干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 50126|回复: 9
go

牙周膜干细胞的培养 [复制链接]

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

楼主
发表于 2011-3-20 08:21 |显示全部帖子 |倒序浏览 |打印
本帖最后由 qianqianlaile 于 2011-3-20 08:26 编辑
0 }4 `) E! S7 ^( W. p5 w- i4 Q  r( C4 K3 J" [
Original Article
, k) G" t( x/ S7 H4 NDevelopment of a Serum-Free System to Expand Dental-Derived Stem Cells:  PDLSCs and SHEDs
. z4 i1 g3 n9 }' LTarle S.A.,1Shi S.,2  *Kaigler D.,1,3,4   
9 ~5 f  T5 H6 k* p& W/ o1 Department of Periodontics and Oral Medicine, University of Michigan; Ann Arbor, MI USA; + U. j2 ^! e  w& X! o- s
2 Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern ; z  A1 J7 M2 x/ x5 _5 ~* f6 p. P
California, Los Angeles, CA USA;
# G6 c+ Q& C$ _# Z4 N4 D3 Michigan Center for Oral Health Research; Ann Arbor, MI  USA;" s0 u& H# n' s; u: ~8 Z. ~6 G- P
4 Department of Biomedical Engineering, University of Michigan; Ann Arbor, MI USA
+ R: v' B1 F% qKey Words: PDLSCs   SHEDs   serum-free   media   regenerative medicine   dental stem cells
9 @1 l1 E2 u3 W+ H; |/ ^% s; fFigures: 5
1 a' P- v5 a+ ^$ l2 y) lTables: 4
' S; \9 U% J3 v3 U8 D$ |3 U! @*Corresponding Author: Darnell Kaigler, DDS, MS, PhD
. D" g* d$ O0 |1 u" A+ B1 P: {) ZDepartment of Periodontics and Oral Medicine ) s$ q! a. G4 @' x) e. O) i2 s
University of Michigan
) N& y. S* R) U# Z. n; G1011 N. University, i+ P/ L  P- j, l: y
Ann Arbor MI, 48109, USA
* j+ w4 A4 ^# F5 i; p( u3 B6 [Email: dkaigler@umich.edu
: `5 c. ~% j# A. Q$ J3 aTel: 734-615-4023 2 {. p! k7 p: z1 }
Fax: 734-763-5503
" T- y& `1 M* }0 z& N% d# n. b3 h- [Contract grant sponsor: Burroughs Wellcome Fund; Contract grant number: CAMS-1006918.) N, @; g/ y2 G
              Received 13 May 2010; Revised 21 June 2010; Accepted 23 June 2010 & {! z. i% C" w/ {% ^7 d5 M* u% g9 X
ABSTRACT
7 Q+ E# t" j9 J5 ZRecently, extracted teeth have been identified as a viable source of stem cells for tissue # I' v( ~6 J; W9 n! q4 x
regenerative approaches.  Current expansion of these cells requires incorporation of animal sera; / C" c9 U2 [# ]  X! Y- Y
yet, a fundamental issue underlying cell cultivation methods for cell therapy regards concerns in
% N6 _" \; K- V9 `1 P$ u! t" ~; Cusing animal sera.  In this study, we investigated the development of a chemically-defined,3 a7 Q3 f* Z, S+ A. l2 Y
serum-free media (K-M) for the expansion of human periodontal ligament stem cells (PDLSCs)
: F9 f* _. X6 v$ M1 k2 @and human stem cells from exfoliated deciduous teeth (SHEDs).  Proliferation assays were $ d, d5 B- i+ f
performed comparing cells in serum-containing media (FBS-M) with cells cultured in four' d. L$ f8 H; A8 y
different serum-free medium and these demonstrated that in these medium, the cell proliferation2 j( f) _; Q8 J! w% j
of both cell types was significantly less than the  proliferation of cells in FBS-M.  Additional
$ @; T3 u% E7 K5 O8 fproliferation assays were performed using pre-coated fibronectin (FN) tissue culture plates and
$ Z: d8 |: e4 E$ J2 H& T2 mof the four serum-free medium, only K-M enabled PDLSCs and SHEDs to proliferate at higher
, Z# }0 [0 e' Crates than cells cultured in FBS-M.  Next, alkaline phosphatase activity showed that PDLSCs and SHEDs ) {# P- A$ z) q/ L
exhibited similar osteogenic potential whether cultured in K-M or FBS-M, and,
$ n/ Z, y" f) I  q2 m% I) madditionally, cells retained their multipotency in K-M as seen by expression of chondrogenic and
% j0 V; D* E; @6 j: W3 O2 Cadipogenic genes, and positive Von Kossa, Alcian blue, and Oil Red O staining.  Finally,
8 q/ N; e$ D! `( T5 X0 Vdifferential expression of 84 stem cell associated genes revealed that for most genes, PDLSCs ) [1 `3 ^1 q2 u3 P
and SHEDs did not differ in their expression regardless of whether cultured in K-M or FBS-M.
) x! h1 v' M/ Y& v3 h0 j( ?1 v( TTaken together, the data suggest that K-M can support the expansion of PDLSCs and SHEDs and
/ T. R" \$ Q* h& Tmaintainence of their multipotency.- b* H0 d1 s2 s+ w# k, s+ [

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

沙发
发表于 2011-3-20 08:22 |显示全部帖子
原文8 W, h+ h; V$ F/ [
无血清系统培养扩增牙源性干细胞:牙周膜干细胞和脱落乳牙干细胞的进展/ x# P- a% d# ?. Y) d: [
Tarle S.A.,1 Shi S.,2 *Kaigler D.,134 2 A/ {: c2 g' u2 t
1 MI美国安娜堡密西根大学,牙周病学和口腔医学系;- M6 O1 f: \4 ], w5 I- P
2 CA美国洛杉矶南加利福尼亚大学牙科学院颅面分子生物中心. E7 k! @8 m& a- ]/ A4 q5 I& N- x
3 MI美国安娜堡密西根口腔健康研究中心' ^. k& y, y! y% D, h) F6 G
4 MI美国安娜堡密西根大学生物医学工程部' _& [, A' P0 N. |, ~% C6 L0 I
) T8 n0 l2 D6 j6 u# ]7 ]- s
关键词:牙周膜干细胞 脱落乳牙来源干细胞 无血清 培养基 再生医学 牙干细胞
0 l" q& R4 R& A  z2 ^! g9 u; _标注:SHEDs  stem cell from exfoliated deciduous teeth脱落乳牙来源干细胞
  x' S/ @- I! r& m( S+ g
: p/ Y; [" [* G图片:5
* g/ K4 j, S2 |7 i' _表格:4% ~" r: y: h. ?
通信作者:Darnell Kaigler, DDS, MS, PhD, {" A& M. j$ D" V  `* g
美国48109MI安娜堡大学密西根大学1011N.牙周病学和口腔医学院
# O/ D' ^5 Y3 p, T电邮地址:dkaigler@umich.Edu  ~& d6 k3 x  i( R' Y1 Y6 x
电话:734-615-4023
% B' X0 F. D- O6 Z. Q传真:734-763-5503
" x( F  L1 y- y( ]# J0 n- {9 E合同授予赞助商:伯勒斯威康基金;
9 ]' e+ b! Y- u5 r) m: h5 \  w合同授予号码:CAMS-1006918  ^4 L( j: o5 Y  ], z
2010年5月13日接收;2010年6月21日修改;2010年6月23日发表
1 x1 w9 F9 v: u/ b摘要
* Z" A  Y# U8 Q5 w近来,研究者认为拔除的牙可为组织再生的方法提供干细胞。这些细胞目前的扩增需要加入动物血清,然而,细胞疗法中细胞培养方法的根本问题与用动物血清密切相关。本研究中,我们研究了一种化学合成的培养人牙周膜干细胞(PDLSCs)和人脱落乳牙来源干细胞(SHEDs)的无血清培养基的研制。分析比较含胎牛血清培养基培养的细胞和四种不同无血清培养基培养的细胞的增殖状况,结果表明,无血清培养基培养的两种细胞增殖均明显少于胎牛血清培养基培养的细胞。用预包裹的纤连蛋白组织培养板后分析细胞增殖,结果表明,四中无血清培养基中仅K-M中培养的人牙周膜干细胞和人脱落乳牙来源干细胞增长率比胎牛血清培养基培养的高。其次,无论用K-M还是胎牛血清培养基培养人牙周膜干细胞和人脱落乳牙来源干细胞,碱性磷酸酶活性检测表明它们都拥有相似的成骨潜力;另外,K-M培养的细胞表达成软骨和成脂肪基因,钙结节染色、阿尔新蓝染色、油红O染色均阳性,说明细胞保持了它们的多向分化潜能。最后,84种干细胞相关基因的不同表达,说明无论用K-M还是胎牛血清培养基培养,人牙周膜干细胞和人脱落乳牙来源干细胞中大多数基因表达没有差异。总而言之,研究数据表明, K-M有利于人牙周膜干细胞和人脱落乳牙来源干细胞的扩增,并能保持其多向分化潜能。3 t! R( Q0 E; u  p; u
已有 2 人评分威望 包包 收起 理由
细胞海洋 + 20 + 100 原创内容
tpwang + 5 + 10 原创内容

总评分: 威望 + 25  包包 + 110   查看全部评分

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

藤椅
发表于 2011-3-20 22:36 |显示全部帖子
都是我翻译的,不过这篇好像难些,翻译后自己也没完全理顺
1 N& Y3 Z, m* t/ ?" e初次修正译文如下:' a/ x, |- |) u, E; k
原发研究文章
: z6 m& ?; i2 G- A" l) \- }5 F一种用于扩增牙源性干细胞即牙周膜干细胞和脱落乳牙干细胞的无血清培养系统的建立
, p* ?/ @; ?8 x" M8 K8 qTarle S.A.,1 Shi S.,2 *Kaigler D.,134 - j4 c) q3 M% j
1 MI美国,安娜堡,密西根大学,牙周病学和口腔医学系;% O: R- [) j7 [, u1 n9 t( U; @
2 CA美国,洛杉矶,南加利福尼亚大学牙科学院颅面分子生物中心
) T* e+ g' X, A8 r3 MI美国,安娜堡,密西根口腔健康研究中心$ O% @. U; T- ^8 J% n( \/ ~
4 MI美国,安娜堡,密西根大学生物医学工程部
( _$ J' A' z) E. E5 f& z& W) O5 \4 I, B. j
关键词:牙周膜干细胞 脱落乳牙来源干细胞 无血清 培养基 再生医学 牙干细胞
* N" {# L, E6 a$ E0 @4 Z+ f  R( i标注:SHEDs  stem cell from exfoliated deciduous teeth脱落乳牙来源干细胞) P. I+ N' y  ~" l4 k2 Q2 S* S

) f$ @, U' v& C1 [图片:5
2 L4 z6 o3 k) y表格:4  ^9 j+ S) o) c/ [+ x* i4 U7 Y
通信作者:Darnell Kaigler, DDS, MS, PhD; S: d! r4 u6 c+ u0 x
美国48109MI,安娜堡,密西根大学1011N.牙周病学和口腔医学院
) f. T! c) \" K% w& C9 y  j电邮地址:dkaigler@umich.Edu
+ H* d6 ]- e- b% b* {! l. K5 s' I电话:734-615-4023
4 x' o+ D1 {* z5 a传真:734-763-5503
' f* J  o" k  ~) w2 k( g合同授予赞助商:伯勒斯威康基金;
( D0 F7 v$ r( m6 n6 T$ ]合同授予号码:CAMS-10069184 h: B6 d9 d3 W( J8 s1 L* \
2010年5月13日接收;2010年6月21日修改;2010年6月23日发表
/ w, h/ `# H" B7 C- R摘要/ w( s' u* M  `0 x# _
近来,拔除的牙已被确认为一种组织再生干细胞的可靠来源。目前扩增这些细胞需要添加动物血清,而动物血清正是细胞疗法所采用的细胞培养方法中需要克服的一个基本问题。本研究中,我们探索了一种化学合成的培养人牙周膜干细胞(PDLSCs)和人脱落乳牙来源干细胞(SHEDs)的无血清培养基的建立。分析比较含胎牛血清培养基培养的细胞和四种不同无血清培养基培养的细胞的增殖状况,结果表明,无血清培养基培养的两种细胞增殖均明显少于胎牛血清培养基培养的细胞。用预包裹的纤连蛋白组织培养板后分析细胞增殖,结果表明,四种无血清培养基中仅K-M中培养的人牙周膜干细胞和人脱落乳牙来源干细胞增长率比胎牛血清培养基培养的高。其次,无论用K-M还是胎牛血清培养基培养人牙周膜干细胞和人脱落乳牙来源干细胞,碱性磷酸酶活性检测表明它们都拥有相似的成骨潜力;另外,K-M培养的细胞表达成软骨和成脂肪基因,钙结节染色、阿尔新蓝染色、油红O染色均阳性,说明细胞保持了它们的多向分化潜能。最后,84种干细胞相关基因的不同表达,说明无论用K-M还是胎牛血清培养基培养,人牙周膜干细胞和人脱落乳牙来源干细胞中大多数基因表达没有差异。上述结果提示, K-M支持人牙周膜干细胞和人脱落乳牙来源干细胞的扩增并维持其分化潜能。. u9 ~. c# u3 x* v

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

板凳
发表于 2011-3-21 09:29 |显示全部帖子
干细胞之家微信公众号
有的,我再去看看,再来修改

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

报纸
发表于 2011-3-21 11:28 |显示全部帖子
本帖最后由 qianqianlaile 于 2011-3-21 11:29 编辑 , z  ?. ^, m0 y% u

9 k  N8 o- s9 I: k3 `- j2 r, a. PINTRODUCTION" w: u' C0 p7 t! L( f, ]9 f0 b
Cell therapy has tremendous potential in regenerative medicine, yet, there are concerns in
+ d2 [# s3 r! E5 G7 a2 {8 \the utility of cell therapy due to questions regarding different cell harvest and cultivation
9 |( p% }1 g$ Q1 Y* h+ N# E2 k  Nmethods (Haack-Sorensen et al., 2008; Mannello and Tonti, 2007). Bone marrow derived
* l# k7 G: D: i+ d; k+ Ystem cells have been identified for a number of years, and there are a number of ; M4 Y7 k5 l0 c0 P$ h0 S% ~
ongoing clinical trials exploring the safety and efficacy of their use for a number of
" u5 d% N& t& Q+ X/ zclinical applications (Battiwalla and Hematti, 2009; Sadan et al., 2009; Satija et al.,
2 i) d6 u; h& `6 D2009).  There has been an increased interest in recent years in the potential of oral-3 _, g+ ^6 d5 W4 {" V" k# q$ q
derived stem cells for cell therapy, primarily because they can be derived from a readily   O# e5 H( |- V
available source, extracted teeth (Gronthos et al., 2000; Miura et al., 2003; Seo et al.,
( k  X0 l: v; F3 w; J* J2004).  These cells exhibit multipotency and regenerative capacities characteristic of
- C* @+ G) |" O7 u2 X% Xmesenchymal stem cells (Batouli et al., 2003; Shi et al., 2005) and have the capacity to
4 W9 t# q7 a1 O3 n' Urepair and regenerate tooth structures in vivo (Krebsbach and Robey, 2002; Mao et al., 2006).
9 R( j, U, U6 T* m Because oral-derived stem cells have been more recently identified, clinical
) _% m% Z5 q) B' H: eprotocols are still being developed for their use.  Regardless of the specific protocol 8 X( n( ]; d% I# m9 |+ ~
used, most current cell therapy approaches rely upon ex vivo cell expansion in order to
! `% Y6 ], W; ?! H. a: K$ Bproduce sufficient cell numbers for transplantation.  Though a wide variety of protocols * S0 G6 R! f& S- y- e( V3 K
and culturing methods exist, one common aspect to most of them is the inclusion of
3 \7 Z" R$ d6 W# N* eanimal sera for cell expansion, in that it contains a rich source of nutrients and growth ' q4 C+ N1 w% `3 ]! b+ z" p% \
factors (Mannello and Tonti, 2007).  Despite the widespread standard use of animal
( M. C0 Z! q0 U( a( Gsera for in vitro cell culture (Freshney, 2000), there are several problems which exist * A% w" O! K* O  ?: [1 `; w9 E0 r
relative to its use for clinical application. + g+ ]* T+ {+ N5 S0 w6 P( k# e- W
One of the central issues regarding limitations in using animal sera for clinical cell
- u% J$ E4 K, x* }& ~therapy protocols is that its components are highly variable and, in many cases, - u- |1 w" f" g" `* q% Y
unknown.  Though components of sera have identified, it has also been demonstrated
* Q6 ]. }1 r- K- Q$ E$ Ithat consistency between different lots cannot be assured (Price and Gregory, 1982).  In ( g( {% ~: ^, @2 L5 b; F$ _
the context of multipotent stem cells, serum components and concentrations have 2 y$ ^! P1 g1 G/ f3 d
significant impact on cell survival and proliferative capacity, phenotype, and multipotent
3 Z6 k# T, d% Rpotential (Agata et al., 2009; Sotiropoulou et al., 2006).  Additionally, for clinical use, the
" k" ~0 d3 |; ]3 q  g3 O: [  Dinclusion of xenogeneic serum for cell expansion carries immunological risks associated ' H3 X4 @& b/ E- H
with the immunogenicity of serum proteins and the potential of transmission of prion
9 I$ o( Z+ y8 N$ o1 p: \diseases and zoonoses (Shahdadfar et al., 2005).  These concerns have led to efforts , |+ J+ C' V$ g. h
aimed at incorporating FBS alternatives in cell expansion protocols, including the use of
" \% b: ^+ X) j; a. i, hautologous and allogeneic sera, and the proprietary manufacturing of serum-free media
5 Z* M2 H( M, y. G/ Jformulations by different companies (Nakamura et al., 2008).  Even with these approaches,
, p( ?5 s( C6 x+ Q4 U7 N% M/ E there are limitations in the availability of both autologous and allogeneic : z( j+ S# N, U% L7 Z4 l  }% I
sera and companies do not freely disclose their proprietary “serum-free” media - _$ T9 ~# b  u) D* c. H/ e
components.  These factors not only prohibit clinical translation, but also limit + @7 L/ O; G9 J1 V7 R
widespread use and study of more basic fundamental questions regarding specific ' y& O& X: |! G
mechanisms involved in the modulation of these media on cell function.  As such, there
6 i0 ^( R$ m/ z1 O# Cexists a need for the development of chemically-defined media which can propagate the
9 g( V; A& }1 C9 A" a: ?' Fcultivation of stem cells without adversely affecting cell function and phenotype 1 K$ e/ _6 j4 a6 |+ T% J( S
(Mannello and Tonti, 2007).
: \$ H3 \3 N& a5 aIn this study, we aimed to develop a serum-free media (K-M) for the expansion o6 C( t/ \6 I. b. g1 }, Q4 Y% X
dental-derived stem cells, including stem cells-derived from exfoliated deciduous (baby)) j  i6 P8 e: _+ _) h+ b* l3 k4 x
teeth (SHEDs) and periodontal ligament stems cells (PDLSCs).  Cell expansion in this / s7 |6 I2 C  M  t
media was compared to standard FBS containing media used to culture these cells,
% g% J/ I& K0 p( Y  f2 qas well as three other serum-free media formulations (two of which are commercially available) : ]4 l) f6 N5 |3 q
used for culture of mesenchymal stem cells.   Additionally, through
3 f2 b8 W* i2 z4 `differentiation assays and microarray analyses, multipotency and differential gene 6 J% _$ O) t% g
expression of 84 stem cell associated genes was examined between cells cultured in K-
9 m( |4 o" K$ gM vs. those cultured in FBS- containing media.

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

地板
发表于 2011-3-21 12:38 |显示全部帖子
引言* H6 A5 m6 u, E6 o+ r
细胞疗法在再生医学中有着巨大的潜力,然而不同细胞收获和培养方法带来的问题使得研究者们担忧细胞疗法的效用。通过数年的努力骨髓源性干细胞被鉴定,而且大量正在进行的临床试验探索着该细胞用于临床的安全性和效能。近年来研究者们越来越关心口腔源性干细胞用于细胞治疗的潜力,主要是因为该细胞能从拔除的牙中分离获得。这些细胞拥有间充质干细胞的多向分化潜能和再生特性,并能在体内修复和再生牙齿结构。因为口腔源性干细胞最近被鉴定,所以其用于临床的操作仍在建立中。无论使用何种特殊方法,最新的细胞疗法仍需依赖于体外细胞扩增为移植提供有效的细胞数量。虽然有多种程序和方法培养细胞,但大部分都用含有丰富的营养和生长因子的动物血清培养扩增细胞。尽管用动物血清培养体外细胞是普遍的使用标准,然而动物血清的临床应用还存在很多问题。
( L3 h; c) K6 g) k+ f; a限制动物血清用于临床细胞疗法的核心问题之一是动物血清组成成分高度变化,并且多数情况下变化是不可知的。尽管血清的组织成分已经确定,但Price 和Gregory的研究证实不同地域的血清浓度不同。用血清培养多能干细胞,血清组成成分和浓度显著影响细胞的生存和增殖能力、表型及其多能潜力。另外,将外源血清扩增的细胞用于临床会带来免疫风险,如血清蛋白的免疫源性和朊病毒疾病的潜在感染、人畜共患疾病的传播。这些担忧使研究者们致力于用胎牛血清的替代物来扩增细胞,包括用自体血清和同种异体血清以及不同公司专有制造的无血清培养基配方。即使用这些方法,自体血清和同种异体血清的效用仍有限,而且商家无法详细说明他们专有的“无血清培养基”的成分。这些因素不仅妨碍了临床应用,而且限制了其广泛使用以及对这些培养基调节细胞功能的具体机制相关基础问题的研究。因此,需要研制一种能使培养的干细胞增殖又不影响细胞功能及表型的化学合成培养基。2 G0 J/ m$ }) O. e. F
本研究中我们研制了一种扩增牙源性干细胞即脱落乳牙来源的干细胞和牙周膜干细胞的无血清培养基(K-M)。比较了K-M培养基、常用标准胎牛血清培养基和其他三种常用于培养间充质干细胞的无血清培养基中细胞的扩增情况。另外分化实验和微矩阵列分析检测并比较了K-M培养基和含胎牛血清培养基培养的细胞的多潜能性和84种干细胞相关基因的基因差异。
* B! P% X% _, }" ^! ]8 a
已有 1 人评分威望 包包 收起 理由
细胞海洋 + 20 + 100 原创内容

总评分: 威望 + 20  包包 + 100   查看全部评分

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

7
发表于 2011-3-21 22:37 |显示全部帖子
本帖最后由 qianqianlaile 于 2011-3-21 22:45 编辑 / ^" g1 S5 S: b, E

2 R: z% H1 ~6 m$ G' p" G$ a) c" r前辈一语中的,我确实觉得这篇翻译不顺,自己没有理解文章。3 C8 C- N5 ~9 T6 b+ q5 _
而且知识也有限,不知道生物制品的标准,脑子里也没有独家生产这个概念,所以没理解。  I" v- @9 ?0 ~2 {' w
学习了
, u- r) j* w- P+ s8 {修正后的译文(两段)如下:$ S3 w3 l) r) }* l& ^2 g6 }' f
摘要( q* u7 O0 t- L2 l& T
近来,拔除的牙已被确认为一种组织再生干细胞的可靠来源。目前扩增这些细胞需要添加动物血清,而动物血清正是细胞疗法所采用的细胞培养方法中需要克服的一个基本问题。本研究中,我们探索了一种化学合成的培养人牙周膜干细胞(PDLSCs)和人脱落乳牙来源干细胞(SHEDs)的无血清培养基的建立。分析比较含胎牛血清培养基培养的细胞和四种不同无血清培养基培养的细胞的增殖状况,结果表明,无血清培养基培养的两种细胞增殖均明显少于胎牛血清培养基培养的细胞。用预包裹的纤连蛋白组织培养板后分析细胞增殖,结果表明,四种无血清培养基中仅K-M中培养的人牙周膜干细胞和人脱落乳牙来源干细胞增长率比胎牛血清培养基培养的高。其次,无论用K-M还是胎牛血清培养基培养人牙周膜干细胞和人脱落乳牙来源干细胞,碱性磷酸酶活性检测表明它们都拥有相似的成骨潜力;另外,K-M培养的细胞表达成软骨和成脂肪基因,钙结节染色、阿尔新蓝染色、油红O染色均阳性,说明细胞保持了它们的多向分化潜能。最后,84种干细胞相关基因的差异表达分析表明,人牙周膜干细胞和人脱落乳牙来源干细胞的大多数基因的表达在K-M(一种无血清培养基)或胎牛血清培养基这两种培养条件下均没有差别。上述结果提示, K-M支持人牙周膜干细胞和人脱落乳牙来源干细胞的扩增并维持其分化潜能。' n& e1 v- w- x" r. r
0 v/ c: D+ U# @9 @0 F, X
引言
( Z( Z5 C' }! ~* X细胞疗法在再生医学中有着巨大的潜力,然而不同细胞收获和培养方法带来的问题使得研究者们担忧细胞疗法的效用。通过数年的努力骨髓源性干细胞被鉴定,而且大量正在进行的临床试验探索着该细胞用于临床的安全性和效能。近年来研究者们越来越关心口腔源性干细胞用于细胞治疗的潜力,主要是因为该细胞能从拔除的牙中分离获得。这些细胞拥有间充质干细胞的多向分化潜能和再生特性,并能在体内修复和再生牙齿结构。因为口腔源性干细胞最近被鉴定,所以其用于临床的操作仍在建立中。无论使用何种特殊方法,最新的细胞疗法仍需依赖于体外细胞扩增为移植提供有效的细胞数量。虽然有多种程序和方法培养细胞,但大部分都用含有丰富的营养和生长因子的动物血清培养扩增细胞。尽管用动物血清培养体外细胞是普遍的使用标准,然而动物血清的临床应用还存在很多问题。
/ J; h) L6 i; H: c3 J# r& v动物血清产品用于临床细胞治疗的核心问题之一是动物血清成分非常不稳定,并且很多情况下不明确。即使确定了血清成分,研究表明不同批次产品的成分的一致性难以保证。用血清培养多能干细胞,血清组成成分和浓度显著影响细胞的生存和增殖能力、表型及其多能潜力。另外,将异种血清扩增的细胞用于临床会带来免疫风险,如血清蛋白的免疫源性和朊病毒疾病的潜在感染、人畜共患疾病的传播。这些担忧使研究者们致力于用胎牛血清的替代物来扩增细胞,包括用自体血清和同种异体血清以及不同公司独家生产的无血清培养基配方。即使用这些方法,自体血清和同种异体血清的效用仍有限,而且厂家不愿免费公开他们的专有“无血清培养基”成分。这些因素不仅妨碍了临床应用,而且限制了其广泛使用以及对这些培养基调节细胞功能的具体机制相关基础问题的研究。有鉴于此,需要研制具有明确(公开)化学成分的培养基以便使培养的干细胞增殖又不影响细胞功能及表型。/ P9 L' B; L  d/ k8 S) O) j. f3 C
本研究中我们研制了一种扩增牙源性干细胞即脱落乳牙来源的干细胞和牙周膜干细胞的无血清培养基(K-M)。比较了K-M培养基、常用标准胎牛血清培养基和其他三种常用于培养间充质干细胞的无血清培养基中细胞的扩增情况。另外分化实验和微矩阵列分析检测并比较了K-M培养基和含胎牛血清培养基培养的细胞的多潜能性和84种干细胞相关基因的基因差异。1 [4 g7 r3 }( W* j, a) N

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

8
发表于 2011-3-22 08:46 |显示全部帖子
听君一席话,胜读十年书。% @* S& o, j6 X! _
真正会在我面前说我不足之处的人是朋友和亲人,我父母也常说我。在我身边只说好话是于我有害的。前辈能跟我说这么多是把我当朋友。' o! ^( s) I2 j" [1 g% T6 L: S
前辈提出我的问题的同时还教了我解决的方法,感激不尽。
8 U: m5 e1 j, I& N

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

9
发表于 2011-3-22 22:19 |显示全部帖子
本帖最后由 qianqianlaile 于 2011-3-22 22:26 编辑
! J7 ]* X  O" A2 l' W. t' L, a+ d( o, g# J
MATERIALS AND METHODS
2 i* x  }, B! s" c+ C0 Q5 D- \9 kIsolation of Dental-Derived Stem Cells (PDLSCs, SHEDs) % c- m5 B# A$ F* B7 h, N3 s; H* ?
PDLSCs and SHEDs were harvested as previously described (Miura et. al, 2003; Seo et.
- b( Z! M$ e' \al, 2004).  Briefly, PDLSCs were scraped from the root surface of a tooth into a p60 dish
) k7 }& P! k6 h. G+ D/ D. gcontaining minimum essential alpha medium (DMEM, Gibco) and SHEDs were harvested by
: J" O5 U1 u- o  w' g- t. Nscraping out the dental pulp tissue from a deciduous tooth into a p60 dish containing DMEM.8 z2 U0 o2 r2 i5 ?
After collection, the cells were centrifuged at 1600 rpm for 5 minutes at room temperature. The / R  p- D% w" b; y; b
supernatant was aspirated and the cells were resuspended in a phosphate buffered saline (PBS;   j( A2 c, `8 q" V& N+ L
Gibco #14190) solution with 4 mg/ml Dispase II (Roche  #04 942 078 001) and 2 mg/ml3 K$ `) w" N* }/ ^" q
Collagenase Type II (Worthington # LS004196) and incubated at 37°C for 60 minutes.  The , `' E5 {4 ~. t- V2 A
enzyme solution was inactivated with 5 ml of DMEM- 15% FBS- 100µM ascorbic acid 2 ' |; q* [3 P8 e) q
phosphate (ASAP, Sigma A-8960) and centrifuged at 1600 rpm for 5 minutes at room& d! i0 F+ M! C2 N) `% H! U
temperature.  Cells were resuspeneded in 5 ml DMEM- 15% FBS- 0.1mM ASAP and transferred / j0 z) r0 `. O' z4 k6 b# t6 v
to T-25 flasks. Media was changed the next day and then every 2-3 days. 3 Q/ _+ W: I1 s0 M
Cell Culture! K/ ~6 P5 v$ N
Cells were expanded in culture in DMEM, Iscove’s modified Dulbecco’s media (IMDM, * l7 S. \8 P# F& J$ @1 S' x6 T
Gibco-Invitrogen #12571), Gibco Stem Pro Mesenchymal Stem Cell Serum-Free Media 2 l% a: W, i$ f; W2 n7 i
(MSCSFM; Invitrogen# A1033401) or Lonza Therapeak Mesenchymal Stem Cell Growth
6 i$ ~3 i0 x% t" hMedia- Chemically Defined (MSCGM-CD; Lonza #00190632) and grown in a 37°C humidified, p; k' @1 m  L& a
tissue culture incubator at 5% CO2.  Media formulations are as follows: DMem (Gibco-2 {6 [. l+ I+ }4 L% d$ @& v
Invitrogen #12571) with 15% FBS (Gibco-Invitrogen-16000), 100µM ASAP and 5 µg/ml+ V2 R' m+ }0 r  d$ v, h0 h' h) x
Gentamicin (Invitrogen # 15750060) (FBS-M); DMem with 2% bovine serum albumin (BSA;
) w' U/ n: X: X- _) \0 y$ bSigma A7888), 10ug/ml human insulin (Sigma), 4ug/ml low density lipoprotein, 200ug/ml
- A* c2 f2 r5 r& |transferrin, 10 nM dexamethasone, 100 uM ASAP, 50 uM ȕ-mercaptoethanol, 5 ug/ml
" a! B3 h9 ?' F7 mgentamicin, 10ng/ml platelet-derived growth factor (PDGF; Sigma), 10ng/ml epidermal growth
4 x5 x  m5 o; ]( H3 }( f) t. J7 ifactor (EGF; R&D Systems), 10ng/ml basic fibroblast growth factor (b-FGF, Sigma) (SDM);; T, a2 ~& w- @: [4 v, N, K) t
IMDM with 0.2% BSA, SITE 3 (Sigma #S5295), 384µM ASAP, 10 ng/ml PDGF, 10ng/ml9 A! B7 L7 ]6 O
hydrocortisone 5ng/ml b-FGF, 1 ng/ml EGF, 10-7
* k6 a  w4 j3 |# m# G; Y9 _+ f mgm/ml parathyroid hormone (PTH) and 5 5 B( K/ R0 o/ N! P
µg/ml gentamicin (K-M).  Media on the cells were changed every 2 or 3 days.  Cells were grown' t! n. \$ k3 ^# V- c9 o
in T-150 flasks to about 80% confluency then media was aspirated from the flasks, cells were
9 @0 i0 f4 a1 d  bwashed with PBS and trypsinized with TrypLE Express (Gibco#12605) before being split into 12
* _; Q4 j: z: F9 ywell plates for the assays. , x& l( s: o' `9 P
Fibronectin Coating of Tissue Culture Plates
: t9 X( V3 s( W0 Z5 i" UFibronectin (FN) was coated on the plates and flasks to provide growth and attachment
0 E( o( q2 u7 F* R( z: J; r; @: s/ ?support for cells grown in the serum-free, IMDM media.   For the 12 well plates, 0.1% FN
6 q( _# G6 ^) s: Q- o3 q: o( S2 ~solution (Sigma F-1141) was diluted in PBS so that each well received 3.8 micrograms per well
7 F+ e* g9 S7 F. }9 W8 w  Y(1µg FN/cm2).  The T-150 flasks were coated so that each received 150 micrograms of FN (1µg
" V2 V' ^2 u$ g8 z0 W) DFN /cm2).  The plates and flasks were tilted back and forth to ensure complete coverage of the ) w8 D4 o* I, d- B# Q# ^
FN solution.  The FN coating was allowed to stand at room temperature for 90 minutes.  The FN 7 w7 [" `5 F/ Z( M
solution was then aspirated before the resuspended cells were transferred to the flasks and plates.
  Z  d( b0 u! M* L. j6 s! T6 F0 bProliferation Assays( f8 n7 Y; Y2 ]1 J6 B& y2 u( h
After trypsinization cells were resuspended in an equal amount of the appropriate media0 T( G7 |" H  C0 m; S
before an aliquot was removed for counting on a hemocytometer to determine the concentration.6 u( I+ ~. o" I: d# F8 g
The cells were then centrifuged at ~1600 rpm for 5 minutes at room temperature.  Cells were
5 f# A( A5 S" w* m4 J& [$ Uresuspended in the appropriate media at a concentration of 3800 cells per ml. One milliliter of
4 I# g6 }, X+ fcells was dispensed into each well of a 12 well plate.  K-M plates were precoated with FN
" U8 ?6 D- P5 \3 C2 @solution (as outlined above).  Four plates for each cell type and media condition were plated and
' R3 u2 d2 z* M( A$ ucounted on a hemocytometer at days 1, 3, 5 and 7 to determine the cell numbers within each 5 [7 y6 `, \7 t2 l/ K
well.  All experiments were performed in triplicate. # ^1 G+ @- d4 u# O/ `& K
RNA Isolation and Purification for MicroArray + {0 i" P* L; T
PDLSCs and SHEDs were grown in T-75 flasks to 80% confluency before the cells were
1 v, Z$ ]( H! F- M, g* l+ h" iharvested for RNA.  The Trizol method (Invitrogen) was used for RNA isolation.  This involved
% I( `' f: L/ W8 [washing the cell layer with PBS, adding Trizol directly to the cells and transferring this cell
& K# f4 P) B" d4 h# M6 A' L* P* nsuspension to polypropylene tubes.    RNA was isolated from the cells by a Trizol-choloroform
1 x" z+ Z7 U- X9 x2 gextraction, isopropanol precipitation, an ethanol rinse and resuspension of theRNA pellet in
3 c& ]6 e7 p- c% s& a# V" e2 ^Diethylpyrocarbonate (DEPC) water.   The RNA was further purified by column
" J: |% M8 {: v, Jchromatography, following manufacturer’s instructions (Qiagen RNeasy Kit # 74104), and ; H! z9 G8 ?2 f' G
resuspended in DEPC water.  RNA concentration was determined by the 260/280 absorbance 1 R4 X8 Q) H: d
measurement using a Beckman DU540 spectrophotometer.* G" _3 \4 x# H; H. O
In Vitro Multilineage  Differentiation $ ?2 A" Z/ M3 Z) A: b- ^& |
Multipotency of PDLSCs and SHEDs was determined through lineage specific
4 r2 {3 ^! R6 J6 d# |1 ^osteogenic, chondrogenic, and adipogenic induction, according to previously described methods
; j0 }1 Q, H8 x  s' z0 ^(Pittenger et. al, 1999).  Briefly, cells were plated at a density of 30,000 cells per well in 12 well 4 j1 H" E, ~" S4 q2 Z5 S- ^
plates.   At 80% confluency cells were induced with osteogenic  [Growth media plus 5mM E-1 ^$ G5 u# w8 u* x3 w; q  l9 ^4 [( x
glycerophosphate, 100nM dexamethasone, 50µM ascorbic acid 2-phosphate] or chondrogenic   g, l' n# I3 x, E% ?+ p- o
[growth media plus 50µM ascorbic acid 2-phosphate, 100nM dexamethasone,  5 µg/ml human
0 u" @- \. h4 R) K8 @+ W3 u1 {insulin (Sigma I-9278), 1 ng/ml TGFE, 400µM proline, 1X Non essential amino acids] or
& u( G8 u. n6 u- L7 z& wadipogenic [growth media plus 0.5mM IBMX, 1 µM dexamethasone, 10 µg/ml human insulin,
) `+ f: z) D. R, z$ F3 [; v! B200µM indomethacin] induction media.  Cells were grown at 37°C in a humidified 5% CO2
+ V- a, g1 G7 vincubator.  The media was changed every 2-3 days.  At three weeks the cells were fixed and
# }+ {& d4 a% W  I6 v+ Ustained as outlined below.
- w( v/ ]5 x- ?, P9 T* O8 m. AMultipotent Staining of PDLSCs and SHEDs
4 |* T( B/ k# s+ rTo identify the mineralized nodules, induced PDLSC, SHED and DPSC were fixed in 4%
, s. Y9 s2 R0 X! [6 n. `paraformaldehyde for 30 minutes, immersed in fresh 5% silver nitrate and incubated in the dark # ^  |2 K- I) h- r; m% a0 {
for 30 minutes. After washing in water the PDLSC, SHED and DPSC were exposed to ' Q. B) g$ S+ n2 q+ P# e
ultraviolet light for 30 minutes followed by a four minute incubation in 1% sodium thiosulfate to , `) L+ G9 X& `6 ^
neutralize the silver nitrate. Cells were washed twice with water before 1 ml of PBS was added
. l0 i, r$ D) f  l: V, qto each well and viewed.  Plates were stored at 4°C. 1 C4 w* A4 T. X( {5 }/ H
To detect chondrogenic differentiation induced PDLSC, SHED and DPSC were fixed in & \2 B/ d5 Z/ L5 }" z
cold 100% methanol for 30 minutes and then exposed to 1% alcian blue in 0.1N HCl for 30
1 |$ }) u# w/ f5 U8 J- bminutes.  Cells were washed twice with 0.1N HCl before 1 ml of PBS was added to each well
  V9 O% G# g4 q$ [! m0 gand viewed.  Plates were stored at 4°C.. g+ F" M/ k' R. c
To detect adipogenic differentiation by identifying lipid vesicles, induced PDLSC, SHED & j; |/ i8 U. z- n# r
and DPSC were fixed in 4% paraformaldehyde for 30 minutes, and then immersed in 0.3% oil
: @" X' k# o9 Y% W! a3 |; E8 X9 lred O solution for 30 minutes. Cells were washed twice with water before 1 ml of PBS was # s& X* y' C$ T( F
added to each well and viewed.  Plates were stored at 4°C.
. l2 F, A% {# U3 O' DAlkaline Phosphatase Activity and Detection
; {9 {( r' L  Q+ g, @1 FEarly osteogenic differentiation was detected and quantified by the alkaline phosphatase # D- R+ K- B5 y) T6 J) w
(ALP) enzyme assay.  Cells were plated at a density of 30,000 cells per well in 12 well plates.
/ e$ Y% X% J' A1 t& {  j4 sAt 80% confluence, cells were induced with osteogenic media as described above.   The media& {3 a) \/ f8 B+ r+ r6 f
was changed every 2-3 days and after one week, ALP activity was measured.9 w5 a, F& {, i( q" X3 g0 |9 ?
To detect phosphatase activity, PDLSCs and SHEDs were fixed in 70% ethanol for 30 3 {, F+ d# w8 b3 X& c7 Y: _' Z5 ?8 E& h
minutes.  They were then incubated with freshly made substrate containing naphthol AS-TR 9 w3 P  l* v2 R& [4 S0 A4 I/ c' k
phosphate (Sigma) and Fast blue (Sigma) for 30 minutes. Cells were washed twice with PBS then
/ R8 f# r# E6 L  Nviewed or stored at 4’C.
2 k1 L9 h1 G0 x  F( U7 ]; \5 M1 y, xTo quantify the ALP activity and normalize the results, cells were lysed in Passive Lysis
# e5 m) \& \: rBuffer (Promega) according to manufacturer’s instructions.  Cell lysates were then sonicated, ( [7 N  h! B2 K$ _" A% q/ K  `  a
and centrifuged (10,000 rpm for 10 minutes at 4°C).  The supernatant was recovered for the 1 n2 O2 B, W6 ^  }$ w) Z' Y
quantitative colormetric ALP assay (Manolagas et al., 1981) and the cell pellet was used for * \8 c& \0 O  r8 I  f" }
DNA isolation and the determination of the DNA concentration using the Quant-iT™ dsDNA
* r4 b' E  G0 S# S5 I# D$ ^BR Assay (Invitrogen) per the manufacturer’s instructions.
, U& j. {0 [+ ~' h8 O9 J/ o- b2 WReverse Transcriptase Polymerase Chain Reaction (RT-PCR) 1 g+ I* Z% r. n; C
To confirm chondrogenic and adipogenic differentiation, total PDLSC and SHED cellular / v; l5 u& O# \2 U4 d2 t# U. S! A' _
RNA was extracted, reverse transcribed, and amplified using osteoblast specific gene primers.$ h4 f1 `- {9 p5 n# p
Media from the wells of induced and uninduced PDLSCs and SHEDs were aspirated.   Cells
. n; E- v  w) C6 fwere immediately resuspended in 1 ml of Trizol (Invitrogen) and RNA was isolated according to
3 }2 W1 C5 c6 a  Nthe manufacturer’s instructions.  Synthesis of cDNA was performed using Invitrogen’s 8 x+ Y: S9 z8 w* A9 i
SuperScriptII kit and oligo dT.  PCR reaction components and concentrations were as described ! L! `* B' Q0 P2 }  h& f! M
in the Invitrogen Platinum Taq polymerase instructions using the primer sets below.  An MJ
' I5 G9 C1 _2 q9 z# i2 X. Z6 z2 O; |) tthemorcycler was used for the following two PCR reaction conditions: & t* k& q% {! J" c& `6 k1 }4 K
*94°C 2 minutes       [94°C 45”        56°C 45”         72°C 1’] X 35 cycles       72°C 15’ 8 I5 K5 @% w. y5 M! L6 g  P3 Q
or
2 _9 X0 ?9 X. z**94°C 2 minutes      [94°C 45”         67°C 45”         72°C 1’] X 35 cycles      72°C 15’
- v( p; F8 k# @8 N$ C* v* P6 [PCR Primer Pairs
: ~/ Q. N+ M6 `Primer Name Primer Sequence Product/ q5 e! \4 M$ D
Size2 ?' |- Z; T$ H# b2 j$ ?6 R
Accession
/ _' L8 l- \4 S- V  B: i( V. bNumber
* G5 `' d4 g6 F% B3 R, F1 a*GAPDH FWD AGCCGCATCTTCTTTTGCGTC 815 bp NM_002046' H  g- T9 [9 n
*GAPDH REV TCATATTTGGCAGGTTTTTCT1 Y1 z" p9 {0 `  ?8 m% y2 I4 _
PPARJ2  FWD  GCTGTGCAGGAGATCACAGA 226 bp NM_005037
4 }6 V. a7 Q, xPPARJ2  REV  GGGCTCCATAAAGTCACCAA3 D, L- g6 W5 n/ f( T5 n5 H% \
Lipoprotein lipase FWD GTCCGTGGCTACCTGTCATT 212 bp NM_000237
* v& d, c" K) X5 w9 ?Lipoprotein lipase REV TGTCCCACCAGTTTGGTGTA7 X+ G$ X% N; i2 o3 N% B# _; r7 L
Sox 9 FWD TTGAGCCTTAAAACGGTGCT 224 bp NM0003464 r+ F" ]. p! U. ?7 J0 }
Sox 9 REV CTGGTGTTCTGAGAGGCACA
/ O  A% [! ~! t; kType X collagen FWD TGAGCAGCAACGTAAAAACG 471 bp NM_00049
' q" a; ?' r* n, sType X collagen REV AGGAAATGCCGAGTTTCTCA
7 F/ h% J& S4 n  Z5 |3 Z/ |( HStatistical Analysis + [; R* T: S$ k7 l
Statistical analysis was performed with the use of Instat software (GraphPad Software, San
$ d- G5 H9 b: c. [3 o4 Z  dDiego, CA, USA).  All data were plotted as mean ± standard error of the mean (SEM), unless
1 ^9 X; O7 E; Potherwise noted. Statistically significant differences were determined by two-tailed Student t
, ~/ I/ ?! d2 r* J7 {1 w8 b; otests, and statistical significance was defined as p < 0.05.

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

10
发表于 2011-3-23 12:10 |显示全部帖子
本帖最后由 qianqianlaile 于 2011-3-23 12:14 编辑 + {8 h, p1 P4 e+ D. M" X+ Q7 b

. H3 H/ X4 c  p; W. P. y. b8 A材料和方法
3 b; k0 ]% g& Y3 v1 i9 f牙源性干细胞的分离(PDLSc,SHEDs)

, ]+ l' Q4 S4 |; g0 B7 i如前所述方法获得牙周膜干细胞和脱落乳牙来源的干细胞。简而言之,将从牙根表面刮取的牙周膜干细胞浸入p60培养皿内最少量的基本α培养基(αMEM,Gibco)中,并将从乳牙牙髓组织中分离出的干细胞浸入p60培养皿的α培养基中。室温下每分钟1600转离心收集到的细胞5分钟。去除上清并用溶解了4mg/ml II型中性蛋白酶和2mg/ml II型胶原蛋白酶的PBS液重悬细胞,37OC培养60分钟。用5ml含15%胎牛血清和100μmol/L的抗坏血酸-2-磷酸(ASAP)的αMEM终止酶液消化,随后室温下每分钟1600转离心5分钟。将5ml含15%胎牛血清和0.1mmol/L的ASAP的αMEM重悬了的细胞悬液移入T-25烧瓶中。第二天更换培养基,之后每2到3天更换培养基。0 u% ~+ U/ q! E2 c  A4 h( H
细胞培养( P4 g- x0 a& m: M
将四种培养基即αMEM,IMDM,Gibco Stem Pro间充质干细胞无血清培养基或Lonza Therapeak 化学合成间充质干细胞生长培养基分别培养扩增的细胞置于37OC,5%CO2湿培养箱中培养。培养基具体配方如下:含15%胎牛血清、100μmol/L的ASAP和5μg/ml庆大霉素的αMEM(FBS-M);含2%牛血清白蛋白、10μg/ml人胰岛素、4μg/ml低密度脂蛋白、200μg/ml转铁蛋白、10nmol/L地塞米松、100μmol/LASAP、50μmol/L β-巯基乙醇、5μg/ml庆大霉素、10ng/ml 血小板来源生长因子、10ng/ml 表皮生长因子、10ng/ml碱性成纤维生长因子的αMEM(SDM);含0.2%牛血清白蛋白、SITE3、384μmol/LASAP、10 ng/ml 血小板来源生长因子、10 ng/ml肾上腺皮质素、5ng/ml碱性成纤维细胞生长因子、1 ng/ml表皮生长因子、10-7mgm/ml(mgm是否是印刷错误?)甲状旁腺激素(PTH)和5μg/ml庆大霉素的IMDM(K-M)。每2到3天更换培养基。T-150烧瓶内的细胞生长至80%融合时,去除烧瓶内培养基并用PBS液冲洗细胞,之后TrypLE Express胰酶消化细胞并将其移至12孔板内待检测。. E: v8 r9 x8 g1 P
纤连蛋白包裹组织培养板
5 f$ B$ _9 ~! g/ _! f# |培养板和烧瓶上的纤连蛋白涂层为无血清培养基即IMDM培养基中生长的细胞提供生长和粘附支持。将PBS液稀释的0.1%纤连蛋白(FN)溶液加入12孔培养板中,使每孔获得3.8μg纤连蛋白(1μg FN/cm2)。同理使每个T-150烧瓶获得150μg的纤连蛋白(1μg FN/cm2)。来回震荡培养板和烧瓶以确保纤连蛋白溶液完全覆盖(器皿表面)。室温下保留纤连蛋白液90分钟。之后去除纤连蛋白溶液并将重悬的细胞移入培养板和烧瓶。
8 [- s7 @, ?. r, O增殖分析- o1 s8 R" u2 Q; W: d
用等量适当培养基重悬胰酶消化了的细胞后,用血球计计算传代前的细胞以检测细胞浓度。然后室温下每分钟1600转离心细胞5分钟。适量培养基重悬细胞使其浓度为每毫升3800个,纤连蛋白溶液(如上所述)预涂布K-M培养板后向12孔板的各孔中分别加入1ml细胞悬液。将不同培养基培养的不同细胞分别接种到四个培养板内,血球计分别计算第1,3,5,7天的细胞数以检测每孔的细胞数量。所有标本重复3个。, X( F; y" y' @' ]. S2 u! L+ q
RNA分离和纯化获得微矩阵
0 {+ B! I0 u4 R1 i1 f* U0 D" s. k采用Trizol法分离T-75烧瓶中80%汇合的人牙周膜干细胞和脱落乳牙来源干细胞的RNA。步骤如下:直接将Trizol加至PBS冲洗后的细胞层上,再将细胞悬液移入聚丙烯管中。用Trizol-choloroform提取法从细胞中提取RNA后异丙醇沉淀,再用乙醇冲洗,焦磷酸二乙酯(DEPC)水重悬RNA小球。根据使用说明柱层析进一步纯化RNA后再用焦磷酸二乙酯水重悬RNA。用贝克曼DU540分光光度计测量吸光度获得A260/A280的值以检测RNA浓度。7 }* C# g+ K- K$ G5 w" H8 |  f3 e
体外多向分化
2 s* b, L& q9 @& y% k: I4 g根据先前研究描述的方法,通过具体谱系即成骨、成软骨和成脂诱导确定人牙周膜干细胞和脱落乳牙来源干细胞多向潜能性。简而言之,细胞以每孔30000个的密度接种到12孔板中。待细胞生长至80%融合时,用成骨(生长培养基中加入5mmol/Lβ-甘油磷酸,100nmol/L地塞米松,50μmol/L抗坏血酸-2-磷酸)或成软骨(生长培养基加入50μmol/L抗坏血酸-2-磷酸,100nmol/L地塞米松,5μg/ml人胰岛素,1ng/ml转化生长因子β,400μmol/L脯氨酸,1X非必须氨基酸)或成脂(生长培养基加入0.5mmol/L3-异丁基-1-甲基-黄嘌呤,1μmol/L地塞米松,10μg/ml人胰岛素,200μmol/L消炎痛)诱导培养基培养细胞,并将其置于37OC,5%CO2湿培养箱中培养。每2到3天更换培养基。第三周固定细胞并按如下概述染色。
( S; p4 {8 g" [2 b- l8 D人牙周膜干细胞和脱落乳牙来源干细胞多能染色7 |7 C4 t3 z7 ~# k: j* S
为检测矿化结节,用4%多聚甲醛固定成骨诱导培养基培养的人牙周膜干细胞、脱落乳牙来源干细胞和牙髓干细胞30分钟,再将其浸入现配的5%硝酸银中并于黑暗中静置30分钟。用水冲洗细胞后紫外灯照射30分钟,之后加入1%硫代硫酸钠中孵育4分钟中和硝酸银。接下来用水冲洗细胞两次,向每孔加入1mlPBS并观察。培养板置于4OC环境中保存。5 L0 Y9 L5 s# a
为检测成软骨分化,用100%冷甲醇固定成软骨诱导培养基培养的人牙周膜干细胞、脱落乳牙来源干细胞和牙髓干细胞30分钟,再用溶于0.1N HCl的1%阿辛蓝浸泡30分钟。之后用0.1N HCl冲洗细胞两次后每孔加入1mlPBS并观察。培养板置于4OC环境中保存。
8 X# D* V; w" k! d为检测成脂分化,用4%多聚甲醛固定成脂诱导培养基培养的人牙周膜干细胞、脱落乳牙来源干细胞和牙髓干细胞30分钟,再用0.3%油红O溶液浸泡细胞30分钟。之后再用水冲洗细胞两次后每孔加入1mlPBS并观察。培养板置于4OC环境中保存。! u$ S+ Y0 q' c5 s# @3 Y. Z
碱性磷酸酶活性及其检测
% S& O: R) B% R) f# m碱性磷酸酶分析检测并定量早期成骨向分化。向12孔板的各孔中接种30000个细胞。待细胞长至80%融合时,用上述成骨诱导培养基培养细胞。每2到3天更换一次培养基并于一周后定量检测碱性磷酸酶活性。
! T" ?! D+ E) o1 }0 l为检测磷酸酶活性,用70%乙醇固定人牙周膜干细胞和脱落乳牙来源干细胞30分钟。之后用新鲜的含奈酚AS-TR磷酸盐和快蓝的基底培养30分钟,PBS冲洗细胞两次后观察或将细胞储存在4OC环境中。0 W2 i2 W, y, v' ]7 D2 Q7 m
为定量碱性磷酸酶活性并使结果正常化,根据说明书用Passive裂解液溶解细胞。之后声波处理(sonicated)并离心细胞裂解物(4OC每分钟10000转离心10分钟),收集上清液并用比色法定量检测碱性磷酸酶,从细胞沉淀中提取DNA后再根据说明书用Quant-iT™ 双链DNA BR分析法检测DNA浓度。$ @  S$ \( H' t, [, {
逆转录聚合酶链反应
  s7 |1 }4 N; y* I) S为证实成软骨和成脂分化,提取人牙周膜干细胞和脱落乳牙干细胞的总RNA后逆转录并用成骨特定基因引物放大。具体操作如下:吸出已诱导和未诱导的人牙周膜干细胞和脱落乳牙干细胞培养孔中的培养基后立即用1ml曲拉通(Trizol)重悬细胞并根据说明书提取RNA。用Invitrogen公司的SuperScriptII kit 和oligo dT合成cDNA。PCR反应所需试剂及其浓度如Invitrogen公司Platinum Taq 聚合酶使用说明中所述,使用如下引物。一个MJ themorcycler被用于以下两种PCR反应条件中:
) Q1 O. N: T3 `94°C 2分钟→(94°C 45” → 56°C 45” → 72°C 1’) X 35 循环→72°C 15’或者0 o# b! ]7 I; p
94°C 2分钟→(94°C 45” → 67°C 45” → 72°C 1’) X 35 循环→72°C 15’( H& u: K( t$ M1 ]& F
PCR引物组
. h8 Q1 G6 H% J) R5 ]  _$ l引物名称        引物序列        产品大小        Accession
& |+ v0 g, F$ E% k  f# G*GAPDH FWD        AGCCGCATCTTCTTTTGCGTC        815 bp        NM_0020463 X8 g+ c0 g/ [! l8 @, Q! V# _
*GAPDH REV        TCATATTTGGCAGGTTTTTCT               
  V9 Q4 k- J, _PPARJ2  FWD        GCTGTGCAGGAGATCACAGA        226 bp        NM_005037
/ w4 b" K( e0 P, ?1 Q' f4 sPPARJ2  REV        GGGCTCCATAAAGTCACCAA                4 k& E" d! U. k
Lipoprotein lipase FWD        GTCCGTGGCTACCTGTCATT        212 bp        NM_000237
, @" O6 U* q: [1 E# f: `) XLipoprotein lipase REV        TGTCCCACCAGTTTGGTGTA               
* T8 x. S1 H8 L; zSox 9 FWD        TTGAGCCTTAAAACGGTGCT        224 bp        NM000346* S; J6 ~0 q  @
Sox 9 REV        CTGGTGTTCTGAGAGGCACA               
- C- @% i3 H' ?; P. uType X collagen FWD        TGAGCAGCAACGTAAAAACG        471 bp        NM_00049
/ s  b! i: v# {  g5 i# _Type X collagen REV        AGGAAATGCCGAGTTTCTCA               
  @$ ~% J1 m2 C' K9 [/ W1 D$ m统计分析
) l, h  h7 ~: B1 }用instat软件进行统计分析。除特殊说明外所有数据均用均数±标准误表示。双侧t检验结果有显著性差异,p<0.05时有统计学意义。. }5 e3 `0 `0 d) ~6 G- `( f: T/ u
已有 2 人评分威望 包包 收起 理由
细胞海洋 + 50 + 150 原创内容
tpwang + 10 + 10 原创内容

总评分: 威望 + 60  包包 + 160   查看全部评分

‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-10 11:11

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.