numbers of
1 g# v% G5 r1 }4 jMSCs mixed with the BCCs (Supplementary Fig. 5a), and was apparent2 A) {- q. w: ~/ s  D+ \9 k
as early as the third day of co-culture (Fig. 3b). Moreover, this
' W3 j1 _2 E5 U# rinduction required close physical contact between MSCs and cancer
% v5 u- ]0 T) }' J: rcells, because it failed to occur when the two cell populations were% c; P$ `) h2 u/ y# Q- P# _
separated by a permeable membrane (Fig. 3c).: @$ I: v+ O: {% k) C8 G
We undertook to determine the source of the CCL5 produced7 R- n, Y# z4 Y
under conditions of co-culture. To do so, we stably reduced the% c; V( ]3 C; N# }. I  q1 m
expression of CCL5 in MDA-MB-231 cells by.80% using short
% o# {4 W6 L6 mhairpin (sh)RNA (variant siCCL5.1; Supplementary Fig. 6). Importantly," _" t) f+ w& C7 R( b
however, subsequent co-culture of these MDA-MB-231.1 cells
' V& {& d) b8 X+ g% c/ A- Gwith MSCs continued to allow accumulation of CCL5 in the culture
- u. f! U. P- [) o" X; psupernatants to levels that were comparable to those observed in the
# m& @+ F  p' D" xco-cultures of MSCs and control cancer cells (Fig. 3d). This suggested
* S# U1 j* ]) f; w* ithat the source of CCL5 was the admixed neighbouring MSCs.! Z8 k' v- `1 Z' Z! s/ ^  u; M2 r* X
Indeed, inhibition of CCL5 protein expression in MSCs using the  t* }! [/ s7 ]( M
same shRNA hairpin vector (MSC.1; Fig. 3d) resulted in more than
5 s+ V) f9 {, K75% reduction of CCL5 protein levels in the co-cultures, indicating
, y) G/ I& }" V: Z- D2 I" j  P1 d! kthat the MSCs were the major source of the CCL5 observed on coculture. [1 o4 p! ]  ^2 t7 H
of the two cell types. In support of this conclusion, analysis of
# t# G6 N! A6 f6 R% O9 d" a* JCCL5 levels in the media of MSCs or MDA-MB-231 cells separated
# k# V7 x1 t! q) Ifrom one another after 3 days of co-culture indicated a strong induction: M8 e& N; I- ?; v
of CCL5 in the culture of MSCs, but not that of BCCs (Supplementary8 L2 U' N1 r$ d9 Q
Fig. 5b). Finally, polymerase chain reaction with reverse5 l+ F; Y, O2 F4 W; O
transcription (RT–PCR) analysis of the RNA prepared from these coculture-, |: z- i$ s6 S3 X
derived MSCs (Supplementary Fig. 5c), as well as from the1 ~% i/ s' ^( j1 P( Y
MSCs isolated from MDA-MB-2311MSC tumours ,4 weeks after
9 t4 Y/ P- m% x) Y) z+ ]$ Ltumour implantation (Fig. 3e), indicated a strong accumulation of* L) w: x' E4 D4 }4 n0 f
CCL5 messenger RNA, suggesting that an active signal transduction
) f6 L" Y% a4 ]8 H- Mpathway is triggered in MSCs by the nearby BCCs.
1 @9 G% t% W, g2 k, b3 BA series of observations has linked CCL5 signalling and cancer. For
; w4 A, W+ T5 Z  aexample, CCL5 levels in the plasma of breast cancer patients have* z" {( m- w, w. W, f
been correlated with the severity of the disease, and localized CCL5
& e2 n* P) z9 N1 ~3 x) ]protein expression was found to be elevated in invasive tumours3 P. L+ [! l3 C
when compared to in situ ductal tumours or benign lesions16,17.
/ m# R. A# A( M. H/ K4 C, F% bHowever, the precise contributions of CCL5 to cancer development# u1 S& J7 @1 m7 R0 e# R6 y! z
and progression are poorly understood. To investigate further the! C% M6 L0 [1 m  g$ y  ~9 j5 D
possible causal role of CCL5 in cancer cell metastasis, we overexpressed
) l5 v/ ]2 ]5 @this chemokine in the MDA-MB-231 BCCs (Supplementary1 Z: f% n2 f* P- k
Fig. 7a) and analysed its effects on cancer cell growth and
% A" p5 H3 {1 {3 c( r0 ltumorigenesis. The overexpressed CCL5 did not confer any proliferative( m- i# G0 }$ W* Y( ^3 P0 c
advantage on cultured cancer cells when compared with
: {* F2 B' |( K0 W( d& tthose lacking such overexpression (Supplementary Fig. 7b), and had
. L/ e$ d: i. h- k  t+ kno effect on the ability of BCCs either to grow in an anchorageindependent; {0 b& Z; \7 k) X# P" d
fashion in vitro (Supplementary Fig. 7c), or to form
* I$ {, P3 m/ T! S* Rprimary subcutaneous tumours in immunocompromised mice (Fig.
2 e0 _) k+ F5 \6 B2 H4 \- v4a). However, these tumours exhibited a ,5-fold enhancement in
# O3 j5 Y: ]' M  A% o  Ftheir metastatic potential when compared with control tumours1 W) V# j: q' R9 B; C8 G; R; u
lacking ectopic CCL5 (Fig. 4a). Similarly, overexpression of CCL54 L8 x+ d; z  F$ p8 h
in WI-38 fibroblasts sufficed to enable these cells to promote the% c5 X& X6 C! X% `
metastasis of admixed MDA-MB-231 BCCs (Fig. 4b), indicating that
- u' [# r8 p' d! B; Ythe actions ofCCL5 are responsible formuch, if not all, of the observed9 L: a. O3 [3 {" Q% U
MSC-induced metastasis by the BCCs.
1 W3 x0 C$ B7 I& r3 YCCL5 promotes lung colonization
' t9 v3 j) _$ W8 C, nPrevious reports have described an important role for CCL5 as a
& i! }# H9 H6 B2 Ychemoattractant for stromal cells, such as macrophages, that express
( r  F2 x. a! vone of the receptors for CCL5, CCR5 (refs 18, 19). Furthermore,1 H3 N# r: _3 i
CCL5 expression has been associated with increased tumour neovascularization,  Q! H9 B8 t  V) L, G) d" D
suggesting that endothelial cells, which express a variety: }& J: g, g& B% }% Z
of chemokine receptors, may also be attracted by CCL5 to sites of
$ A7 a4 g- o. |' I, vtumour formation, thereby enhancing tumour angiogenesis20. Such
) U- b+ h/ K- U0 f3 S. y! L) vobservations suggest that CCL5 may contribute to breast cancer
7 I0 H2 _4 f) ~9 y, r& Kmetastasis through the recruitment of a number of stromal cell types) ^$ C$ g6 _. U  P
to sites of primary tumour growth.
; @5 v$ s2 h7 K4 _However, immunohistochemical analyses indicated that the
# U' t2 M" G! F1 {# y9 AMDA-MB-231 control and CCL5-overexpressing MDA-MB-231
# Z8 l6 `6 U4 e# x- F7 q(MDA-MB-231/CCL5) tumours exhibited comparable numbers of
5 \' h/ Y8 v. o$ q$ ztumour-infiltrating macrophages and had similar vessel densities (as
1 O( I7 H5 N& T6 |evident by F4/80 and MECA-32 staining for macrophages and
! U' T" D7 @) {endothelial cells, respectively; Supplementary Fig. 8). In addition,
- b' p9 @- d! L+ ^0 Vwe found that ectopicCCL5 expression did not cause an accumulation
0 K- V( Z+ I) s: `2 ~$ Vof other stromal cells, such as SMA-positive cells, in the examined
" ^  _5 G& ]4 P" \. z% Q' Utumours (Supplementary Fig. 8a). Together, these data indicated that
. L( u6 i4 H+ o7 d; E( o. Bthe observed CCL5-induced metastasis could not be attributed to
* {0 E4 j! f& U6 B7 Hsignificant effects on the numbers of the major constituents of the5 ?% T% F. c2 {: Y/ H
stroma or to the vascularity of these tumour xenografts.
9 t( [' w& g& F6 lInvasion and metastatic dissemination of carcinoma cells are often; I- [+ z/ {$ b7 @
facilitated by their transdifferentiation through the process termed
+ w: X6 y  A# M& od f; u0 G- U& `5 Y9 J5 D/ y" K9 q
Bcl-XL% U& N) j& b% j4 y& L
Bcl-2
/ R% \" r5 j- w, Z1 j9 I" j% w& Uβ-Actin5 A7 K/ }! v( m+ |, G* d6 W
S473-Akt5 i1 a& Y3 ?$ N) |
Motility
2 m; x0 I9 U; S. n8 S0.5%→10%7 A% Q3 k4 ]' v1 e/ K1 ^% z
LY – – + +
, W2 i6 a# M( a! t" R9 \; og
0 }, b/ c( g/ E; B% w& YExtravasated clusters (mean)& ^* ?/ Z8 l" P
Migration (fold): I6 d7 j: ~' a  F8 j2 b" O) d
*" C9 ^$ x% D6 c  j7 e* l
e
; U+ H- x- n1 H+ H. e1 J0
# t5 m+ J* H) a4 [0 r2 ?0 lMDA/vector
" R* _- Z5 D* C$ {8 b* jMDA/CCL5
8 P, D% F/ S( k/ L) @***
6 G' C' Y4 x$ QInvasion
" h3 W, s0 ^$ h) F( j; I10%→10%
0 U  O5 u% u$ ?( S/ YInvasion
- ?: n: Y& N2 C8 M: w0.5%→10%+ c' O) I5 z* G, C# o
Migration (fold)
0 w( ^2 d) f4 M$ K8 ?**
  X; h, a+ U4 L, m4 C1 ]8 W08 O2 `, K4 n0 v# E
0.5, `, G6 J* R+ R1 E, G- U. V
1.0
) x# O" i- x# T3 o3 v  ^1.59 t* I* k9 m8 Q/ A0 l& V: D! r4 o- `
2.0. i* l; N9 r' t- E6 a# {* E( @
2.5
) T5 e; R: g7 C; v3 y3.0
" K0 U$ G6 U( K9 \3 k: o9 B! R# z7 d3 N3.5* z) i, z1 J! }" S( t
*) M; w6 e( |: N$ ~
MDA/vector
# J5 {8 B% j0 F1 b  P. a7 W% FMDA/CCL5& _2 H3 b$ o  g6 ]8 {$ z5 ?# X
a b
. O, \0 M" d6 B) v** V# R& Q+ l; U) F+ u" w
Nodules per lung (mean)
4 b- S( i# |, b2 r* Z& _c. d, a1 }' C5 D+ a3 m
30
: U( g3 V# @* S0 F6 X! S25
2 d& f) H% {- {1 Q20
2 C, n  }4 B# r; l( f) n. M15% l. m; [5 W, l
101 B9 \  m, T- N7 w& C" B! T
5
9 I  O6 F$ ]/ g( r0+ b# n: Y3 Y0 ?1 R4 W3 k
Tumour mass (mg)* K- T0 Y1 t$ L; ]. l" f* P
30
0 b4 c. p& F( L$ K* g/ Z! K# H25
( B8 y/ ]7 z# j/ W# Q/ K3 D20$ G3 H' l! `* Z" l
157 O4 ^1 Q( ^5 H+ k* z1 S( @/ s
10+ D, I0 J3 O( r9 n$ J0 Y, B
50 u# ]# n* y' {7 C: q1 d  I& {
0 03 m/ D6 g1 Y8 y; ~5 X& `
50
% C; n# I% ]# o  x8 m8 E100
; ^) S3 Z3 y: y. j150% }+ p" Z5 q* a! u
200
! n2 C, A+ ?7 U9 T2 A250
/ v: J! T2 I$ Y; d# e04 ?" B  X( t* P0 k  M! `* {7 x
50! l3 A, H: {3 x, C! p
100
# Z. i9 R0 G+ ?3 o! G1504 [# U: }9 [6 g4 \) \6 C1 ~) d( B6 R
200
+ _4 y3 H+ f7 x( L  w2506 y5 d7 l# [: x4 ?1 Y) I3 i( {
3000 P* X* H) n2 @& R# p
350- t2 s+ ?4 X6 s* U! @
Tumour mass (mg)
- m; t4 e) b# S4 s9 ^8 ^' pCtrl  J' L: X# J* O1 Z1 n. y9 r- |% ?$ C
CCL5* P) Z. ]3 C! q6 k
Ctrl
3 f8 w, L1 A, n% k% M# \CCL5
- C! b, b& d5 s3 cCtrl
1 k. \6 ]! u8 T# E# ]: Q1 uCCL5; T3 o; g5 `+ t* m  B
Metastasis index (fold)
* a% n! R2 m) @& S) GMetastasis index (fold); S% ?' M* h1 w0 J. ^6 \! B1 @
0; S1 S  ^- g; D0 o
18 V. R8 G2 g  A9 {: Y2 r7 b
2& X0 b6 \! G- s' |8 ], k
3
7 V2 \( z/ I. z" y+ A: @: t4
1 f' F+ F: w! w5 R. ?; f6 z& J5
- X# L: w, B% k* 6
) d3 `0 [% Y0 c, x, _0
: F& g0 @2 X" Z* Y0 P1
. t+ a$ g& Y7 n2 |" o2
5 X' B; e  X6 z3
* o5 o5 G2 f) m. D4
; w( c1 g, ^2 @6 S: d( _1 ?7 ^0 _5: Q8 G1 V* }) p5 m: ]/ V# W% w
6
4 X7 S3 M& D+ T! t' c7+ p9 ~+ ]. W' h9 \8 s# \
* 83 Y  N) C9 i$ Z5 [
MDA/vector
* Z1 k; @- H& b1 T+ @MDA/CCL5
. m7 ]4 E* V+ SMDA+WI-38/vector0 S5 n- M# `. o& g
MDA+WI-38/CCL51 |8 b% ~6 g. a
1/ S2 Z( x; Q# R
2
0 h! N- ?1 ]5 ?. G! k0 d2 g3
2 z* E& \- Q' G) W; q4
; K6 [2 C" r6 B- e*
; M/ k2 e' l, T! k3 E: `' T% f. XFigure 4 | CCL5 enhances breast cancer cell migration, invasion and3 z9 f% O" k/ c4 b2 [8 Q2 c( D. q
metastasis. a, A total of 500,000 MDA-MB-231/vector (ctrl) or MDA-MB-- G/ M# A. K; y
231/CCL5 cells were injected subcutaneously in NOD/SCID mice. Tumour
; X; K( C; e" i8 c3 Ymasses (mean6s.e.m., n56 each group) were taken at 10 weeks. Lung+ C3 K, u/ V  V$ M8 H; `: t
metastasis indices are expressed as fold increase (6s.e.m.) over controls. Data
" `" |3 H, `1 E' j' ?: o1 A% eshown are representative of multiple repeats. Asterisk, P,0.01 in one-tailed3 S$ G: _3 Q  ]# O- l3 D$ R
Student’s t-test. b, A total of 500,000 MDA-MB-231 cells were admixed to
) K* g) m6 e8 l1 l  x" O250,000WI-38 fibroblast controls (WI-38/vector) or WI-38 fibroblasts# X  f; D7 A7 k. c
overexpressing CCL5 (WI-38/CCL5) and were injected subcutaneously in
/ z; q6 c+ p" H- vNOD/SCID mice. Tumours (n55 per group) were excised and weighed at6 m* _9 f& a- k; o) H) |1 B
12weeks. Masses shown represent mean6s.e.m. Lung metastasis indices are' {0 T8 W4 ]) ^; X( z" e% s3 ]( c5 M
expressed as fold increase (6s.e.m.) over controls. Asterisk, P,0.01 in onetailed
% {: ~; ^# x2 g% }Student’s t-test. c, A total of 800,000 indicated BCCs were introduced1 F1 r7 h! m8 n$ s) `
into the circulation of NOD/SCID hosts. GFP-positive cancer colonies in the
3 k! g& D7 n2 s. P" h# O+ Y; u; Alungs were counted 6.5weeks later. Bars representmeans6s.e.m. (MDA-MB-* ^3 W( f  b9 p5 a' T, d6 u
231 controls, n516 mice; MDA-MB-231/CCL5, n518 mice). Asterisk,$ F% B3 _& X" B, v3 C2 j% G0 U! F
P,0.01 in one-tailed Student’s t-test. d, Western blot analysis of lysates of
+ e- n' Q1 I" P# j: eMDA-MB-231 control or MDA-MB-231/CCL5 cells. b-Actin was used as a3 F/ U6 i4 z# u) ~
loading control. e, Transwell migration orMatrigel invasion assays on 50,0005 o" K( H, B, E
MDA-MB-231 control orMDA-MB-231/CCL5 cells.Data are representative of
& p6 l" Q' `% P# C5 K. A4 Z& m- Gmultiple independent experiments and are expressed asmeans6s.d. Asterisk,
6 `* ~" k" |( v8 UP,0.05; double asterisk, P,0.05; triple asterisk, P,0.01 in one-tailed
( g3 D9 X) }# Q. c3 v& _Student’s t-test. f, One million GFP-labelled BCCs were injected into the tail
5 A* K6 c) g8 Xvein of NOD/SCID mice. Lungs were processed 48 h later and examined for
: k5 W  P' |% g( k1 b- A+ sextravasated cells. Bars represent means6s.e.m. (MDA-MB-231 cells, n57
! C. E- H% p. Pmice; MDA-MB-231/CCL5, n510 mice). Asterisk, P,0.01 in one-tailed5 d9 u# F+ ?( q
Student’s t-test. g, Transwellmigrationassays on50,000MDA-MB-231 control, U3 X2 ~7 I0 z" b1 k
orMDA-MB-231/CCL5 cells plated with or without the phosphatidylinositol-
- o! ^) b: j/ l# m( q) [3-OH kinase inhibitor LY290042 (0.5 mM); representative experiment shown;- w6 v4 n5 L* `6 f! w
asterisk, P,0.01 in one-tailed Student’s t-test.the epithelial-to-mesenchymal transition (EMT), in which cells shed" u/ e7 P# V8 X
their epithelial characteristics and acquire instead a series of mesenchymal1 S% B6 N8 Q9 i- t6 d4 y6 S
markers that enable their invasiveness and intravasation21.
+ ~0 l% e- y  h, cDespite their lack of E-cadherin and their expression of detectable levels
/ k9 i# N4 n+ r3 t+ p1 K9 Dof mesenchymal markers such as fibronectin (data not shown), the- n1 _& z8 x0 ^  Q1 ?
MDA-MB-231 cells studied here exist in an intermediary phenotypic
& a$ S7 w4 D, z: |) ~0 z- Rstate of ‘partial EMT’, as they retain a distinctive epithelialmorphology1 [9 B( v) b# c( X
in vitro and are still responsive to EMT-inducing stimuli in culture. In
) A6 E- \5 ~3 f& y) l' L8 U9 bfact, we observed that ectopic CCL5 expression did not cause MDAMB-1 M0 D0 h- J0 y- j" F9 }$ Y/ a: S
231 cells to undergo themorphological changes usually associated& S3 d, o3 J* {( E
with an EMT(Supplementary Fig. 9a), did not cause rearrangement of
6 m2 ~% S: y9 `7 e; [' V  i! [6 Ktheir actin cytoskeleton (Supplementary Fig. 9b), and had no impact on# S2 R; o% K* u6 N+ c
the expression of mesenchymal markers closely associated with the. v$ g# \# Z5 m+ b/ x
EMT process, namely vimentin, N-cadherin (Supplementary Fig. 9c)
! ?9 ^5 F! ~1 t& t- l# u2 w; b) |and fibronectin (data not shown). These data suggested thatCCL5 does; X3 x1 n6 B; {: ]
not directly promote the EMT programme of MDA-MB-231 cells.9 c1 R3 g" X. i
We proceeded to explore an alternative possibility: that CCL5
0 O0 `+ x% m3 Q* @0 `- {* R) ?4 [& Mexpression affected some of the later, critical steps of the invasion–! F; ~/ F1 G, a: x- U
metastasis cascade, namely the lodging of cancer cells in secondary5 @) k8 _, U" ~( c. h& T4 z
organs and the subsequent step of colonization. For that purpose,
" ]% R$ C" |" k. o9 l9 UMDA-MB-231/CCL5 cells were injected intravenously into host
* E6 ^4 ^. e% p  t3 ?* {& jmice, and the lungs of these hosts were examined ,6 weeks later1 P& `7 u3 J- y
using fluorescence microscopy. These experiments revealed that2 l! D! e/ s5 e
CCL5-overexpressing cells indeed had a significant ,1.8-fold
0 [2 G5 i7 |# Y# A0 y9 {+ c6 Xadvantage over their control counterparts in colonizing the lungs' T4 r, @9 w0 \
(Fig. 4c), suggesting that CCL5 exposure has effects on later steps
# i5 Q5 ^9 S% ?of the invasion–metastasis cascade. We note once again that this
7 F3 b8 A+ S2 w( \. W% u# E+ G2 Wenhanced tissue-colonizing ability was not due to CCL5’s effects on
# P3 ?8 `* U# [) f6 d& mcellular proliferation measured either in vitro (Supplementary Fig.
, ^7 d0 u! q, I& e7b) or in vivo (Supplementary Fig. 7g, Ki67 staining).
) e! C- u  q1 O: v$ Y/ TBecause improved colonization can be due to enhanced cellular8 C$ p2 h$ F. y$ t" b$ ~* [* \0 E: x" R
survival, we tested whether CCL5 protects against apoptosis.
5 @* A" U8 W$ \3 A( LNotably, we found that MDA-MB-231/CCL5 cells exhibited higher
& Y# I2 t/ n7 ]& r+ A4 W# @levels of the Ser 473-phosphorylated, activated form of Akt, but' E; e/ ~/ S" N- E) S& G5 g8 l
exhibited no difference in the levels of other pro-survival proteins,
% @6 w; \$ ^" C# X% N, Ssuch as Bcl-XL or Bcl-2 (Fig. 4d), or a reduction in the levels of1 p  T% e% A. G8 P) }' @/ a
pro-apoptotic molecules such as BAX or BAD (data not shown).. [) X7 F9 k- x0 c  @
Moreover, we found that overexpression of CCL5 had no effect on+ X$ i( u0 W5 ~1 w6 g
the ability of MDA-MB-231 cells to withstand serum deprivation
6 u+ ^4 F$ ]4 B+ U(Supplementary Fig. 7b), loss of substrate anchorage (Supplementary
1 S5 p; H$ G# h$ CFig. 7d), or hyperoxia (data not shown). We also observed that
, j+ T* q/ ^3 [ectopic CCL5 expression did not protect MDA-MB-231 cells from. l) s* |9 c: C2 \! d4 W
doxorubicin-induced apoptosis monitored using western blots for  h& P+ Y" j3 U; q/ g
cleaved caspase-3 (CC3) and cleaved PARP (as markers of apoptosis;
) X& N" Q" o' j/ ^Supplementary Fig. 7e), or TdT-mediated dUTP nick end labelling
9 T- _6 m4 p' p' L5 K, P3 p(TUNEL) assays (Supplementary Fig. 7f). Finally, immunohistochemical
# H5 Z) p- y6 N/ V' yanalyses on control and CCL5-overexpressing tumours
5 u  @3 L, @2 s: S2 b  Urevealed only minor differences in the levels of apoptotic CC3-
  w6 q# M; D- u3 ^; _positive cancer cells among the examined groups (Supplementary" _. P- C* {7 K
Fig. 7g, h). Together, these observations suggested that CCL5 does. F4 U8 [  c5 {; }, @5 v5 o' N
not exert any detectable pro-survival functions in vitro or in vivo, and
7 e* I. K/ l+ q- Qthat the observed enhancement of lung colonization was not a consequence- ^0 h: E7 K( h+ L9 k: Y" z" m6 g
of significant anti-apoptotic activities of CCL5.; V( ]; u& M3 m6 a& c
Akt serves as a key relay switch for upstream signals that promote) ~1 X* ?9 @4 k, V; m9 e
both cell survival as well as cellular motility22. Because CCL5-induced% O( M9 }; q* U* c6 S: _
Akt phosphorylation did not correlate with enhanced protection
. f: l. o' r) Q2 Z+ A. v6 n4 aagainst apoptosis, we tested whether the CCL5-enhanced lung colonization5 B7 [9 b. C# H7 _" m% C
could be due to an increased ability of MDA-MB-231/
! n# |: w8 c$ }! sCCL5 cells to invade from the microvasculature into the lung
$ }+ x4 u3 _2 z1 B; Zparenchyma through the process of extravasation. Indeed, ectopic) m* N$ a5 {' v' m# w
expression of CCL5 enhanced the motility of MDA-MB-231 cells. @+ O, \, I- s0 b5 j
through permeable Boyden chamber membranes by,1.5-fold as well/ G% B( s! u7 @4 b; Q3 O
as the invasion of these cells through Matrigel layers by,1.6 or,2.5-. s/ \; K. k0 P% v) m" y
fold in either high or low serum conditions, respectively (Fig. 4e).
1 l1 c& J4 f: w1 k7 u1 o4 ]Notably, when we flushed the lungs of mice 48 h after BCC tail-vein1 f0 o+ A) @6 W! ^) `/ D  I
injection—in order to remove most cells that remained within the* H9 U4 C/ c7 u3 b4 A: [
microvasculature of the lungs and thus had not extravasated—we
+ K, G4 x/ j1 m& t6 q1 o; |2 X1 Wfound twice as many deposits in the MDA-MB-231/CCL5-injected6 R: S5 f+ o' N, N
group than their control-injected littermates (Fig. 4f). This indicates a
2 t* P; y0 n. n8 ?/ N* Q# u- j$ dclear effect of CCL5 on cancer cell extravasation.4 X: A! D7 v+ v7 f
Finally, we investigated the role of Akt in mediating the actions of# ^& o: {. j( ]
CCL5 on cellular motility by using the phosphatidylinositol-3-OH
4 u, c( d8 S9 f3 l% Ib silacZ3 N& `9 s1 d* d3 b% ~3 ]- a9 o
silacZ  w7 N  F0 h* B. a9 ?/ K; w
si8090 _9 h2 l" p# k  v; K2 o7 R+ i% A
si809
3 X# ]" G% K: k6 O& M9 U% Lsi186
8 E. r. U( ~7 i% F) w' E3 {3 Ysi1862 W' ]( S) X% v' m. a
CCR5
. ], p+ n" a" W; f  q/ f4 aβ-Actin
+ A) l" v/ P8 ?1 }, ^8 O0 z8 Ia d0 o0 n& \5 O' P% Z
M
8 i9 }& o7 ^- ]9 k+
5 I$ Y' K7 k# B, t0 qMDA+MSC, F; L2 V: d, ^) p# j( }: }
+ IgG& ]/ B0 b% l( X
+Anti-CCL5 Ab
7 w/ u+ ?# u9 h1 h" @5 EMDA; h2 [' e; }6 E( q5 B/ ~
+Anti-CCL5 Ab
/ r* g. `% {+ [" tMDA+MSC
9 \# @/ Q% I8 Z- g  a/ C$ ~) F, HMDA
; R  L) A8 L; h2 P5 M8 kIgG2 w& I9 |. O! G, z  I+ |- C7 u
<" w1 `! c' s% X/ G6 `
<! {+ X3 H' z  W3 k3 V
<0 y2 C  ~0 T2 {- I( e: f/ t7 a
<3 L' N" R  L2 Z
<$ y+ h) y/ |- O& I1 w
DAPI. x+ E1 |) f) ^% e% A! h
CCR5
+ @# Z8 Z. X$ L9 o+ YMSCs MDA MDA+MSC
3 E, R' P8 N* S% @0 eDAPI DAPI
8 J1 K, P, P8 j+ c! j+ Z, XCCR5 CCR59 i+ T3 X. j! u/ Y
MSCs MDA MDA+MSC. ^: ~' _1 s4 ^. Q' \7 k( j
*& _* P) @* n* H$ }6 x
c
! _3 B' Z6 h  b. U$ zMetastasis index (fold); c0 z3 ?4 M  M, |. `3 @1 k
Metastasis index (fold)1 l$ t5 b5 e9 E2 P; K8 V/ n
*! M0 @8 |. s' A! F4 _+ y
Control siCCR5
* Q& b) L; g  {0 GMSC – + + +
; O6 |3 y9 U, N3 [7 y% `03 l+ {' ^9 r4 A+ @3 N5 t
1
# ^1 Z" {$ j% b% u! ]5 f. i. I2
8 A* t5 z( m) A39 _2 R% `% e6 |! w- I. G: @' o
4
; a% a4 S. T+ i+ K$ |+ a7 t5 e3 @2 ^. f9 B8 V9 M. ~- G
+ + – –8 S/ f7 k1 h* `
Anti-CCL5
3 R( O1 M+ N; u" A- B03 V+ N5 O% m# [) \2 y0 K1 I4 o4 _
1
# D& L* Z, k% H: b/ |/ n25 v, U# f, p3 t. V1 s
3$ p5 Z; z5 r* B' d. G8 g1 x
4
- [$ \% S& z4 S4 ?8 N5
3 _* ]. f* }* V0 s0 w6" t6 t! ~- F! e. |# Y) `" f
– – + +1 j7 [& C4 h/ B0 }2 \; y% q
IgG
+ D& `6 I7 J# xMDA1 U0 k) ?* n- n2 d6 S
MDA+MSC2 I2 r! w  a4 z, G9 ?, Q% y
<8 w' O$ S& `) Q4 @
Figure 5 | CCL5–CCR5 interaction is essential
& S6 m: O; }* J9 F" i- ]# J5 K6 gfor the MSC-induced metastasis.- Y7 F, v# l& |8 R6 r4 u
a, Immunofluorescence analysis of CCR5  r. J* E4 I# ~
distribution in MDA-MB-231 cells cultured with
+ L$ K& Y# I0 N; B+ i% XMSCs. DAPI (for nuclei staining) is in blue;
2 t' ~! |& H" a) x  {" n8 dCCR5 detected in green. Arrowheads denote1 Y9 m2 z( j3 Y  @, T
MSCs. b, Western blot analysis showing CCR5
& E$ Y0 o) ~0 _  O, M. dexpression in MDA-MB-231/silacZ, MDA-MB-
8 @  K! h9 Q+ S% u231/siCCR5(809) and MDA-MB-231/# \. ?- q$ t$ q) B
siCCR5(186) lysates. b-Actin was used as a7 |1 P$ B' p( Q) j2 M1 C9 {, S
loading control. c, A total of 500,000 cells of the% Y; C8 L! b5 X
MDA-MB-231 variants in b were co-mixed with: O  V; C+ H( h+ J. i
1.53106 MSCs and injected subcutaneously into
' ~  k+ L  e; y& J8 G/ Y3 Rnude mice. Mice were killed when tumours3 u6 r7 m& f& B  M, G" h
reached 1 cm in diameter and the metastasis) U5 C+ S$ x! _8 |
index was calculated for each cohort (n55 per
6 ^/ x4 V. t! ]% ^2 G  [) q7 y; Vgroup). Results represent means6s.e.m.;
, e# v7 x- r$ ~* L: \$ sasterisk, P,0.05 using one-tailed Student’s. B9 `" U* y- I1 r
t-test. d, Anti-CCL5 neutralizing antibody or; N0 t8 w; w9 _0 ]' g
control IgG was administered intraperitoneally
" R* o" F0 P- p5 F. ^% ~twice weekly in SCID mice bearing MDA-MB-231
+ ]. u% r+ O$ g(n59) or MDA-MB-2311MSC tumours
1 c8 _5 b- o8 F6 `(n511). Representative lung pictures of the
3 f& ?% l" i5 y$ K: g& ?6 Sindicated cohorts are shown. e, Lung metastasis4 F5 j5 a6 @5 d
indices of mice in d. Data shown are( J# w5 q1 J$ b* s  Y
representative of means6s.e.m. Asterisk,) [6 N6 S! }2 j: L! d+ E- K  C
P,0.05 in one-tailed Student’s t-test.
6 |( h/ K8 @9 V* Y# Q+ a! fkinase inhibitor LY294002. Drug concentrations that did not inhibit
$ U6 _9 J1 A$ I0 gthe basal motility levels of MDA-MB-231 cells blocked the elevation1 I. I' @% @5 L* k/ R( v
of motility induced by ectopic CCL5 expression (Fig. 4g). These8 c. j2 Q: G7 k
results, when taken together, suggest that the observed CCL5-
& w# o- w7 o% j* S$ d" [enhanced lung colonization could be ascribed, in significant part,
/ D3 g$ x! b0 M2 Xto its ability to promote extravasation and/or motility of cancer cells- j! o) C2 N4 J4 F  o9 L7 i
at sites of dissemination rather than promoting the survival and/or
1 \9 ?8 ?) n/ e6 H& X4 O- U) C: Rproliferation of these cells.6 ~6 F/ O2 n( T8 K
Essential role for the CCL5–CCR5 loop
9 U4 [0 s3 A$ w0 L' gCCL5 acts through three G-protein-coupled receptors, termed8 u8 a. `( ?% Y$ b0 Z) H
CCR1, CCR3 and CCR5 (ref. 23). CCR5 has been determined to be
" W0 A/ W, Q* c0 d& B! zthe main receptor for CCL5 in MDA-MB-231 cells, as inhibition of its$ d  F6 c8 L: Y' _4 P3 ^' t$ v5 k
surface expression through dominant-negative mutants abrogated4 y" Q$ N! h0 @( J
the ability of these cells to respond to CCL5 chemotaxis24. We therefore. ~8 b; v5 A' s
focused our efforts on evaluating the importance of the CCL5–  V5 F8 V  Q. T5 S7 A6 A8 G  |, h
CCR5 interactions in MSC-induced metastasis.4 H  J4 }* x" t% V
We confirmed that CCR5 is expressed by MDA-MB-231 cells and, M( b2 ]/ E6 x
not by MSCs (Fig. 5a), supporting the notion that MSC-derived! n  }: \5 i) ^" z! T
CCL5 acts primarily in a paracrine fashion on MDA-MB-231 cells  \- P, ~9 L* q, d
in the BCC and MSC mixed cell populations described above. To
8 V- Y5 @5 G' G' ~; g7 V8 fprobe whether the observed MSC-induced metastasis required/ ^$ a$ G/ @9 j
CCL5–CCR5 interactions, we inhibited CCR5 expression in MDAMB-
# ^. x4 ~4 k, r231 cells by more than 85% through shRNA knockdown (ref. 25: G! w% D% Q; ]9 P) l6 O$ N2 [! h
and Fig. 5b), and mixed these cells with MSCs before implantation, \/ ?) `3 Z0 }) l$ X/ h
into host mice. Indeed, inhibition of CCR5 expression in the BCCs,+ L# n7 f8 m6 J# N+ D/ ?8 g
achieved using either of two different shRNA constructs, abrogated' r' o" `# b9 d$ A
the ability of MSCs to enhance the metastasis of MDA-MB-231 cells
4 g7 a4 `& Y) h3 A% m) k(Fig. 5c). Furthermore, neutralization of CCL5 protein using intraperitoneal
0 \. `" m0 o7 B! {: S3 ~/ Jinjections of an anti-human CCL5 monoclonal antibody
- A+ B' _+ e" ?6 `1 \! falso abrogated the MSC-induced metastasis by MDA-MB-231 cells" l8 T( p1 D* g, O. K& e
(Fig. 5d, e). In addition, MSCs in which CCL5 expression was inhibited( e1 s, S, V3 d" P
by shRNA knockdown failed to promote metastasis of the
9 M$ v& J; I7 e6 P, U% R! ?* P# badmixed MDA-MB-231 cells (data not shown). Taken together, these" _- M" p: v* c5 b4 B1 m% [
results underscore the critical importance of the CCL5–CCR5 paracrine- k6 p) g4 E" j
interactions in enabling MSCs to induce metastasis of the
( q  g( H* P8 d, U" g, _MDA-MB-231 cells.
# z6 O1 u+ _: R4 |) M2 gDiscussion0 v% P9 j2 f, a% I
Certain models of metastatic progression propose that cancer cell
0 N( j  X& h) finvasion and metastasis from the primary tumour site are strongly% N: m. b* }/ s9 h
influenced by contextual signals emanating from the stroma of the
* O) s2 b' A1 z8 R, Kprimary tumour. It follows that if carcinoma cells are subsequently
/ Z  J9 ]5 G/ k, M% L9 S6 f& gdeprived of such signals, they may revert to an earlier phenotypic2 O8 g5 _3 Z  P$ F" z8 |1 O6 [
state in which they no longer display the traits of high-grade malignancy.( G  W$ K- w+ `- }9 d
Indeed, such a model has been proposed previously by others/ b6 `. Y* g8 j+ u  m( \# J6 h4 h
on the basis of indirect evidence21. Here, we demonstrate that at least* \- h8 K4 _8 O
one mesenchymal cell type, the MSC, can expedite tumour metastasis,
  g% |6 D* V6 o3 s6 Z  Q& f8 T/ jand suggest that after primary human carcinomas recruit MSC
8 G2 Q; k2 E$ K2 l  ~populations into their midst, subsequent interactions between the
' z8 z$ G- C$ j1 |# OMSCs (or their derivatives) and the BCCs endow the latter with
; ^4 L9 D! Z. y# o8 e6 A0 qinvasive and metastatic properties.& ^5 d1 r: U7 Y
Although the recruitment of labelled MSCs to tumour xenografts
* e4 {$ P' G7 T2 J5 ~2 |has been established in a variety of experimental models of tumorigenesis,
! ^$ y3 o* t6 ]- O/ Cthere is currently no available way to quantify with any accuracy
; T. u4 ~  W7 T; D4 R  i) \the number ofMSCs in actual human tumours, in part because no set$ e! F  i* T" v# Y
of markers has been identified that can uniquely stain these cells without
  w0 o3 w" a. _. ~+ a; tconcomitantly staining other mesenchymal types in the tumourassociated
0 k6 l. M: P5 A; K; qstroma6. Our demonstration that the stroma derived from
+ s& y7 O! @( u( r5 Otumour xenografts contained appreciable numbers of murine MSCs
; x9 g$ T( G8 S, d2 Xindicates that significant steady-state levels of these cells aremaintained% I8 s8 b; M. R! j( @2 \4 ?
in developing tumours. Interestingly, the use of CD10—one of the
  a  ?9 U8 |0 z* fmarkers associated withhumanMSCs—to purify cells fromthe stroma
* z8 d5 O  w# i$ E  }of human primary invasive breast carcinomas yielded a population of# Y# k0 i: V) X. c+ S7 K
cells that expresses a number of other markers collectively used to) o7 d% y, M( W/ J) W6 @
characterize human MSCs (for example, CD44, CD105 and CD106;
1 M3 y$ i: k( ^Fig. 6a). This suggested that, similar to tumour xenografts, human' P% l' W/ s# T, e' \5 N
carcinomas also acquire significant numbers of MSCs. Furthermore,
0 x5 F' Y! p" N2 T  Z; [; ~we note that CCL5, which is prominent in the stromal gene expression
" \5 Z" w- S' {- N3 V! s2 Psignature associated with poor prognosis of breast cancers26 (SFT;
8 G6 F# I. S* n7 D& x  DFig. 6b, c), is also enriched in the leukocyte- and endothelial cell-free
6 x+ o2 o' c1 q0 ?% \stroma of primary invasive ductal carcinomas (Fig. 6d), specifically in  m% ^* _3 r/ i: m- w8 M
the CD10-positive compartment27 (Fig. 6e). Collectively, these observations
0 ~! D: S% n. y( P. Kargue strongly for a significant association between stromal' E0 k3 ~2 V) {2 Q7 g
CCL5 levels, MSCs and human invasive breast cancers.
3 \3 v9 J) t7 }- ~c
+ E3 `/ \  ?7 rSTT1969B- v; Y4 i+ V) k2 b. W( Y) r
STT31269 `: K7 b2 S# q3 v  z: @0 L# v
STT3124: \: R# |9 t! e+ F' }/ k( d
STT656B" y: `  t! x5 b9 C. @
STT1968B
9 `- z1 ~* c0 M. _) z$ ISTT31220 Y  |! `' _9 h# X
STT3053
! M; |& E' W# {* {7 OSTT1986B! _) j" m5 N8 v1 p6 N
STT854
+ f1 U0 q. X/ v( C8 v8 H& L% Q( `STT31253 g2 s. ]  r! q5 Q$ v, @% C
STT1975' o4 v# L+ k# X% O% N
STT1987B
) q' ]5 ?2 @9 w) K& ?- ^STT1079" N8 E" a0 ^3 [0 ]2 q# Z" q
STT638" [% I/ N: @( N3 I7 J9 @2 F+ T7 z6 d
STT1774+ E% z, _" `8 B
STT1984
( s' m! k2 `/ d& W5 @; |6 X; K  J3 v4 TSTT1737C& z. U& K, ~% X( m9 T; z
STT3068% c# K! \4 v4 l! ^2 M" m
STT3120! A" @: n  A8 [
STT850
1 j: `  B% h3 ]' p4 wSTT417B
( P' c* r' m/ T+ M, YSTT3119
9 b, [! `$ @  P' |# iSTT1776
  U# d( ~7 z8 i1 XSTT1777B
1 u9 j& T6 d+ L0 q3 J& L  WSTT689B
: f: G/ t3 r& V# ySTT1971& K) Q* {$ K, e
STT597
6 R/ f% R' p0 G. W$ i" CSTT626
; V% b3 K' ^! n) C8 gSTT154
2 w/ j; a& N* _5 \' KSTT2774$ ^: ?- I0 F+ K; `/ l% F1 i$ ?$ _3 c
STT1966
; W1 V' `- O/ Y" SSTT2776; G4 s* p+ x& z/ Z6 n: X
STT2775
; V0 R- |5 f5 ?# WSTT2772
. d& e$ ], \  P+ tSTT1637
/ c& Y1 n: b+ g5 qSTT1220C
1 i: A- b7 |, {" KSTT-094B-1
% i- b9 P1 J1 J6 L$ v$ n' \STT675
) U0 Z2 C  _. i: G- P0 JSTT2770
: Y+ S9 @. w, P9 z& T$ Z2 {) sSTT695B
+ j% e  x4 ^/ r# mSTT1771
0 p' n: A$ F! w$ f- R- A4 j6 Z8 [STT17784 @4 k. |# g& L
STT491' J+ _- Y5 d; V/ J4 h, q) q2 v5 {
STT1823* e* ^% O: B/ I! U3 m
STT200C
3 x8 ]/ @4 E& B5 O- f) XSTT741B, |' B/ l, o# L8 w
STT335C$ S- j- F& s3 `9 x6 V/ B. R. Y# z7 n
STT709B9 q8 T2 R' u: K9 z3 S
STT516D: S$ s- a, R' [, q
STT607B
6 v) ]0 `- R  J$ Z7 ~$ i! vSTT680B
1 I1 o# \0 i. U: n7 m! nSTT1148B( L3 G# H+ m8 H2 A3 Z
STT523B
! [" V$ \' l1 e# _2 CSTT526E) I! x' E+ \9 h0 D
STT742F* ]" Q$ Z+ I8 R
e( d* }0 b4 j. Q$ ^- N
CD13
2 q/ _6 j' d8 H+ q" Y. ~1 |CD29
# Q3 T: s( I7 X4 \CD44
% K/ I0 A+ w1 d) q, S% U3 E+ p( vCD49e
2 a, g7 G! ^7 g( ~CD54/ o( k( t) R9 _; D  j& ~
CD592 T2 Z! x$ N' U
CD63
3 @8 N# t3 M4 X/ F% l  W6 E2 ?CD105/ j& {; s% S& z$ z3 p! S
CD106
2 Q5 @' c6 [; hNestin* ?  R" F) K9 P' p, z+ y
HAS2. z% O6 Z9 T; P3 i6 I' l
IGF2
! w6 m! B. g; s/ k- I6 R( K0 vPLAU
7 Z0 Q' k1 O* y9 O+ B2 yTIMP1
. |& |# F: \$ j8 ^6 z* L3 e# BCAV1
& [: ^4 w. W" V6 SIDC-7
: B1 w4 G' ^9 O% c" I7 {/ dT1126033 E/ Q1 M) v' ]
T392303. }: \# H" N3 M4 B
Normal Invasive
+ G+ C& I( r1 f5 f$ w9 r, M8 `CCL5
1 L) p8 X4 L: m5 ?log2 ratios
! ?" E) ]. }4 `–2.0 –1.4 –0.9 –0.3 0.3 0.9 1.4 2.0
9 F1 R2 _2 Q1 B4 \5 x! S( ^; o* h1 wlog2 ratios7 L1 z8 j! Q% f) }2 i
d
& L4 n  Q$ M+ E& f6 e! n+ p  {–2
& \0 R2 A4 C, {8 a" K9 ^6 E% d8 n–1
- N( ]/ u1 R# n( D: }5 l0 1 2
% O) {+ U2 ]  o# Y( A; Z–2.0/ i% P9 O( w+ D' S) }. ]+ p' l. {
–1.5- z/ w7 V% t% }3 N3 i' D, k+ g
–1.0
% w' u/ s/ e; _4 Q6 B3 F–0.5) K7 Z' V+ u/ ^5 C: D2 d. z2 {
0.0% L9 }3 q; y5 h2 g' F7 K
DTF SFT
) z" b* Z- Z+ R7 {DTF
- a  |3 u0 ~% N/ T( y6 XSFT" u, l+ L- e% n( X8 ~9 Y1 m1 V. `
a b
- `2 q9 r1 Q% h3 EF
9 z  S  _1 c, B) @4 F' p% vFigure 6 | Stromal fibroblastic cells of human invasive ductal carcinomas are
$ m8 j/ K/ ]/ [: Frich in MSC markers and overexpress CCL5. a, SAGE TreeView display of
% z8 G2 C6 e8 D9 p# rMSC markers expressed in stromal CD10-positive cells from invasive
8 |6 g5 t& f" e- J8 J  Z4 X7 Ptumours27. b, Soft-tissue tumourswere ranked byCCL5 expression26, fromlow2 S, R1 \  J/ A: U+ O$ }
(green) to high (red). Wide blocks indicate expression ratios of tumours% R8 J( ^8 G& }: v, o5 ^# o
classified as desmoid-type fibromatosis (DTF; yellow outline, n510) or6 n: S1 F$ e7 W4 E5 m
solitary fibrous tumours (SFT; blue outline, n513); narrow blocks are other/ f) E7 Q, |; \7 B0 \" G4 U
soft-tissue tumours (n532). c, Box plot showing that CCL5 expression is# R2 i7 B. h2 E
higher (P50.004) in SFT than inDTF. The difference in log2 expression ratios9 y- C- Q. I+ _- _" ^/ x1 L1 p
between SFT and DTF was tested with the Welch’s test. d, CCL5 Affymetrix8 F5 `2 ]- k4 ?4 u4 Y+ T; r$ n" M
gene expression in the stroma of human invasive ductal cancers compared to
5 [2 Y; I: ^) F$ \5 U8 }+ T3 ethat in normal cancer-free breast tissue (indicated as ‘Normal’; see Methods).
* M4 a5 D  Z1 I+ \& [e, CCL5 expression is mostly restricted to the CD10-positive fibroblastic cells
8 |7 m  n5 k2 H6 |$ W* S# O4 |derived from invasive ductal cancers. The heatmap shown is a cluster of& a& f& e4 W, O& P$ p5 p+ w
CCL5.genelist obtained as in a.Details of thepurificationmethodologies of the
; b- J- L4 s% A' B% h! Svarious groups indicated in a, d and e are found in ref. 27.Although we have focused here on CCL5 in the MSC–MDA-MB-
* A, r3 @2 p& n2 ~6 ]8 V3 ?( v; q# m231 cell interactions, CCL5 seems to have an equally critical involvement
, t  r+ a! @; u0 I. n! Kin the functional interaction of MSCs with MDA-MB-4356 x6 R  V8 F8 X( A* }, S! e
human BCCs. CCL5 levels accumulate synergistically when the two
8 G. {6 _: z" ?5 S- q! _) Gcell types are co-cultured together (Supplementary Fig. 10a), and$ u& Y/ U  F2 N& y4 `
MSCs in which CCL5 expression was compromised by shRNA knockdown* O5 n$ n9 k! l. L2 q3 O
failed to promote metastasis by MDA-MB-435 cells to which5 _: v, |- o! _
theywere admixed (Supplementary Fig. 10b).With these facts in mind,
+ Z2 H. R: ^! l) qwe point out that CCL5 does not seemto be involved in regulating the2 [' }. {7 a3 a' `  B* \$ w
MSC-induced metastasis of MCF7/Ras or HMLER cells, which may
9 G+ S4 G( D7 adepend on other paracrine factors such as VEGF and interleukin-8.
4 o6 ]8 M- P# G/ a3 x, _5 VNevertheless, our observations highlight the recently discovered critical3 i- b' D) h4 b& v; V7 p. A- L
roles of chemokine networks in malignant progression28,29 and suggest
4 ^1 [4 M  j4 }" A0 A( ?8 d- ~the possible utility of a variety of CCL5 analogues and CCR5 antagonists
% ?# D/ W, ?& Z3 \currentlyused in anti-HIVtherapy30 in treatingmetastatic disease.5 K! M3 o1 d7 |, t( q
Notably, we have observed that MSCs induce the metastasis of cells
6 w5 ]0 j, N4 r* z; }7 @+ O" cto the lung that are, on isolation and re-injection into recipient mice,( V2 G1 V; X* f
no more metastatic than their predecessors in the primary tumour% D3 H( B) o+ t1 [  {. I3 W
(Fig. 2e). This indicated that acquisition of increased metastatic5 S* _8 d8 h- f
powers by these tumour cells was reversible, and suggested that the* N0 K- s4 m9 `6 Z  d6 z
maintenance of this phenotype depends on continuing contact with) G2 ?* Y  o6 f* F! Q1 w
stromal cells. If extended to other tumour types, the present results* d! l/ m2 `9 U" f$ Q9 ~+ ?$ f
hold important implications for the molecular analysis of malignant  v. b- m0 c8 L: P
progression. They suggest that many of the cellular functions associated" S8 ^4 ~1 Q7 W1 I  O# f  g5 k
with invasion and metastasis are often not expressed constitutively( h, ?. @1 g% S- q+ y0 v! }
by carcinoma cells, but rather only transiently in response to
& u( T  l; `. Z8 p- fcontextual signals that tumour cells receive from their stromal microenvironment.
- `7 |5 P, t, P- K% HIf so, analysis of the gene expression patterns of bulk
4 j6 H: g; n, m5 h  Cprimary tumour populations may fail to detect the expression of key
, _# k0 y4 S+ \genes mediating invasiveness and metastasis, if only because they are
% b! e8 {7 a# ~1 S/ S' B8 ^being transiently expressed in minor subpopulations of cells within6 N3 o2 b! x( _/ m' f  h* S. s3 P
such tumours. Additionally, attempts at determining the metastatic2 P: s) R6 R; Y1 T
propensities of tumours may need to be focused on the genes and
) ~+ U% E  @+ o9 }" n9 U" a4 o+ Fproteins that confer responsiveness of primary tumour cells to stromal
/ H! h. _) L5 C3 U+ V* }% lsignals, rather than on the genes and proteins that directly mediate$ L8 O' b5 v/ x) [
the cellular phenotypes of invasion and metastasis.8 J$ x7 a' K* {9 A" G/ h) j- T# x
METHODS SUMMARY
0 e# {- A1 i: }. ^" G9 Y+ [( zCells labelled with GFP or ds-red, or harbouring various overexpression or! N! w: |0 a8 s6 R1 q, k
shRNA constructs, were generated by viral transduction followed by FACS! q- @5 Y/ E8 J. F4 W1 M
enrichment or antibiotic selection. Xenograft experiments were conducted in
5 Q) t( s3 A; |/ W, Gnude or NOD/SCID mice and metastasis was estimated using fluorescence
* ^4 R5 H/ ]8 k3 T; v+ q$ J1 Imicroscopy. The levels of cytokines, growth factors and chemokines were( C( z3 m! a& J- e7 T- m  V
assessed by immunoassays. Migration and invasion assays were conducted using$ @  T  Y+ M" |8 A
transwell chambers. Antibody treatment of tumour-bearing mice was conducted4 a3 u1 q) s  i. ^6 X0 h. J2 V
by intraperitoneal injections. See Methods for detailed information regarding' @6 W, K" K& i; s) ]! l, {, x- S
cell culture, viral infections, in vivo colonization and extravasation assays, RT–
3 W$ Y0 [, p' s2 R' D" zPCR, TUNEL and anoikis assays, immunohistochemical and immunofluorescence
3 M. ?  u" {8 B" s* adeterminations, western blotting, and antibodies used.
- z4 `, w2 L7 ]2 |Full Methods and any associated references are available in the online version of
$ U4 `2 k) p$ Ethe paper at www.nature.com/nature.

Rank: 2

积分
97 
威望
97  
包包
1738  
沙发
发表于 2015-5-24 16:27 |只看该作者
好啊,,不错、、、、  

Rank: 2

积分
79 
威望
79  
包包
1769  
藤椅
发表于 2015-5-27 19:54 |只看该作者
我起来了 哈哈 刚才迷了会  

Rank: 2

积分
166 
威望
166  
包包
1997  
板凳
发表于 2015-6-18 17:42 |只看该作者
干细胞之家微信公众号
设置阅读啊  

Rank: 2

积分
98 
威望
98  
包包
1756  
报纸
发表于 2015-7-9 11:27 |只看该作者
这个贴不错!!!!!看了之后就要回复贴子,呵呵  

Rank: 2

积分
79 
威望
79  
包包
1769  
地板
发表于 2015-7-13 17:10 |只看该作者
任何的限制,都是从自己的内心开始的。  

Rank: 2

积分
101 
威望
101  
包包
1951  
7
发表于 2015-7-15 19:35 |只看该作者
好 好帖 很好帖 确实好帖 少见的好帖  

Rank: 2

积分
104 
威望
104  
包包
1772  
8
发表于 2015-7-24 22:53 |只看该作者
dddddddddddddd  

Rank: 2

积分
75 
威望
75  
包包
2118  
9
发表于 2015-7-29 10:27 |只看该作者
努力,努力,再努力!!!!!!!!!!!  

Rank: 2

积分
77 
威望
77  
包包
1964  
10
发表于 2015-8-13 18:10 |只看该作者
对不起,我走错地方了,呵呵  
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-6-5 03:27

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.