干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 524726|回复: 241
go

[干细胞与细胞生物学类] Current Protocols in Cytometry 2017s80 [复制链接]

Rank: 4

积分
1164 
威望
1164  
包包
245  

优秀会员 精华勋章 小小研究员 美女研究员 博览群书 帅哥研究员 积极份子

楼主
发表于 2017-6-6 03:16 |只看该作者 |倒序浏览 |打印
更新至2017年4月
附件: 你需要登录才可以下载或查看附件。没有帐号?注册

Rank: 4

积分
1164 
威望
1164  
包包
245  

优秀会员 精华勋章 小小研究员 美女研究员 博览群书 帅哥研究员 积极份子

沙发
发表于 2017-6-11 04:38 |只看该作者
TABLE OF CONTENTS
1 m# n( Y& x. A  o1 g2 q• Chapter 1 Flow Cytometry Instrumentation
! K  q+ k2 E( G' H• Introduction
4 i/ D& h8 k# x- X# J+ ~• Unit 1.1 Overview of Flow Cytometry Instrumentation2 w" y. r  h/ |3 I) D3 ^. p
• Unit 1.2 Fluidics
0 K& ]6 @& |7 V9 o2 p. g: V' P7 j• Unit 1.3 Standardization, Calibration, and Control in Flow Cytometry
; v  {+ H% y# x; T( l7 o6 u0 Q0 q. a• Unit 1.4 Establishing and Maintaining System Linearity6 H) O3 l, a# B& [# _
• Unit 1.5 Optical Filter Sets for Multiparameter Flow Cytometry4 Y" O7 q5 z* d1 F% d, h' ~
• Unit 1.6 Laser Beam Shaping and Spot Size* O: G3 ~: X$ o6 ^
• Unit 1.7 High‐Speed Cell Sorting+ ?$ A; X, I+ e& u* S0 ?( h
• Unit 1.8 Principles of Gating
1 Z9 P  Z6 k* L: X) M• Unit 1.9 Lasers for Flow Cytometry
1 ~; a9 t6 V( X) E5 I• Unit 1.10 Techniques for Flow Cytometer Alignment  p  G/ H4 o+ b5 M* Y; K6 T
• Unit 1.11 Flow Cytometers for Characterization of Microorganisms
  ~1 R8 x) \6 S" T0 s• Unit 1.12 Principles of Resonance Energy Transfer
( S7 ~9 w' l" Q; p' G! Y9 J• Unit 1.13 Light Scatter: Detection and Usage
0 X, n/ X  d1 w7 u  e4 s! I• Unit 1.14 Compensation in Flow Cytometry' J2 ^; ^( ?9 d2 G
• Unit 1.15 Time‐Resolved Fluorescence Measurements5 r9 G7 F9 @, K% F8 q& n3 D9 v) [) R
• Unit 1.16 Simultaneous Analysis of the Cyan, Green, and Yellow Fluorescent Proteins. @) `' m* Z0 h4 o1 k7 v
• Unit 1.17 Plug Flow Cytometry/ K- f( }3 F- m! `+ E% B$ y
• Unit 1.18 Dynamic Thermoregulation of the Sample in Flow Cytometry5 K" ~/ L! T7 g( B; S
• Unit 1.19 Excitation and Emission Spectra of Common Dyes
9 F( ?/ G' |" H) h  o• Unit 1.20 Characterization of Flow Cytometer Instrument Sensitivity) w' A1 r* \7 d, p0 P6 P
• Unit 1.21 Separation Index: An Easy‐to‐Use Metric for Evaluation of Different Configurations on3 U/ ?+ d  I% u6 [+ o
the Same Flow Cytometer
( y. f: n3 f7 p$ D2 z+ ^3 I/ T• Unit 1.22 Fundamentals of Acoustic Cytometry# v- C$ M# k# @7 ?, ^
• Unit 1.23 Pulse Width for Particle Sizing
/ O  J0 d- u! |! g' x+ g• Unit 1.24 Practical Issues in High‐Speed Cell Sorting5 I6 L" Y7 ?$ A0 [! j2 O
• Unit 1.25 Capture of Fluorescence Decay Times by Flow Cytometry" y* H: p: a6 r, u! \
• Unit 1.26 Fountain Flow Cytometry+ p0 ~; ^% D7 i- O# n
• Unit 1.27 Spectral Flow Cytometry
$ [; x! @2 a5 L& I. ^+ D$ `• Unit 1.28 Evaluation and Purchase of an Analytical Flow Cytometer: Some of the Numerous2 G  A, q# u: E3 d6 r& u; ^" X
Factors to Consider% B+ t! g; d+ y# l1 A) v3 p  f$ @( _
• Unit 1.29 Quantitative Flow Cytometry Measurements in Antibodies Bound per Cell Based on a2 k! S6 w1 q- ^% l5 X- ^6 k
CD4 Reference
0 X" i1 ~2 E/ H, N+ b• Unit 1.30 A Quantitative Method for Comparing the Brightness of Antibody‐dye Reagents and
' |* }% X  ], v( H/ I; H4 T" SEstimating Antibodies Bound per Cell
6 }' {: O) }: y) I9 I) k• Chapter 2 Image Cytometry Instrumentation
1 g: E% E4 K  v, t• Introduction/ d1 p  Z% c1 W1 y4 b9 V% X% j
• Unit 2.1 Contrast Enhancement in Light Microscopy
# N3 g& d$ B6 ?9 p% f1 E• Unit 2.2 Microscope Objectives
1 R, f/ J+ |7 ?( l  I• Unit 2.3 Light Microscopy Digital Imaging
5 k4 e4 G7 Y4 q5 Y/ [• Unit 2.4 Optical Filters for Wavelength Selection in Fluorescence Instrumentation
8 O% i/ n3 {  U• Unit 2.5 Digital Fluorescence Microscopy
, P' S5 |# R/ U' P( r9 m• Unit 2.6 Calibration: Sampling Density and Spatial Resolution
' C+ k5 ~  c: |, s0 R4 L• Unit 2.7 Microscope Alignment& X1 b4 r& B, t( A6 O  O
• Unit 2.8 Confocal Microscopy: Principles and Practices
' s5 h9 x' n- w6 k* U: Y• Unit 2.9 Multi‐Photon Imaging6 X& z) B3 F8 M4 r2 H
• Unit 2.10 Scanning Laser Cytometry
$ o2 h7 l1 B( {/ F- J• Unit 2.11 Shading Correction: Compensation for Illumination and Sensor Inhomogeneities0 b! F3 P0 p" ~7 `& [. F
• Unit 2.12 Photobleaching Measurements of Diffusion in Cell Membranes and Aqueous Cell
5 I: i. Z, Y1 S7 {$ KCompartments
/ `. w. h2 O5 F) E( i( J  H" |; A, J• Unit 2.13 Optimizing Laser Source Operation for Confocal and Multiphoton Laser Scanning% o5 e4 ?  n& U% @# v# o$ _
Microscopy
. V9 N2 G  C6 g" h) I; ^* @8 o6 w• Unit 2.14 Methods and Applications of Laser‐Enabled Analysis and Processing (LEAP): `" h- I( H. Z4 ^
• Unit 2.15 Measurement of Molecular Mobility with Fluorescence Correlation Spectroscopy
8 J* y7 }% ~- M5 I% ~4 Z• Unit 2.16 Evaluation and Purchase of Confocal Microscopes: Numerous Factors to Consider! q- S$ ?, V  v$ K
• Unit 2.17 Super‐Resolution Microscopy: A Comparative Treatment% j: A2 K3 ?- P$ S( O' r
• Unit 2.18 Quantitative Fluorescent Speckle Microscopy (QFSM) to Measure Actin Dynamics# |9 n5 i9 L2 ~' @* V
• Unit 2.19 Analysis of Protein and Lipid Dynamics Using Confocal Fluorescence Recovery After
* O; W$ P; c; d) HPhotobleaching (FRAP)2 g# i, u, ~( L
• Unit 2.20 Comparative and Practical Aspects of Localization‐Based Super‐Resolution Imaging2 s/ i0 P" B7 }1 h- K
• Unit 2.21 Building a Live Cell Microscope: What You Need and How to Do It
3 y: z# Q, m  l• Unit 2.22 How to Build a Time‐Gated Luminescence Microscope7 H3 Q4 g3 _+ c
• Unit 2.23 FRET Imaging by Laser Scanning Cytometry on Large Populations of Adherent Cells% `' r" E* T) J' ^. ~0 E- j
• Chapter 3 Safety Procedures and Quality Control
. c3 w: h5 R& l, |: o# b4 {• Introduction/ G' ?) f' i. a
• Unit 3.1 Principles of Quality Control! ?- k4 h* p2 K# E: r
• Unit 3.2 Components of Quality Control( |- h- F* I5 l8 a6 a# D
• Unit 3.3 Testing the Efficiency of Aerosol Containment During Cell Sorting7 R3 [. ?% e0 {7 e5 R
• Unit 3.4 Safe Use of Hazardous Chemicals
& E: B( E1 V& A5 _" d" ~• Unit 3.5 Method for Visualizing Aerosol Contamination in Flow Sorters
, u. l; z0 Q9 ~, y) T• Unit 3.6 Standard Safety Practices for Sorting of Unfixed Cells$ _9 O* n4 q! K/ [6 P1 t
• Chapter 4 Molecular and Cellular Probes
3 R3 W$ W, {# ]; f# ]! c• Introduction& T% r" P: F! f. B
• Unit 4.1 Titering Antibodies1 P" k2 U9 ~" s, R$ ^% w9 d
• Unit 4.2 Conjugation of Fluorochromes to Monoclonal Antibodies5 e7 d7 ?# i3 u$ t
• Unit 4.3 Nucleic Acid Probes
5 u2 Q: _' ]4 g8 ]• Unit 4.4 Cellular Function Probes
0 j1 }. y8 y8 p• Unit 4.5 Spectroscopic Analysis Using DNA and RNA Fluorescent Probes
' x7 j" A9 U5 _; t) ~• Unit 4.6 Flow Cytometric Sorting of Bacterial Surface‐Displayed Libraries
6 p; b; S# `3 ~- y1 o8 q' \• Unit 4.7 Construction and Screening of Antigen Targeted Immune Yeast Surface Display
2 M+ Y8 `# p+ FAntibody Libraries: P1 j+ }2 e' @
• Chapter 5 Specimen Handling, Storage, and Preparation7 s5 H5 R8 B1 V* z
• Introduction
/ V# H8 R2 ~6 b1 ?: p& q" S• Unit 5.1 Collection, Storage, and Preparation of Human Blood Cells7 u& R6 g  s1 T; f" X
• Unit 5.2 Handling, Storage, and Preparation of Human Tissues( E& _' r# Q* v, o1 U! A4 \6 l4 |
• Unit 5.3 Flow Analysis and Sorting of Plant Chromosomes
3 o" S5 {8 c! v+ r% g• Chapter 6 Phenotypic Analysis* v/ n$ I. e5 M# V2 H" e2 T1 N/ \
• Introduction  H( M2 A6 G( m( l- G" \0 t1 }1 P
• Unit 6.1 Quality Control in Phenotypic Analysis by Flow Cytometry
0 l" L! j1 W& G7 N( I• Unit 6.2 Immunophenotyping0 u# [2 r/ f& C: z$ e9 X1 X3 H
• Unit 6.3 High‐Sensitivity Immunofluorescence/Flow Cytometry: Detection of Cytokine
% [' h) L$ e2 {9 k6 Y. r: xReceptors and Other Low‐Abundance Membrane Molecules
. t* X3 @5 U+ c" y% S• Unit 6.4 Enumeration of CD34+ Hematopoietic Stem and Progenitor Cells
1 p9 d; F3 f3 `• Unit 6.5 Immunophenotypic Analysis of Peripheral Blood Lymphocytes
( W3 V( d4 i* D6 l  T" }7 `& r4 E• Unit 6.6 Immunophenotypic Analysis of Human Mast Cells by Flow Cytometry  `6 B4 q; j% o" ]
• Unit 6.7 Measurement of CD40 Ligand (CD154) Expression on Resting and In Vitro–Activated T
5 p' }" S5 @4 v2 x+ VCells
+ h8 |+ Z& ~, r( M" c4 o) S# P4 y• Unit 6.8 Enumeration of Absolute Cell Counts Using Immunophenotypic Techniques' E6 {+ x/ d8 @5 {) k  X& R7 E2 [
• Unit 6.9 Immunophenotypic Identification, Enumeration, and Characterization of Human7 g* C, h5 R1 P' t- ~- _1 ]8 B
Peripheral Blood Dendritic Cells and Dendritic‐Cell Precursors
, P% y4 O8 l- U) M/ _• Unit 6.10 Immunophenotypic Analysis of Platelets. \$ v8 a; [( h5 e' j% }3 T0 ?& u6 W
• Unit 6.11 Immunophenotypic Analysis of PNH Cells
) X/ ~- ^& t* p1 G3 a• Unit 6.12 Quantitative Flow Cytometric Analysis of Membrane Antigen Expression
% [" p; i' i; R" {$ \• Unit 6.13 Immunophenotyping Using a Laser Scanning Cytometer, Q2 x& i' h6 V$ `
• Unit 6.14 Enzymatic Amplification Staining for Cell Surface Antigens7 w+ ?6 ^4 a. g* e
• Unit 6.15 Whole Blood Analysis of Leukocyte‐Platelet Aggregates
7 \6 K* T* ]3 V# `! O• Unit 6.16 Flow Cytometric Assessment of HLA Alloantibodies
$ s/ W# ^! e4 h: {• Unit 6.17 Enumeration of Fetal Red Blood Cells, F Cells, and F Reticulocytes in Human Blood0 J' |* a) G) R2 ^" J
• Unit 6.18 Identification of Human Antigen‐Specific T Cells Using MHC Class I and Class II  Y+ k9 P2 ^7 H% E4 B3 c' Z$ o9 P
Tetramers6 [! ]' x/ u9 B3 O  Q9 L. P
• Unit 6.19 ZAP‐70 Staining in Chronic Lymphocytic Leukemia) {, O" Z7 C: e
• Unit 6.20 Multiparameter Analysis of Intracellular Phosphoepitopes in Immunophenotyped Cell  I# f4 c7 L7 h; k
Populations by Flow Cytometry
" Q6 I& c+ g* A% W1 x5 v• Unit 6.21 Ten‐Color Immunophenotyping of Hematopoietic Cells2 U- D* |" c+ T6 m: f& L2 I% i& X
• Unit 6.22 Flow Cytometric Screening for the HLA‐B27 Antigen on Peripheral Blood Lymphocytes
$ ^! r& F  f* W( S5 l• Unit 6.23 Immunophenotyping of Plasma Cells3 p* i7 a5 }+ s0 u
• Unit 6.24 Flow Rate Calibration for Absolute Cell Counting Rationale and Design
' q' ^3 F  g0 K9 _• Unit 6.25 Flow Cytometric Immunophenotyping of Cerebrospinal Fluid% K3 x3 h8 Z6 o
• Unit 6.26 Calibration of Flow Cytometry for Quantitative Quantum Dot Measurements' D& N3 E( n- _2 k* N9 L/ D* C
• Unit 6.27 Assessment of Beta Cell Viability
. {+ ]4 \) c- Q/ j7 U• Unit 6.28 Measurement of T Cell Activation After 16‐hr In Vitro Stimulation with Concanavalin A
6 i! S7 \( @$ u• Unit 6.29 Titration of Fluorochrome‐Conjugated Antibodies for Labeling Cell Surface Markers on
* u& q; j) B8 D; U9 WLive Cells
! w+ K5 V9 d8 c8 _  D6 A4 X1 G' N• Unit 6.30 Phenotypic Analysis Using Very Small Volumes of Blood
8 j$ x/ ?- A2 b7 J/ y• Unit 6.31 Fluorescent Cell Barcoding for Multiplex Flow Cytometry( S; s/ ]7 m- @" l5 [
• Unit 6.32 Quantitative Assessment of Pancreatic Islets Using Laser Scanning Cytometry' `) S, H, i' }) V- F
• Unit 6.33 Three‐Dimensional Second‐Harmonic Generation Imaging of Fibrillar Collagen in
0 ^( v" i! }+ M% K+ RBiological Tissues/ a0 f8 Z, F/ ~# P! i4 S! J5 m
• Unit 6.34 Flow Cytometry–Based Cytotoxicity and Antibody Binding Assay# D- z) [9 d0 l6 x5 J6 b1 [
• Unit 6.35 Quantification of Th1 and Th17 Cells with Intracellular Staining Following
% A" L0 G1 S' L: dPMA/Ionomycin Stimulation, H& X; y7 Q* D0 W
• Unit 6.36 Whole Blood Measurement of Histone Modifications Linked to the Epigenetic0 K- U: O3 I$ ^. A
Regulation of Gene Expression4 T: m: w2 f. ]9 N( n
• Unit 6.37 High‐Sensitivity Detection of PNH Red Blood Cells, Red Cell Precursors, and White2 D7 Z& F) g4 T9 B
Blood Cells' O. `) X" i2 E3 {% g( I$ o
• Unit 6.38 Method for DNA Ploidy Analysis Along with Immunophenotyping for Rare Populations
  c' ^8 C( D0 ^; @4 l. m+ d3 Rin a Sample using FxCycle Violet
  |  N1 r& X: ~: L• Chapter 7 Nucleic Acid Analysis( T5 Q# z- L0 K. A
• Introduction
% m) h0 _8 d" ?• Unit 7.1 Overview of Nucleic Acid Analysis
3 i3 d7 h. c. d0 R$ [• Unit 7.2 Critical Aspects in Analysis of Cellular DNA Content
. p/ d: L! j5 C• Unit 7.3 Differential Staining of DNA and RNA
: X2 X3 I0 x& v7 ?* U" _• Unit 7.4 Analysis of DNA Content and DNA Strand Breaks for Detection of Apoptotic Cells3 p/ |2 Q$ y1 x: C# y! H
• Unit 7.5 DNA Content Measurement for DNA Ploidy and Cell Cycle Analysis# m  _: A3 ?: k8 \+ c4 J" G4 w! ?
• Unit 7.6 Analysis of Nuclear DNA Content and Ploidy in Higher Plants$ M' y/ |) f- N# Y
• Unit 7.7 Analysis of DNA Content and BrdU Incorporation9 @) |7 f, W4 |% M  |# E$ ]
• Unit 7.8 Analysis of DNA Denaturation% }' t/ p5 V. ?2 w8 U/ n5 i
• Unit 7.9 Bivariate Analysis of DNA Content and Expression of Cyclin Proteins
( B- p' a8 B0 b3 X7 T• Unit 7.10 Flow Cytometric Analysis of Reticulated Platelets
" Z/ a. T. {! b& F0 b% {& x0 q8 F• Unit 7.11 Assessment of Viability, Immunofluorescence, and DNA Content; d9 b8 v3 F0 M& I0 q& D- y
• Unit 7.12 Flow Cytometric Analysis of RNA Synthesis by Detection of Bromouridine
8 v7 e1 ^4 {- g  e( zIncorporation4 [7 s4 j: h* D$ b' ^  D  u6 Y5 l
• Unit 7.13 Sperm Chromatin Structure Assay for Fertility Assessment. }2 T. D1 \$ W
• Unit 7.14 Analysis of Cell Proliferation and Cell Survival by Continuous BrdU Labeling and/ v( \7 S/ h) u% y8 L
Multivariate Flow Cytometry
4 I3 z* H. i& ?1 h* R• Unit 7.15 Ultraviolet‐Induced Detection of Halogenated Pyrimidines (UVID)
! x- _9 ^" e. L8 N! h! w• Unit 7.16 Analysis of DNA Content and Green Fluorescent Protein Expression
8 D7 q/ y+ ~/ }' E4 @' V• Unit 7.17 Analysis of Viral Infection and Viral and Cellular DNA and Proteins by Flow Cytometry
: h! ^, i, ?9 D* y& q! y  m! T# @• Unit 7.18 Apoptosis Signaling Pathways6 o9 \/ R- U: C4 i
• Unit 7.19 Flow Cytometry of Apoptosis
" Y& @  H9 z! V• Unit 7.20 Analysis of Fine‐Needle Aspirate Biopsies from Solid Tumors by Laser Scanning% k; W1 h0 l  b2 I) [
Cytometry (LSC)
2 l  Q& V; H4 c% w* v2 @• Unit 7.21 Measurement of Cytogenetic Damage in Rodent Blood with a Single‐Laser Flow" w5 i/ r3 Z4 c6 k8 R  n
Cytometer
% p  n: k+ c% u• Unit 7.22 Analysis of Tissue Imprints by Scanning Laser Cytometry' Z9 l" x8 C5 P2 f9 j& l6 g: o
• Unit 7.23 Cell Cycle Analysis of Budding Yeast Using SYTOX Green
7 [+ p8 A1 v6 @  {  |• Unit 7.24 Detection of Mitotic Cells; L# X3 ]/ @" ?. e
• Unit 7.25 DRAQ5 Labeling of Nuclear DNA in Live and Fixed Cells
3 U- f- K* \- o; m• Unit 7.26 Assessment of Telomere Length, Phenotype, and DNA Content# R$ h6 [9 V: q7 Z" v, O
• Unit 7.27 Detection of Histone H2AX Phosphorylation on Ser‐139 as an Indicator of DNA, }' x) A6 M0 N' k
Damage (DNA Double‐Strand Breaks)  \: {% U# n! ^5 ?
• Unit 7.28 RNA and DNA Aptamers in Cytomics Analysis* ~/ x* d7 U8 X% V8 J3 b
• Unit 7.29 Nuclear DNA Content Analysis of Plant Seeds by Flow Cytometry4 {+ H4 [9 e, \8 |4 O
• Unit 7.30 Estimation of Relative Nuclear DNA Content in Dehydrated Plant Tissues by Flow
' w6 v; {# D9 `& pCytometry# m  l; f" T& l9 G; z
• Unit 7.31 Assessment of Cell Proliferation by 5‐Bromodeoxyuridine (BrdU) Labeling for7 D/ B0 x4 [% y  e- |5 m
Multicolor Flow Cytometry
: I5 o% w- v5 W+ B( B: J7 R• Unit 7.32 Uncompensated Polychromatic Analysis of Mitochondrial Membrane Potential Using
6 m9 v% g2 y/ bJC‐1 and Multilaser Excitation+ v. @* O0 x: S, ^: R( ~$ p
• Unit 7.33 SYTO Probes: Markers of Apoptotic Cell Demise
7 M1 P! O# H, p1 V, A, G; _• Unit 7.34 Cell Proliferation Method: Click Chemistry Based on BrdU Coupling for Multiplex
6 K  g! z2 k  I3 m& Z; z' LAntibody Staining) c, h6 \& X- o
• Unit 7.35 Assessment of Histone Acetylation Levels in Relation to Cell Cycle Phase
. h% B4 g+ z) @• Unit 7.36 Click‐iT Proliferation Assay with Improved DNA Histograms
8 R2 Q2 m5 ^3 K& S# m, Y: J• Unit 7.37 High‐Resolution Multiparameter DNA Flow Cytometry for the Detection and Sorting of/ I/ X5 R( u( k) V+ a) {6 c( |  }2 ~
Tumor and Stromal Subpopulations from Paraffin‐Embedded Tissues
& v2 p3 ~" h% R0 d+ }1 r! N6 i7 g7 b• Unit 7.38 Dual‐Pulse Labeling Using 5‐Ethynyl‐2′‐Deoxyuridine (EdU) and 5‐Bromo‐2′‐/ p+ N3 X& C& ?( e1 Z9 Z2 r. T
Deoxyuridine (BrdU) in Flow Cytometry
/ o$ H& ?) E: V3 @5 Z: w$ h• Unit 7.39 High‐Resolution Cell Cycle and DNA Ploidy Analysis in Tissue Samples
, L5 F1 f5 w- o9 T+ ~" U• Unit 7.40 Zinc Fixation for Flow Cytometry Analysis of Intracellular and Surface Epitopes, DNA
( T/ W9 {8 U* _6 X# d1 oContent, and Cell Proliferation
/ B& [& |7 @  e2 F2 B- O# z• Unit 7.41 High‐Resolution Cytometry for High‐Content Cell Cycle Analysis8 q! i4 D# p" a7 Y1 x% q
• Unit 7.42 Confocal Microscopy for High‐Resolution and High‐Content Analysis of the Cell Cycle
$ X+ m$ Q, i9 J• Unit 7.43 Application of Click Chemistry Conditions for 5‐Bromo‐2′‐Deoxyuridine Determination. l* _, @, ^# Y: T9 Y8 H) o
Through Fenton and Related Reactions$ V6 B" O7 v/ B
• Unit 7.44 Flow Cytometry of Murine Spermatocytes
1 {' D! g) ^8 x) J8 Q• Unit 7.45 Simultaneous, Single‐Cell Measurement of Messenger RNA, Cell Surface Proteins, and3 W$ r( ^: r# L( E% `/ s9 h
Intracellular Proteins( N& h: \, ?" x6 z0 R+ m! ~; G
• Unit 7.46 Measurement of Low‐Abundance Intracellular mRNA Using Amplified FISH Staining' |8 S) j. E/ l$ T0 a4 y
and Image‐Based Flow Cytometry' B# n, W+ z; C* v
• Unit 7.47 Measurement of T‐Cell Telomere Length Using Amplified‐Signal FISH Staining and
8 b* |3 ?9 S6 s# K  SFlow Cytometry8 Q" [. _! X6 H+ R, n
• Chapter 8 Molecular Cytogenetics+ V. j# j2 i# C7 a
• Introduction
+ m# j0 F" h6 S• Unit 8.1 Overview of Fluorescence In Situ Hybridization Techniques for Molecular Cytogenetics& L+ X5 M  i6 y: c
• Unit 8.2 Basic Preparative Techniques for Fluorescence In Situ Hybridization# u' W6 n& P0 d6 e: Q8 A
• Unit 8.3 Probe Labeling and Fluorescence In Situ Hybridization
' r! Z* D0 T. x' K• Unit 8.4 Immunocytochemical Detection$ j3 ?$ I, U# a6 `7 p$ |
• Unit 8.5 Processing and Staining of Cell and Tissue Material for Interphase Cytogenetics1 G1 v' w% j* G# m/ f) l0 {# F( f
• Unit 8.6 Advanced Preparative Techniques to Establish Probes for Molecular Cytogenetics% @' o- d' R! p9 R2 s5 k
• Unit 8.7 Combination DNA/RNA Fish and Immunophenotyping% y/ N2 t' x; ^9 }  U
• Unit 8.8 Single‐Nucleotide Sequence Discrimination In Situ Using Padlock Probes
# |4 T3 s5 ]- }- o$ t( l• Unit 8.9 Tyramide Signal Amplification (TSA) Systems for the Enhancement of ISH Signals in. K- L! j9 ?- i7 W
Cytogenetics
5 V& t3 I& m. y6 Y' G• Unit 8.10 Molecular Combing2 E( f& S+ e: A# f6 P
• Unit 8.11 Principles and Applications of PRINS in Cytogenetics- ]7 ]4 ]: @. U6 B/ Q% }7 ^* Y
• Unit 8.12 Comparative Genomic Hybridization (CGH)—Detection of Unbalanced Genetic' ]' M7 T( O! s( ~
Aberrations Using Conventional and Micro‐Array Techniques2 a$ \5 p0 O0 g
• Unit 8.13 Combined Immunofluorescence and FISH: New Prospects for Tumor Cell7 O( F5 V$ U; X: Z8 a7 B
Detection/Identification
/ @7 V% b" H# D0 S6 V7 r; p% `2 X• Unit 8.14 Application of Flow‐FISH for Dynamic Measurement of Telomere Length in Cell
) T4 C- Z( k/ T1 ?Division
$ B  [. M+ e; n8 ~• Chapter 9 Studies of Cell Function
% g6 U! ]$ P2 B- c% D6 |• Introduction
, e6 v# G: r/ H• Unit 9.1 Overview of Functional Cell Assays
, r" X0 @# F- d) ^2 C5 v2 Z( H2 L  v• Unit 9.2 Assessment of Cell Viability! X" w& h$ y( u1 X1 v! o; \
• Unit 9.3 Flow Cytometric Measurement of Intracellular pH
  \4 T! W- k0 v• Unit 9.4 Analysis of Intracellular Organelles by Flow Cytometry or Microscopy
2 u7 [+ `( |9 }) K1 w% O• Unit 9.5 Reporters of Gene Expression: Enzymatic Assays# \, b- e  f* v* R9 [* @
• Unit 9.6 Estimation of Membrane Potential by Flow Cytometry
/ H3 C3 K8 ]0 m5 B• Unit 9.7 Oxidative Metabolism
  Y9 h- M% B+ w0 p1 S# g8 r2 Z# x• Unit 9.8 Measurement of Intracellular Ions by Flow Cytometry
8 L$ w; z/ Q7 _3 C1 T( z• Unit 9.9 Intracellular Cytokines& G% b* n% A1 G( A& o- l5 c
• Unit 9.10 Assays of Natural Killer (NK) Cell Ligation to Target Cells. F) p* C5 X( F% H
• Unit 9.11 Flow Cytometric Analysis of Cell Division by Dilution of CFSE and Related Dyes8 u! c( s; F9 \
• Unit 9.12 Fluorescent Proteins for Flow Cytometry) O3 `4 M- Q+ O% C
• Unit 9.13 In Vitro Invasion Assays: Phagocytosis of the Extracellular Matrix3 m, l! p$ B% ?
• Unit 9.14 Flow Cytometric Analysis of Mitochondrial Membrane Potential Using JC‐1
6 e# U9 L# g$ l0 Y- f8 j4 c9 o) A• Unit 9.15 Multiparameter Analysis of Physiological Changes in Apoptosis
; E3 i' D+ [2 \' u4 p* D• Unit 9.16 Signal Transduction During Natural Killer Cell Activation
8 n+ w. h! \1 j2 r, k• Unit 9.17 Assessment of Surface Markers and Functionality of Dendritic Cells (DCs)% D+ u2 I9 l7 X- F* h+ V
• Unit 9.18 Stem Cell Identification and Sorting Using the Hoechst 33342 Side Population (SP)! v! C) i6 x/ A. G9 _
• Unit 9.19 Assessment of Phagocyte Functions by Flow Cytometry
- s! D5 S& p* a9 X2 Q+ j6 ~- G, p: i& d+ t• Unit 9.20 Flow Cytometric Analysis of Calcium Mobilization in Whole‐Blood Platelets
5 @- [& M$ t% e# O• Unit 9.21 Flow Cytometric Analysis of Cytokine Responses in Stimulated Whole Blood:6 ^) l* e6 n$ W; h. F
Simultaneous Quantitation of TNF‐α‐Secreting Cells and Soluble Cytokines3 _2 R( K  L" s: P& M. w4 Y! T) V: k
• Unit 9.22 Optimized Whole‐Blood Assay for Measurement of ZAP‐70 Protein Expression
- B) {% ?  z" Y5 X! a4 {• Unit 9.23 Flow Cytometry of the Side Population (SP)
4 f6 d0 t: N* `% C% T• Unit 9.24 High‐Throughput Cytotoxicity Screening by Propidium Iodide Staining. K$ n. ?3 n9 p- x4 s3 _0 Z
• Unit 9.25 Advanced Application of CFSE for Cellular Tracking' k2 L( t( Z$ U# @/ A) L* K
• Unit 9.26 Immunophenotyping and DNA Content Analysis of Acetone‐Fixed Cells, x! t' |, a) J8 E! B  _: q
• Unit 9.27 Whole Blood Processing for Measurement of Signaling Proteins by Flow Cytometry
- l$ s5 O' `! n# i) j• Unit 9.28 Measurement of Cytoplasmic to Nuclear Translocation
' D) A  K: F; D- W: j0 F7 ]2 A& x• Unit 9.29 Overview of Very Small Embryonic‐Like Stem Cells (VSELs) and Methodology of Their
7 B; a4 [, G+ _; f6 p( i: @3 j$ \Identification and Isolation by Flow Cytometric Methods$ E/ i9 N3 b; U: g! \' [' {
• Unit 9.30 Stem Cell Side Population Analysis and Sorting Using DyeCycle Violet* O1 x) c- z7 @  v+ f' b9 |
• Unit 9.31 Measurement of Phagocytosis and of the Phagosomal Environment in
$ Q) ?( O6 [- E; s, Z% sPolymorphonuclear Phagocytes by Flow Cytometry, I3 Z; x' k- e- N% W4 X. n
• Unit 9.32 Yeast Cell Cycle Analysis: Combining DNA Staining with Cell and Nuclear Morphology  F8 U9 ~8 `, C
• Unit 9.33 Identification of Endothelial Cells and Progenitor Cell Subsets in Human Peripheral
# C' Z0 b- h/ MBlood
7 \. d0 l' R+ k0 _, k• Unit 9.34 Amine‐Reactive Dyes for Dead Cell Discrimination in Fixed Samples
9 k! d% I, r# [7 i0 }- a• Unit 9.35 Detection of Intracellular Glutathione Using ThiolTracker Violet Stain and
" U6 A, A, }6 I. V' c9 p1 SFluorescence Microscopy
* @# {& j1 @0 e- h9 E; L• Unit 9.36 In Situ Proximity Ligation Assay for Microscopy and Flow Cytometry3 a2 {- h: ?- ?5 \- b9 Y2 s
• Unit 9.37 Assessing Mitochondrial Redox Status by Flow Cytometric Methods: Vascular
( j! x8 D5 j- V5 Y  \Response to Fluid Shear Stress7 _: \( p- Y; t: F5 ?! H+ i
• Unit 9.38 A Violet Ratiometric Membrane Probe for the Detection of Apoptosis! H1 Z0 Z; s$ f5 N9 A3 Y0 C
• Unit 9.39 Ex Vivo Imaging of Excised Tissue Using Vital Dyes and Confocal Microscopy
  M5 s# ^" c# r8 \• Unit 9.40 Flow Cytometry‐Based Quantification of Cell Proliferation in the Mixed Cell Co‐Culture8 D& _+ i4 @9 ~; W) f% p' G
• Unit 9.41 Kinetic Viability Assays Using DRAQ7 Probe! b1 u7 P4 d1 Y2 [# ~
• Unit 9.42 Multiparameter Analysis of Apoptosis Using Lab‐on‐a‐Chip Flow Cytometry
* K7 z3 f# v- ]7 ]• Unit 9.43 Real‐Time Detection of Protein Trafficking with High‐Throughput Flow Cytometry9 p( o3 `; k8 G6 U1 m2 I: I/ z
(HTFC) and Fluorogen‐Activating Protein (FAP) Base Biosensor
0 [  {8 Z! a6 y6 O. o8 @• Unit 9.44 OpenSource Lab‐on‐a‐Chip Physiometer for Accelerated Zebrafish Embryo Biotests) D2 j7 o( L: G4 [
• Unit 9.45 Measurement of Autophagy by Flow Cytometry  [' k7 T0 U) Z1 H' ?; }0 d
• Unit 9.46 Immunophenotyping of Paucicellular Samples
* C& |1 l! `: J9 c6 }& c! L• Unit 9.47 Attenuation of Replication Stress–Induced Premature Cellular Senescence to Assess0 q6 M  g* @) G7 H! s# Z2 Z
Anti‐Aging Modalities; ~- N7 V, h' L* S. ?' B) B
• Unit 9.48 High Throughput‐Based Mitochondrial Function Assays by Multi‐Parametric Flow8 ~5 ]9 z- Q7 q$ Q% }9 N: u$ g
Cytometry* l9 G6 T# q. L# K9 i; R' G1 C' u: `/ F
• Unit 9.49 Measurement and Characterization of Apoptosis by Flow Cytometry
" h2 L: I5 e$ R* U8 P• Unit 9.50 Identification of Human Memory‐Like NK Cells. u% Q# f9 [7 [( y$ N6 L7 C. g6 c4 a
• Unit 9.51 Quantitative Analysis of Cellular Senescence in Culture and In Vivo
$ ]5 m- i' f# Y0 c• Unit 9.52 Method to Detect the Cellular Source of Over‐Activated NADPH Oxidases Using
" g4 M4 c  W2 v8 n* A6 F- ]$ BNAD(P)H Fluorescence Lifetime Imaging
. ~! S" U# \7 r$ Q• Chapter 10 Data Processing and Analysis- }  q- G* {# ~
• Introduction
$ L' ~* _$ E' r9 k3 b9 O' G2 W7 v• Unit 10.1 Data Management
% O( P% a8 l% h& U, _+ n) o• Unit 10.2 Data File Standard for Flow Cytometry, FCS 3.0) H- o5 Q+ \, e, p! u6 U! R* q
• Unit 10.3 Listmode Data Processing
- U* |9 O& }& N) R/ Z3 ], Z9 @' A• Unit 10.4 Multidimensional Data Analysis in Immunophenotyping( C! I$ h7 L& f9 v4 |3 q& k
• Unit 10.5 Two‐Dimensional Image Processing and Analysis
0 R$ K( E6 x* q, I! C• Unit 10.6 Data Presentation
/ h9 Y* p8 w4 a* k9 c' x! p• Unit 10.7 Data Analysis Through Modeling
  S/ m9 {9 `9 Z7 E& c! O• Unit 10.8 Multivariate Analysis5 c  E) h  M6 X6 e4 V4 T
• Unit 10.9 Detection and Location of Hybridization Domains on Chromosomes by Image& O  M& p7 [9 y+ _
Cytometry
, D2 F( R' _  i3 F+ R) F& ?• Unit 10.10 Three‐Dimensional Image Visualization and Analysis( v' ^+ V8 {. V& `+ e' g% x
• Unit 10.11 Image Processing and 2‐D Morphometry4 J& a! B$ [: a& |2 Z6 n
• Unit 10.12 Dial‐In Flow Cytometry Data Analysis" \) z; R6 z. p. D
• Unit 10.13 The Application of Data Mining to Flow Cytometry
( W; ~* t5 ]' ~( _: {+ y• Unit 10.14 Intensity Calibration and Flat‐Field Correction for Fluorescence Microscopes
( ]; R& Z$ g; w, ?5 ?. b• Unit 10.15 A Software Method for Color Compensation0 Q  M, l+ ~2 \: L
• Unit 10.16 Alternatives to Log‐Scale Data Display
" F. _( H* o3 S# h7 r& @  w• Unit 10.17 Web‐Based Analysis and Publication of Flow Cytometry Experiments
" ?1 u3 R% ~# e  {. g# n$ e6 k9 v% t• Unit 10.18 Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt)
9 h" E' f: N9 F8 T  {8 z2 {0 Y" C: NCompliant Manuscript Using the International Society for Advancement of Cytometry (ISAC)! o, l: X- ]# P% Y* U" n5 i
FCS File Repository (FlowRepository.org)' S+ G0 Y8 c. Q6 Y( `% a3 o
• Unit 10.19 Digital Data Acquisition and Processing
* \9 M9 u9 K; w3 q- h4 K• Chapter 11 Microbiological Applications  y5 ^* h2 R8 u4 d" @
• Introduction+ m: M- q/ P. s# y) |. L, m9 `5 B
• Unit 11.1 Overview of Flow Cytometry and Microbiology
1 z1 _) r* R3 r* q- P• Unit 11.2 Flow Cytometry and Environmental Microbiology! k' ], @, J6 G; `* C3 T2 @2 p" e
• Unit 11.3 Estimation of Microbial Viability Using Flow Cytometry9 O' z# b$ w6 _+ R/ A( S
• Unit 11.4 Sorting of Bacteria, i8 g8 m) F2 q7 X+ f; H0 I
• Unit 11.5 Detection of Borreliacidal Antibodies by Flow Cytometry6 R$ N( Z" V6 }) n
• Unit 11.6 Flow Cytometric Detection of Pathogenic E. coli in Food% o! `5 E' Y3 g) T. }! i! A5 r/ @
• Unit 11.7 Mycobacterium tuberculosis Susceptibility Testing by Flow Cytometry
: G9 D+ }0 f/ I$ C9 ^• Unit 11.8 Antibiotic Susceptibility Testing by Flow Cytometry2 D8 T, R1 E) _$ F! V, N# S
• Unit 11.9 Determination of Bacterial Biomass from Flow Cytometric Measurements of Forward! W' q- |! ]5 S! _2 I
Light Scatter Intensity
& i' m  L* Z$ f+ ]( |" [• Unit 11.10 Flow Cytometry of Yeasts
9 r2 S) {( A' i. m0 z) ^• Unit 11.11 Enumeration of Phytoplankton, Bacteria, and Viruses in Marine Samples
7 {) X* Q# N- Y8 [1 R5 M- _1 ?4 O. j• Unit 11.12 DNA/RNA Analysis of Phytoplankton by Flow Cytometry7 p# n/ g+ Z5 l) t& o
• Unit 11.13 Cell Cycle Analysis of Yeasts7 O3 v4 B9 T( ~
• Unit 11.14 Flow Cytometric Assessment of Drug Susceptibility in Leishmania infantum
! e0 W. A1 N' \/ H1 O$ W6 D3 ^Promastigotes
1 }) \9 x2 G* b• Unit 11.15 Resolution of Viable and Membrane‐Compromised Free Bacteria in Aquatic9 o$ A" L2 A4 Z# g& m' U
Environments by Flow Cytometry& Y" N$ _# {( m
• Unit 11.16 Functional Assays of Oxidative Stress Using Genetically Engineered Escherichia coli
( w) a; i% i3 }% Q% ^' s; V6 PStrains
5 E0 q% r3 d# l9 m2 B, X• Unit 11.17 Labeling of Bacterial Pathogens for Flow Cytometric Detection and Enumeration+ A! B! u% C& _1 \% p
• Unit 11.18 Detection of Extracellular Phosphatase Activity of Heterotrophic Prokaryotes at the+ X: T% F9 r3 k9 F1 C8 C
Single‐Cell Level by Flow Cytometry
- l. H/ z: d5 h# N8 x• Unit 11.19 Life Cycle Analysis of Unicellular Algae" Q. C# ^8 a2 z- h8 ]* W
• Unit 11.20 Cytometry in Malaria—A Practical Replacement for Microscopy?
3 G, R/ x6 B: F2 N* D; X• Unit 11.21 Large Particle Sorting to Isolate Live Parasitic Nematode Eggs
' T6 K+ S, G+ n# Z; ^, ~• Unit 11.22 High‐Throughput Particle Uptake Analysis by Imaging Flow Cytometry
: ]( @% n: E  }+ b/ e• Chapter 12 Cellular and Molecular Imaging
6 F' t; I- @( w2 r! z• Introduction/ z& o* i1 c' W
• Unit 12.1 Comparative Overview of Flow and Image Cytometry
0 G; ^" V1 ?% p" W/ {' s2 D0 ]) z• Unit 12.2 Basics of Digital Microscopy8 e$ \, A8 ~  M% v8 q1 g3 t$ v' R
• Unit 12.3 Modern Confocal Microscopy
, C) r5 ?6 z( c+ D/ c2 B) U• Unit 12.4 Time‐Lapse Microscopy Approaches to Track Cell Cycle and Lineage Progression at
% j, t- x8 d. g" K# a( p$ d8 \- \the Single‐Cell Level
! U+ ?; w# E6 f  z6 N& R• Unit 12.5 Three‐Dimensional Visualization of Blood and Lymphatic Vasculature in Tissue Whole; C: b; ?1 P$ F6 O. M
Mounts Using Confocal Microscopy2 g  b( l  _4 S) b. d9 D/ Z* J! a% o
• Unit 12.6 Quantitative Fluorescence In Situ Hybridization (QFISH) of Telomere Lengths in7 e* z: |! T1 L! ]' v% n& Q  S3 \. H
Tissue and Cells4 ^& s' O$ P% L- ]0 E1 B
• Unit 12.7 Detecting Protein–Protein Interactions with CFP‐YFP FRET by Acceptor Photobleaching# U) v9 J1 T0 U
• Unit 12.8 Measuring FRET in Flow Cytometry and Microscopy
5 J% q* i3 M; L( W: z' P; C9 f, \2 E( L2 g• Unit 12.9 Live‐Animal Imaging of Renal Function by Multiphoton Microscopy
: e8 a4 x) Q0 k/ X. h• Unit 12.10 Detecting Protein‐Protein Interactions In Vivo with FRET using Multiphoton  e7 i2 {/ ]- c& W5 |( _9 \
Fluorescence Lifetime Imaging Microscopy (FLIM)7 H+ P- E' \/ R- G7 g9 T4 N* L6 q3 ]
• Unit 12.11 Confocal Imaging of Cell Division3 @5 |6 A/ `2 E5 E3 Q  M- n
• Unit 12.12 From In Vitro to In Vivo: Imaging from the Single Cell to the Whole Organism
# J+ T' F8 W5 w  V& O/ Y2 H& D7 u• Unit 12.13 Use of Spectral Fluorescence Resonance Energy Transfer to Detect Nitric Oxide‐
+ J, _, \. M2 f/ ]Based Signaling Events in Isolated Perfused Lung
' P, x6 Q! f! F• Unit 12.14 Flow Cytometric FRET Analysis of ErbB Receptor Tyrosine Kinase Interaction
* p1 ?7 U% ~% r• Unit 12.15 Cryosectioning- O$ U( ~9 ~! _5 y& u5 J
• Unit 12.16 Immunohistochemistry
" n" D; z! W" K' @9 f3 ?• Unit 12.17 Simultaneous Optical Mapping of Intracellular Free Calcium and Action Potentials, g8 A' N7 a: `' R9 t  U) S
from Langendorff Perfused Hearts3 E* q% ~0 C/ x. I3 m) n
• Unit 12.18 Total Internal Reflection Fluorescence (TIRF) Microscopy
" i6 X4 T! T& _+ B/ _3 n• Unit 12.19 3D Deconvolution Microscopy! U) ?, g4 [/ f2 O3 f! r
• Unit 12.20 Approaches to Spectral Imaging Hardware
  ?6 A8 k! W! N% f$ L+ M- o& n7 Q" K• Unit 12.21 From Image to Data Using Common Image‐Processing Techniques! K' P4 {$ D4 N5 |3 w5 x
• Unit 12.22 Setting Up and Running an Advanced Light Microscopy and Imaging Facility
! W. O' M  j( p! K  w• Unit 12.23 Photoactivation and Imaging of Optical Highlighter Fluorescent Proteins/ t, h2 K3 R' {7 q
• Unit 12.24 Practical Methods for Molecular In Vivo Optical Imaging
7 B) Y" G) p/ j, J+ |• Unit 12.25 Characterization of Surface FAS—Quantitative Morphological Analysis Using- [( R$ k9 B/ W. T
Quantitative Imaging Cytometry
- ~* C1 q) n& T7 o+ q/ b• Unit 12.26 Two‐Photon Imaging of the Immune System, o& ~/ a$ U  W! S
• Unit 12.27 Near‐Infrared Molecular Probes for In Vivo Imaging
2 S$ b5 `7 v+ c) O2 g3 [" @• Unit 12.28 Live Imaging of the Lung
9 Y) J0 z6 Y( Q• Unit 12.29 Total Internal Reflection Fluorescence (TIRF) Microscopy Illuminator for Improved
/ d& `$ U' ^" h! rImaging of Cell Surface Events5 x1 `( d+ I- q2 ~) o  ?6 q
• Unit 12.30 A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and! @3 N0 Y7 K8 a( w, k, f! V1 j$ W
Structures, Part I: BacMam Labeling and Reagents for Vesicular Structures! w8 I+ B8 h% \. g" ^0 {7 x
• Unit 12.31 A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and1 T- S- D; b2 g  a
Structures, Part II: Reagents for Non‐Vesicular Organelles
, Z6 b: Z; d. X. L3 \# v3 Y• Unit 12.32 A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and
% W9 C, i5 ~% Q6 P( v1 CStructures, Part III: Reagents for Actin, Tubulin, Cellular Membranes, and Whole Cell and7 ]# ?  ~! X6 s2 J. t
Cytoplasm/ I5 r: ~) |" t
• Unit 12.33 A Rapid and Sensitive Automated Image‐Based Approach for In Vitro and In Vivo
% c, B- E: j% v! a9 n: |0 R, VCharacterization of Cell Morphology and Quantification of Cell Number and Neurite Architecture
5 q* t& ?7 C: Y8 j+ t  M' l% E" }• Unit 12.34 Imaging Autophagy
( G* Q8 E4 Y/ w' C# A• Unit 12.35 The Application of KillerRed for Acute Protein Inactivation in Living Cells: z, @4 _+ y6 Y: ~1 U
• Unit 12.36 Correlative Fluorescence and Electron Microscopy' ?6 Z$ C9 @6 H* k2 K: J* t6 i8 ]) n
• Unit 12.37 Light Sheet Fluorescence Microscopy (LSFM)
8 T  R+ r" t4 J( J# Y# |. `• Unit 12.38 Semi‐Automated Object Tracking Methods in Biological Imaging
! J7 Z2 j! p6 t" {! t4 @• Unit 12.39 Cell Volume Measurements by Optical Transmission Microscopy
% N4 W# K- ^. j! }• Unit 12.40 Visualization of Telomere Integrity and Function In Vitro and In Vivo Using
; X  E  c4 h& S* u+ Q, l0 zImmunofluorescence Techniques
4 A( u/ X$ }6 e9 I; Q• Unit 12.41 Microscopic Investigation of Protein Function in C. elegans Using Fluorescent" u( {9 Q  W5 ?6 ~/ {- o
Imaging* R0 K# W2 c/ n1 T
• Unit 12.42 In Vivo Immuno‐Spin Trapping: Imaging the Footprints of Oxidative Stress5 W) `; V( ], i! f0 q
• Unit 12.43 High‐Content Microscopy Analysis of Subcellular Structures: Assay Development0 D2 \2 t2 L) l3 U5 b: {$ t. E
and Application to Focal Adhesion Quantification
; S/ N6 L$ v6 ]$ c; y& j• Unit 12.44 Automated Measurement of Blood Vessels in Tissues from Microscopy Images
2 [) h& I2 [. _- l% U$ \, d• Unit 12.45 Correlative Fluorescence and Electron Microscopy in 3D—Scanning Electron; f: J% e7 w) U7 z9 [
Microscope Perspective- }: W/ m: A, v$ N+ [
• Chapter 13 Multiplexed and Microparticle‐Based Analyses# d8 t: i8 D% d, L" W7 ~) x& P
• Introduction+ N' q0 [8 x* c4 I
• Unit 13.1 Multiplexed Microsphere‐Based Flow Cytometric Immunoassays
: @% H$ k) _, ]/ c/ J+ N) E( O• Unit 13.2 Microsphere Surface Protein Determination Using Flow Cytometry
' @' b* y2 {7 p. K. [• Unit 13.3 Use of Microsphere‐Supported Phospholipid Membranes for Analysis of Protein‐Lipid
# k! |" M6 }  B5 R, YInteractions
$ o7 q, j* p$ G/ G/ z+ B1 m• Unit 13.4 Multiplexed SNP Genotyping Using Primer Single‐Base Extension (SBE) and% \) R% u# c) [4 N# D
Microsphere Arrays7 G9 ~2 R+ K/ Q! ~" D
• Unit 13.5 BeadCons: Detection of Nucleic Acid Sequences by Flow Cytometry
4 [; c. w8 ]! `+ G" o, Q# O• Unit 13.6 Characterization of Nuclear Receptor Ligands by Multiplexed Peptide Interactions
' S, i. ]& E- R0 @+ S! @4 O1 Q5 a• Unit 13.7 Detection of Gene Fusions in Acute Leukemia Using Bead Microarrays+ b0 g+ c7 ]9 D) H: s4 F
• Unit 13.8 Reagents and Instruments for Multiplexed Analysis Using Microparticles
/ K2 V9 ]  v0 B9 d* W- v0 [• Unit 13.9 Multiplexed Detection of Fungal Nucleic Acid Signatures! s% O* u1 k" ]1 z
• Unit 13.10 Multiplexed Analysis of Peptide Antigen‐Specific Antibodies$ F( _6 i5 A! b
• Unit 13.11 Use of Flow Cytometric Methods to Quantify Protein‐Protein Interactions2 Z/ k2 C7 n& S2 T& P
• Unit 13.12 Microsphere‐Based Flow Cytometry Protease Assays for Use in Protease Activity
' c; v; e0 n; b/ ^+ ?Detection and High‐Throughput Screening
+ U6 }, O& q  m! r9 o• Unit 13.13 Application of the PrimRglo Assay Chemistry to Multiplexed Bead Assays
' `) R% t7 [! q8 `+ J6 V• Unit 13.14 Flow Cytometry of Extracellular Vesicles: Potential, Pitfalls, and Prospects
* N5 k+ P8 S* O8 o• Unit 13.15 Optimized MOL‐PCR for Characterization of Microbial Pathogens
) j: j, X- R- ?/ U9 X6 X( Y  r" X• Appendix 1 Abbreviations and Useful Data* G0 G1 t+ X- A# d: N( u' Y
• Appendix 1A Abbreviations Used in this Manual
3 G/ ?' v- d2 W: j. L7 L2 T• Appendix 1B Common Conversion Factors
2 U4 E$ T. M  H0 I7 h' ~! q$ t• Appendix 2 Stock Solutions, Equipment, and Laboratory Guidelines: j$ k2 U. W0 k5 F. h$ Z0 l$ [
• Appendix 2A Common Stock Solutions, Buffers, and Media6 p6 H% F4 z; {
• Appendix 3 Commonly Used Techniques
  k4 v8 \- o5 G: d+ V# q8 ?• Appendix 3A Cell Counting
; G3 D+ F, {& F0 R' _• Appendix 3B Techniques for Mammalian Cell Tissue Culture2 o+ V- u9 ^4 h# y' T0 V: C
• Appendix 3C Diagnosis and Treatment of Mycoplasma‐Contaminated Cell Cultures- g) n! Q- e) z3 o; G
• Appendix 3D Wright‐Giemsa and Nonspecific Esterase Staining of Cells
8 W( ?% m3 B( G4 x% [• Appendix 3E Techniques for Bacterial Cell Culture: Media Preparation and Bacteriological Tools
& l0 H  t6 Z; i4 c5 |• Appendix 3F Growing Bacteria in Liquid Media4 L; Y0 }0 [4 ]% u
• Appendix 3G Growing Bacteria on Solid Media
, z1 r/ S. u. X• Appendix 3H Importing Biological Materials
# G: ?1 E1 ^( P3 N! S. A• Appendix 3I Production of Polyclonal Antisera1 E; n+ x- R  d" U
• Appendix 3J Production of Monoclonal Antibodies' w8 ^% h1 G1 ^" j: Z+ O
• Appendix 3K Enzymatic Amplification of DNA by PCR: Standard Procedures and Optimization

Rank: 2

积分
64 
威望
64  
包包
1782  
藤椅
发表于 2017-7-5 15:18 |只看该作者
进行溜达一下  

Rank: 2

积分
101 
威望
101  
包包
1714  
板凳
发表于 2017-7-6 09:54 |只看该作者
干细胞之家微信公众号
自己知道了  

Rank: 2

积分
97 
威望
97  
包包
1659  
报纸
发表于 2017-8-2 19:34 |只看该作者
干细胞治疗糖尿病  

Rank: 2

积分
51 
威望
51  
包包
1590  
地板
发表于 2017-9-12 00:08 |只看该作者
病毒转染干细胞

Rank: 2

积分
63 
威望
63  
包包
1789  
7
发表于 2017-9-13 09:18 |只看该作者
经过你的指点 我还是没找到在哪 ~~~  

Rank: 2

积分
99 
威望
99  
包包
1587  
8
发表于 2017-10-5 06:45 |只看该作者
鉴定完毕.!  

Rank: 2

积分
71 
威望
71  
包包
1591  
9
发表于 2017-10-7 23:35 |只看该作者
看贴回复是好习惯  

Rank: 2

积分
108 
威望
108  
包包
1728  
10
发表于 2017-10-9 08:54 |只看该作者
我帮你 喝喝  
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2025-11-28 01:35

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.