
- 积分
- 1164
- 威望
- 1164
- 包包
- 245
|

TABLE OF CONTENTS
) ]$ a/ f7 z* Z% ^- `# z4 l7 W• Chapter 1 Flow Cytometry Instrumentation
7 D8 D1 p: J2 f' L1 W• Introduction
3 P' }% Z+ ]! U7 K; J4 R• Unit 1.1 Overview of Flow Cytometry Instrumentation
" O/ j9 [& B3 c: `2 t* X: U• Unit 1.2 Fluidics# N. z4 C/ S. Y4 } o# i
• Unit 1.3 Standardization, Calibration, and Control in Flow Cytometry
9 Y$ z& g# Q4 z• Unit 1.4 Establishing and Maintaining System Linearity# ~: [) G# r9 i0 q0 A/ ~; \
• Unit 1.5 Optical Filter Sets for Multiparameter Flow Cytometry
, x% D$ R7 v& |; J4 a5 A• Unit 1.6 Laser Beam Shaping and Spot Size9 w4 Q1 F" X) C3 w1 I
• Unit 1.7 High‐Speed Cell Sorting
3 \( e) i+ n" P) }1 P e• Unit 1.8 Principles of Gating8 a- S# g# i$ M) C& j: ~7 J
• Unit 1.9 Lasers for Flow Cytometry: D$ C2 k/ X4 b8 y9 n/ X5 Z
• Unit 1.10 Techniques for Flow Cytometer Alignment
6 x! w+ Q# v ~2 f3 a8 A• Unit 1.11 Flow Cytometers for Characterization of Microorganisms
# W$ p7 J4 C; M1 I+ q; u• Unit 1.12 Principles of Resonance Energy Transfer+ L& }. R7 [, c: q
• Unit 1.13 Light Scatter: Detection and Usage
; d3 P4 }4 {9 o• Unit 1.14 Compensation in Flow Cytometry
: M" S& v) z0 ?% Y5 K+ N. }+ s- b* z• Unit 1.15 Time‐Resolved Fluorescence Measurements
) Z! V* _3 L$ l4 m$ V* h( D" n2 G: d• Unit 1.16 Simultaneous Analysis of the Cyan, Green, and Yellow Fluorescent Proteins
/ {2 U2 a3 G* _! j& M/ |! l, l• Unit 1.17 Plug Flow Cytometry# u: c* w2 D- j) L
• Unit 1.18 Dynamic Thermoregulation of the Sample in Flow Cytometry
$ D; i1 Q+ I2 t% l: ^• Unit 1.19 Excitation and Emission Spectra of Common Dyes/ j* L _9 L9 m9 e9 d9 E
• Unit 1.20 Characterization of Flow Cytometer Instrument Sensitivity
) X& h) |8 u7 a. \9 ^• Unit 1.21 Separation Index: An Easy‐to‐Use Metric for Evaluation of Different Configurations on7 V& I$ K8 p% z* X v, v
the Same Flow Cytometer
5 O9 n$ ~! l$ b5 d+ [4 V! G• Unit 1.22 Fundamentals of Acoustic Cytometry
5 W/ ~; k2 N2 G Q- B1 v• Unit 1.23 Pulse Width for Particle Sizing3 u( q# q* N( B$ n2 @5 q- n
• Unit 1.24 Practical Issues in High‐Speed Cell Sorting
9 y5 u6 t2 t( X2 x) ?• Unit 1.25 Capture of Fluorescence Decay Times by Flow Cytometry
! B, t v/ C- F• Unit 1.26 Fountain Flow Cytometry7 R( O0 l2 `4 }
• Unit 1.27 Spectral Flow Cytometry, J" [) ]7 R4 H8 C
• Unit 1.28 Evaluation and Purchase of an Analytical Flow Cytometer: Some of the Numerous6 \: ?: q) l: e+ `- G- Z
Factors to Consider; K4 `% |0 @3 ?# V5 I, j3 Z7 T
• Unit 1.29 Quantitative Flow Cytometry Measurements in Antibodies Bound per Cell Based on a% L& x0 u8 ]- G: M; s
CD4 Reference0 B7 `9 h, D# g7 `. e/ w
• Unit 1.30 A Quantitative Method for Comparing the Brightness of Antibody‐dye Reagents and
Z9 Q7 |; ]" T7 b- s4 _3 M3 ^Estimating Antibodies Bound per Cell
4 p% C+ \8 @! H7 f9 A) t1 D• Chapter 2 Image Cytometry Instrumentation# `) M& q% n* p0 {% U3 N
• Introduction6 J, b! u% ^/ k% Z8 [6 n
• Unit 2.1 Contrast Enhancement in Light Microscopy5 z( }' A" u: m
• Unit 2.2 Microscope Objectives
- Q' S& ^! _. x, w; G• Unit 2.3 Light Microscopy Digital Imaging
" F$ M' h ^9 Z# S6 m• Unit 2.4 Optical Filters for Wavelength Selection in Fluorescence Instrumentation6 ]7 t! d2 L; u' c
• Unit 2.5 Digital Fluorescence Microscopy
, }0 H; a1 |4 l4 T H7 |; @$ Q' o• Unit 2.6 Calibration: Sampling Density and Spatial Resolution
& L l( p8 Z8 U# ~% l* {4 d$ I• Unit 2.7 Microscope Alignment
6 o7 U8 ^2 N& w% e8 x3 T• Unit 2.8 Confocal Microscopy: Principles and Practices: ^( j. |: I, {" K$ P7 C
• Unit 2.9 Multi‐Photon Imaging; \2 y% J* M: G; c; c& \" L9 F
• Unit 2.10 Scanning Laser Cytometry. q' V' z) J& j; Q o
• Unit 2.11 Shading Correction: Compensation for Illumination and Sensor Inhomogeneities
0 N; f. \8 |" A$ k1 w3 X• Unit 2.12 Photobleaching Measurements of Diffusion in Cell Membranes and Aqueous Cell4 D! v% I5 g9 u1 H# v$ f' B
Compartments3 \8 z/ ^+ r% }/ M$ [, t
• Unit 2.13 Optimizing Laser Source Operation for Confocal and Multiphoton Laser Scanning( e2 N/ H% t4 J v
Microscopy
% s; [$ B! y* `$ a• Unit 2.14 Methods and Applications of Laser‐Enabled Analysis and Processing (LEAP)
9 Y- r* c. b( M8 m& J1 l# d4 {7 c% X• Unit 2.15 Measurement of Molecular Mobility with Fluorescence Correlation Spectroscopy
3 e3 @6 S8 J0 z3 F7 M1 f! d2 t• Unit 2.16 Evaluation and Purchase of Confocal Microscopes: Numerous Factors to Consider
5 m7 j8 z% u9 w! p• Unit 2.17 Super‐Resolution Microscopy: A Comparative Treatment
8 H8 R+ O# b$ Y) h• Unit 2.18 Quantitative Fluorescent Speckle Microscopy (QFSM) to Measure Actin Dynamics' x" d& M6 ?3 V
• Unit 2.19 Analysis of Protein and Lipid Dynamics Using Confocal Fluorescence Recovery After
$ G0 G" @1 g1 X* P |) b4 I8 QPhotobleaching (FRAP)) o/ E. h5 q$ e# d4 D. B
• Unit 2.20 Comparative and Practical Aspects of Localization‐Based Super‐Resolution Imaging
8 i; V5 F) _+ E0 {• Unit 2.21 Building a Live Cell Microscope: What You Need and How to Do It: c* H( a9 ^( F8 P$ ]
• Unit 2.22 How to Build a Time‐Gated Luminescence Microscope3 C! b* h$ ~8 ]7 j- z5 w+ Z
• Unit 2.23 FRET Imaging by Laser Scanning Cytometry on Large Populations of Adherent Cells
4 f# I3 _$ \! J8 _' P6 q• Chapter 3 Safety Procedures and Quality Control
; h5 Q% G4 [! D% h• Introduction
/ [3 c* k% o& ?- I• Unit 3.1 Principles of Quality Control$ J% j" t6 R) i- `+ f* W, d
• Unit 3.2 Components of Quality Control
6 ]! m$ l' L- O2 D6 d6 Y• Unit 3.3 Testing the Efficiency of Aerosol Containment During Cell Sorting6 [: C4 e0 e: \9 @+ v, [$ m
• Unit 3.4 Safe Use of Hazardous Chemicals0 _& w1 z8 R4 ^3 Y- M4 A' g
• Unit 3.5 Method for Visualizing Aerosol Contamination in Flow Sorters
8 L/ c1 W1 W* f. C• Unit 3.6 Standard Safety Practices for Sorting of Unfixed Cells
. H" u2 r& N( ^) ?: }• Chapter 4 Molecular and Cellular Probes
1 p2 X) _4 s7 l! b; u" @& v8 B7 I$ ?• Introduction/ B) z8 }7 T; r: a
• Unit 4.1 Titering Antibodies
; R2 \4 g6 X; E6 q• Unit 4.2 Conjugation of Fluorochromes to Monoclonal Antibodies
" H) B0 s" G8 e3 g* k" ^3 q• Unit 4.3 Nucleic Acid Probes6 l! y. ?5 R* y" t
• Unit 4.4 Cellular Function Probes
9 J0 x( f6 A4 e* [- ~ @2 _3 S: P• Unit 4.5 Spectroscopic Analysis Using DNA and RNA Fluorescent Probes g5 \7 W- h: h1 B. m. |+ y* z
• Unit 4.6 Flow Cytometric Sorting of Bacterial Surface‐Displayed Libraries
$ q0 w' J! @$ H, g' A• Unit 4.7 Construction and Screening of Antigen Targeted Immune Yeast Surface Display/ v0 ~* R6 h6 G5 X- _3 e5 L
Antibody Libraries! h- [6 ?! Y4 X" _* g, {
• Chapter 5 Specimen Handling, Storage, and Preparation
0 ]1 Q4 y8 M* F# i$ p• Introduction
5 B9 i3 |! S: V/ m/ ?: n$ P8 K$ Q# P• Unit 5.1 Collection, Storage, and Preparation of Human Blood Cells% \& |5 y/ e3 l! i, O
• Unit 5.2 Handling, Storage, and Preparation of Human Tissues
' i+ e- _8 Q2 A# w$ B. @• Unit 5.3 Flow Analysis and Sorting of Plant Chromosomes
- {" z( W* U) b8 |9 U+ b; l• Chapter 6 Phenotypic Analysis% w) h! |% u. x$ m
• Introduction% t7 z9 z6 Q! Q9 k. Q) J
• Unit 6.1 Quality Control in Phenotypic Analysis by Flow Cytometry
! Z4 c5 k$ a L$ l5 A/ R0 L' H• Unit 6.2 Immunophenotyping
3 A; ~/ f7 E6 f• Unit 6.3 High‐Sensitivity Immunofluorescence/Flow Cytometry: Detection of Cytokine6 E2 D: w0 H2 {/ o
Receptors and Other Low‐Abundance Membrane Molecules
5 ?1 q7 l" I. d z" t• Unit 6.4 Enumeration of CD34+ Hematopoietic Stem and Progenitor Cells
3 @/ j. N' C4 i0 _( b$ e8 M• Unit 6.5 Immunophenotypic Analysis of Peripheral Blood Lymphocytes3 _# I2 B$ @3 j8 `
• Unit 6.6 Immunophenotypic Analysis of Human Mast Cells by Flow Cytometry: p" Z; r9 x, t* q. V" D Z. I
• Unit 6.7 Measurement of CD40 Ligand (CD154) Expression on Resting and In Vitro–Activated T/ _0 p7 ^! D9 p9 C, ?
Cells8 F: d% [1 K* i% H& n6 N/ o# p% j
• Unit 6.8 Enumeration of Absolute Cell Counts Using Immunophenotypic Techniques0 A: w; K# ]* @! T
• Unit 6.9 Immunophenotypic Identification, Enumeration, and Characterization of Human
! K+ J5 g! v& J; n) I. tPeripheral Blood Dendritic Cells and Dendritic‐Cell Precursors
8 T D! `+ n# k9 X6 [6 l7 {• Unit 6.10 Immunophenotypic Analysis of Platelets7 E$ Q, Q% }) e2 x" J, }1 H0 J
• Unit 6.11 Immunophenotypic Analysis of PNH Cells
2 K3 n4 D% G. S# Z• Unit 6.12 Quantitative Flow Cytometric Analysis of Membrane Antigen Expression
, W& v& K- r/ d• Unit 6.13 Immunophenotyping Using a Laser Scanning Cytometer
8 }* T/ N" q# f m• Unit 6.14 Enzymatic Amplification Staining for Cell Surface Antigens+ M8 i$ m4 C3 u6 h4 w; ^- S
• Unit 6.15 Whole Blood Analysis of Leukocyte‐Platelet Aggregates
S9 `% k; T- W5 n) F) O2 `3 F7 [% E• Unit 6.16 Flow Cytometric Assessment of HLA Alloantibodies0 [' K0 b k E! m8 R' C
• Unit 6.17 Enumeration of Fetal Red Blood Cells, F Cells, and F Reticulocytes in Human Blood
9 Z; ^, x. g- A• Unit 6.18 Identification of Human Antigen‐Specific T Cells Using MHC Class I and Class II2 O {5 m; k0 J! ^& B
Tetramers9 V& X2 e* ^4 p1 t
• Unit 6.19 ZAP‐70 Staining in Chronic Lymphocytic Leukemia8 w+ P! t1 w; J0 ?" M2 g9 [$ d
• Unit 6.20 Multiparameter Analysis of Intracellular Phosphoepitopes in Immunophenotyped Cell
k( r0 P$ B8 D# zPopulations by Flow Cytometry
) D8 L6 Y4 ^3 C• Unit 6.21 Ten‐Color Immunophenotyping of Hematopoietic Cells
4 M2 \3 y% }9 P7 s2 \) M* Y, n• Unit 6.22 Flow Cytometric Screening for the HLA‐B27 Antigen on Peripheral Blood Lymphocytes
# K1 L- {3 r- i! r) o& X% D• Unit 6.23 Immunophenotyping of Plasma Cells
3 @8 Q6 z8 C) e$ X+ H7 s• Unit 6.24 Flow Rate Calibration for Absolute Cell Counting Rationale and Design# y5 s6 |* [3 z# s% G+ i3 Z. ~3 c% {
• Unit 6.25 Flow Cytometric Immunophenotyping of Cerebrospinal Fluid
# r- \/ v9 d! W• Unit 6.26 Calibration of Flow Cytometry for Quantitative Quantum Dot Measurements
0 S1 _6 y/ U C% Y9 e" u• Unit 6.27 Assessment of Beta Cell Viability* ~6 y% j0 e) p x4 i* }6 b1 G6 U
• Unit 6.28 Measurement of T Cell Activation After 16‐hr In Vitro Stimulation with Concanavalin A( g/ x( l- R& C |$ g8 |5 F& ^
• Unit 6.29 Titration of Fluorochrome‐Conjugated Antibodies for Labeling Cell Surface Markers on
7 t1 Z' [, j: o$ _! ~9 S( }Live Cells& C$ P) ^. z% w9 ~4 F- F, X; ?
• Unit 6.30 Phenotypic Analysis Using Very Small Volumes of Blood
2 K. ~' H/ n+ G+ g; k• Unit 6.31 Fluorescent Cell Barcoding for Multiplex Flow Cytometry: M- ^1 v) B! \: @7 y
• Unit 6.32 Quantitative Assessment of Pancreatic Islets Using Laser Scanning Cytometry& x* ^2 v+ `! f( F. p( N2 o
• Unit 6.33 Three‐Dimensional Second‐Harmonic Generation Imaging of Fibrillar Collagen in
+ i" c9 b; U3 w2 V3 N; L2 oBiological Tissues9 a7 [* p6 M1 I3 Q [
• Unit 6.34 Flow Cytometry–Based Cytotoxicity and Antibody Binding Assay
4 f2 |! `- V2 e2 G: o0 i• Unit 6.35 Quantification of Th1 and Th17 Cells with Intracellular Staining Following
) x( v$ h3 S7 K. ZPMA/Ionomycin Stimulation4 a% p% O0 f5 l, y; X# h4 n6 I# S! r
• Unit 6.36 Whole Blood Measurement of Histone Modifications Linked to the Epigenetic
9 v5 V; E# C# j+ a1 J9 c+ SRegulation of Gene Expression
5 b* D: R( P: y: Y7 I# K1 L: w• Unit 6.37 High‐Sensitivity Detection of PNH Red Blood Cells, Red Cell Precursors, and White! ?; p! W0 _* V7 t6 C" k4 B7 G4 A
Blood Cells5 |% d2 a: t7 j
• Unit 6.38 Method for DNA Ploidy Analysis Along with Immunophenotyping for Rare Populations
- ]& H) P( V& Din a Sample using FxCycle Violet
1 {+ d: c, ~# u! Q. f• Chapter 7 Nucleic Acid Analysis( y' f; [5 T. C k$ m8 B3 G
• Introduction9 K4 I4 O1 I6 {- K' L6 x( y/ Q* W# X
• Unit 7.1 Overview of Nucleic Acid Analysis- P4 g# v7 O$ l( l& g/ J& C
• Unit 7.2 Critical Aspects in Analysis of Cellular DNA Content
' z a9 F* l/ x: D• Unit 7.3 Differential Staining of DNA and RNA
3 C0 n* Y m/ j5 L• Unit 7.4 Analysis of DNA Content and DNA Strand Breaks for Detection of Apoptotic Cells2 Q8 d! @: Z Q9 j. L
• Unit 7.5 DNA Content Measurement for DNA Ploidy and Cell Cycle Analysis% b4 c& P L- h: Y/ \
• Unit 7.6 Analysis of Nuclear DNA Content and Ploidy in Higher Plants
+ v6 V% [: {6 ~9 r, g" y Z: Y9 R• Unit 7.7 Analysis of DNA Content and BrdU Incorporation
3 G; H8 }7 ~9 e# c6 L0 i• Unit 7.8 Analysis of DNA Denaturation4 C+ u! M* K0 V
• Unit 7.9 Bivariate Analysis of DNA Content and Expression of Cyclin Proteins
9 l! J" _, _7 }' T: Z9 J& E• Unit 7.10 Flow Cytometric Analysis of Reticulated Platelets2 P$ i. W# t7 s/ M
• Unit 7.11 Assessment of Viability, Immunofluorescence, and DNA Content
+ Y6 Q( F% v4 W8 @• Unit 7.12 Flow Cytometric Analysis of RNA Synthesis by Detection of Bromouridine0 {) b5 h- I7 D0 q k3 e3 a5 D
Incorporation
9 S2 Y' C) n& b6 v# e• Unit 7.13 Sperm Chromatin Structure Assay for Fertility Assessment" r5 T" h6 c5 ^: r* U/ M, V
• Unit 7.14 Analysis of Cell Proliferation and Cell Survival by Continuous BrdU Labeling and! E9 m+ ]6 D- A1 k. p. m/ N4 u% E
Multivariate Flow Cytometry6 X# V5 x& Y6 {
• Unit 7.15 Ultraviolet‐Induced Detection of Halogenated Pyrimidines (UVID), B! U7 N& Q$ I0 B& t% R- o
• Unit 7.16 Analysis of DNA Content and Green Fluorescent Protein Expression; W1 I0 ?# A) y3 w9 D+ o# F
• Unit 7.17 Analysis of Viral Infection and Viral and Cellular DNA and Proteins by Flow Cytometry/ N9 Q! H% P( e) {
• Unit 7.18 Apoptosis Signaling Pathways
, o. i' q e5 M% L* K• Unit 7.19 Flow Cytometry of Apoptosis' R+ M- {0 E3 R/ p# e' b# g; q7 r8 o( o
• Unit 7.20 Analysis of Fine‐Needle Aspirate Biopsies from Solid Tumors by Laser Scanning
7 s4 e5 C; h+ @7 u8 @Cytometry (LSC)/ ~0 O& Z3 e0 @! A* R2 E$ ]
• Unit 7.21 Measurement of Cytogenetic Damage in Rodent Blood with a Single‐Laser Flow
2 l. u# C+ m4 k, j" R! ECytometer
! m- ]+ y! f% z$ t, h/ o0 A5 ~- f• Unit 7.22 Analysis of Tissue Imprints by Scanning Laser Cytometry9 ?$ j h4 Z5 y3 _7 z
• Unit 7.23 Cell Cycle Analysis of Budding Yeast Using SYTOX Green0 A+ M& n6 q( C/ P
• Unit 7.24 Detection of Mitotic Cells
* n( c: V2 M9 N1 ~$ {• Unit 7.25 DRAQ5 Labeling of Nuclear DNA in Live and Fixed Cells: P/ G& e: a9 h
• Unit 7.26 Assessment of Telomere Length, Phenotype, and DNA Content
! T9 m' ` e0 P$ }• Unit 7.27 Detection of Histone H2AX Phosphorylation on Ser‐139 as an Indicator of DNA* Z9 q/ H3 _! ?2 b
Damage (DNA Double‐Strand Breaks)# @8 ?) P; @1 R
• Unit 7.28 RNA and DNA Aptamers in Cytomics Analysis
, z# R" Z" H' a, y• Unit 7.29 Nuclear DNA Content Analysis of Plant Seeds by Flow Cytometry$ u4 X' O1 B4 A: z( L
• Unit 7.30 Estimation of Relative Nuclear DNA Content in Dehydrated Plant Tissues by Flow& G& B- ?5 E- _
Cytometry
q; B" ~$ p2 J% ?2 w3 l) B7 W$ B• Unit 7.31 Assessment of Cell Proliferation by 5‐Bromodeoxyuridine (BrdU) Labeling for- m c8 Z/ U9 ?4 x; x( j( N2 r
Multicolor Flow Cytometry# o. r( {8 q- l8 O- t4 G" w
• Unit 7.32 Uncompensated Polychromatic Analysis of Mitochondrial Membrane Potential Using2 {2 g2 Z* T& s! _* X
JC‐1 and Multilaser Excitation& \) l" j1 a+ e! W) O& a& h, A/ }7 K
• Unit 7.33 SYTO Probes: Markers of Apoptotic Cell Demise
" h" Y4 N- R0 K9 U1 Z5 D) G• Unit 7.34 Cell Proliferation Method: Click Chemistry Based on BrdU Coupling for Multiplex
. p# F0 n# }2 f. UAntibody Staining
; s$ q/ D4 z& l$ B2 C• Unit 7.35 Assessment of Histone Acetylation Levels in Relation to Cell Cycle Phase. Q0 A+ y8 `2 o5 D: y; c
• Unit 7.36 Click‐iT Proliferation Assay with Improved DNA Histograms
0 p9 @. t) C1 @5 o$ \ w• Unit 7.37 High‐Resolution Multiparameter DNA Flow Cytometry for the Detection and Sorting of
+ }& L4 u. ^9 _5 ]7 k7 JTumor and Stromal Subpopulations from Paraffin‐Embedded Tissues- u# c5 }* x- m! g
• Unit 7.38 Dual‐Pulse Labeling Using 5‐Ethynyl‐2′‐Deoxyuridine (EdU) and 5‐Bromo‐2′‐% I$ N. ]2 N1 n* B
Deoxyuridine (BrdU) in Flow Cytometry
* f3 ]1 [9 g6 W9 K+ B• Unit 7.39 High‐Resolution Cell Cycle and DNA Ploidy Analysis in Tissue Samples/ k- f* @; d6 {) G. }, p3 B
• Unit 7.40 Zinc Fixation for Flow Cytometry Analysis of Intracellular and Surface Epitopes, DNA
! B7 ^; K# e# K. QContent, and Cell Proliferation! m. G) |# M, I: p2 C
• Unit 7.41 High‐Resolution Cytometry for High‐Content Cell Cycle Analysis
" K: _+ y5 m7 b5 K3 l• Unit 7.42 Confocal Microscopy for High‐Resolution and High‐Content Analysis of the Cell Cycle9 ]1 J! [0 X$ U
• Unit 7.43 Application of Click Chemistry Conditions for 5‐Bromo‐2′‐Deoxyuridine Determination
% I. K$ D D! _# Q% z; c8 TThrough Fenton and Related Reactions
8 m7 @3 X* r$ [% Z, N( E7 r• Unit 7.44 Flow Cytometry of Murine Spermatocytes2 Q8 { t$ V4 |% u5 ?! M O
• Unit 7.45 Simultaneous, Single‐Cell Measurement of Messenger RNA, Cell Surface Proteins, and( N' E5 `/ v1 w& R, A% _
Intracellular Proteins
2 M' C3 t8 X( d; d' w1 Z• Unit 7.46 Measurement of Low‐Abundance Intracellular mRNA Using Amplified FISH Staining& D: Y4 \$ z3 C! S# I
and Image‐Based Flow Cytometry
/ r5 Z- ^9 D) J& Z; u0 [3 k• Unit 7.47 Measurement of T‐Cell Telomere Length Using Amplified‐Signal FISH Staining and
+ ~) z8 h8 U3 ^- r1 O) @- n! {% gFlow Cytometry
( }; j8 T _: x# C% ~• Chapter 8 Molecular Cytogenetics& l& G& U# @5 A
• Introduction
2 H' _& Z/ Q0 k% Z8 _• Unit 8.1 Overview of Fluorescence In Situ Hybridization Techniques for Molecular Cytogenetics
Q. }# t9 |1 A6 {$ S• Unit 8.2 Basic Preparative Techniques for Fluorescence In Situ Hybridization* D" |3 w9 H& N3 y, M* l
• Unit 8.3 Probe Labeling and Fluorescence In Situ Hybridization/ ^7 B$ @/ ]. `$ B# w6 i4 j. k
• Unit 8.4 Immunocytochemical Detection$ n. L( v4 i. Y( |2 l% T8 N! k H
• Unit 8.5 Processing and Staining of Cell and Tissue Material for Interphase Cytogenetics) T' w3 n! k# D# l, A
• Unit 8.6 Advanced Preparative Techniques to Establish Probes for Molecular Cytogenetics. X( y( e8 D9 h$ _$ O( F) D3 c
• Unit 8.7 Combination DNA/RNA Fish and Immunophenotyping
& L. r+ m$ u! h# g5 `3 |6 ~• Unit 8.8 Single‐Nucleotide Sequence Discrimination In Situ Using Padlock Probes, s5 l, ^% J# I& r: b8 @
• Unit 8.9 Tyramide Signal Amplification (TSA) Systems for the Enhancement of ISH Signals in( V5 R2 P3 E/ {5 S
Cytogenetics( L% S1 ~8 j3 l0 n
• Unit 8.10 Molecular Combing
* y0 [! Y- n9 H- Y b• Unit 8.11 Principles and Applications of PRINS in Cytogenetics
: e; @+ W$ @: q P. \, j• Unit 8.12 Comparative Genomic Hybridization (CGH)—Detection of Unbalanced Genetic
) Z- |$ v4 K+ B- i; B& E6 ~0 vAberrations Using Conventional and Micro‐Array Techniques6 O- r3 P2 D2 h2 b5 {; P
• Unit 8.13 Combined Immunofluorescence and FISH: New Prospects for Tumor Cell# f6 a; R# c( |
Detection/Identification! K, d7 [* u% \) d* l
• Unit 8.14 Application of Flow‐FISH for Dynamic Measurement of Telomere Length in Cell9 k# t8 y) L! ]3 J' \; u
Division
& M6 f: [7 l) T; w• Chapter 9 Studies of Cell Function
4 O* {9 R9 Q- i2 A• Introduction
/ P! Y3 O# t9 G1 D6 F" @! L2 s• Unit 9.1 Overview of Functional Cell Assays, s1 w# ?8 w0 u- R) q2 u
• Unit 9.2 Assessment of Cell Viability
+ ?4 x0 X9 u0 f2 O; H) n7 C• Unit 9.3 Flow Cytometric Measurement of Intracellular pH7 D- E( Y$ s7 h% s) L8 i& D) j
• Unit 9.4 Analysis of Intracellular Organelles by Flow Cytometry or Microscopy: I* f7 }8 y, }5 T4 m) U. A
• Unit 9.5 Reporters of Gene Expression: Enzymatic Assays
& a6 N3 W' z# x; r% y• Unit 9.6 Estimation of Membrane Potential by Flow Cytometry
( B7 h/ k/ h1 l/ J' N• Unit 9.7 Oxidative Metabolism7 b- Q) j5 G3 ^/ N5 q4 O5 X1 I
• Unit 9.8 Measurement of Intracellular Ions by Flow Cytometry
6 \8 z8 ^1 e& `" n) ~1 {• Unit 9.9 Intracellular Cytokines
7 w/ j/ x8 o& J% K4 s• Unit 9.10 Assays of Natural Killer (NK) Cell Ligation to Target Cells* l1 c' ]! f6 O* R- y8 c6 u
• Unit 9.11 Flow Cytometric Analysis of Cell Division by Dilution of CFSE and Related Dyes
% g# H8 O: }, {• Unit 9.12 Fluorescent Proteins for Flow Cytometry
0 }1 S) R$ L0 ]# z• Unit 9.13 In Vitro Invasion Assays: Phagocytosis of the Extracellular Matrix# Y* W3 ]& I7 X
• Unit 9.14 Flow Cytometric Analysis of Mitochondrial Membrane Potential Using JC‐1- R. \2 N# a+ { w; S; }
• Unit 9.15 Multiparameter Analysis of Physiological Changes in Apoptosis
, d: a6 q3 s, U _2 _• Unit 9.16 Signal Transduction During Natural Killer Cell Activation
1 ] N6 s5 V6 U f4 @• Unit 9.17 Assessment of Surface Markers and Functionality of Dendritic Cells (DCs)' [7 S' T6 m5 J' G
• Unit 9.18 Stem Cell Identification and Sorting Using the Hoechst 33342 Side Population (SP)
; |6 Q9 p- U1 Y. S9 Y. C2 \( I• Unit 9.19 Assessment of Phagocyte Functions by Flow Cytometry: a6 o% |4 D- P
• Unit 9.20 Flow Cytometric Analysis of Calcium Mobilization in Whole‐Blood Platelets3 @& V( \+ Y( k8 V* S
• Unit 9.21 Flow Cytometric Analysis of Cytokine Responses in Stimulated Whole Blood:
4 H! I! A! M- s7 W" B, VSimultaneous Quantitation of TNF‐α‐Secreting Cells and Soluble Cytokines
) F6 L, o7 [0 e& L• Unit 9.22 Optimized Whole‐Blood Assay for Measurement of ZAP‐70 Protein Expression+ p0 g2 k% V ?. _. Y: A
• Unit 9.23 Flow Cytometry of the Side Population (SP)4 B Q! m! J3 z( i( f
• Unit 9.24 High‐Throughput Cytotoxicity Screening by Propidium Iodide Staining
( C8 I# \) i; ]3 L* y- P' J; {) O• Unit 9.25 Advanced Application of CFSE for Cellular Tracking: W3 {2 O0 ^! V/ O) R) v
• Unit 9.26 Immunophenotyping and DNA Content Analysis of Acetone‐Fixed Cells. V7 C3 v0 g! g% x) J2 a
• Unit 9.27 Whole Blood Processing for Measurement of Signaling Proteins by Flow Cytometry* E' _/ |2 F7 O$ r2 z
• Unit 9.28 Measurement of Cytoplasmic to Nuclear Translocation
6 ^% W* s X1 n, m5 C5 Q% K• Unit 9.29 Overview of Very Small Embryonic‐Like Stem Cells (VSELs) and Methodology of Their
( w: H3 m7 H) G, Q3 YIdentification and Isolation by Flow Cytometric Methods5 L$ S. O- J5 d0 T
• Unit 9.30 Stem Cell Side Population Analysis and Sorting Using DyeCycle Violet4 H9 q& L! Y9 _9 o, J# r S5 x
• Unit 9.31 Measurement of Phagocytosis and of the Phagosomal Environment in
& N% f# C- d( s- I2 Y9 j# c1 wPolymorphonuclear Phagocytes by Flow Cytometry, I9 }: a' `: x3 V
• Unit 9.32 Yeast Cell Cycle Analysis: Combining DNA Staining with Cell and Nuclear Morphology T* S2 f# y. F$ c. b7 }/ q
• Unit 9.33 Identification of Endothelial Cells and Progenitor Cell Subsets in Human Peripheral. X- J. e) F; i9 O
Blood' V) p- ^7 O. H7 Y# x0 [9 p. e
• Unit 9.34 Amine‐Reactive Dyes for Dead Cell Discrimination in Fixed Samples: M& W- R9 `1 H+ X
• Unit 9.35 Detection of Intracellular Glutathione Using ThiolTracker Violet Stain and
, H. Z2 _9 t7 I9 `7 W: d1 `Fluorescence Microscopy+ I! A% e2 s0 k& x% ?! \
• Unit 9.36 In Situ Proximity Ligation Assay for Microscopy and Flow Cytometry7 V+ x/ F# D3 u- v4 y* S( U A
• Unit 9.37 Assessing Mitochondrial Redox Status by Flow Cytometric Methods: Vascular& n$ C) k, r% q$ J, P* C4 `# d7 F
Response to Fluid Shear Stress8 y; W$ C ]" {) p- X) D4 e
• Unit 9.38 A Violet Ratiometric Membrane Probe for the Detection of Apoptosis. I# c! a3 G6 `" g. ^( r8 l
• Unit 9.39 Ex Vivo Imaging of Excised Tissue Using Vital Dyes and Confocal Microscopy$ W1 P R4 t& n" ~% k$ O/ R
• Unit 9.40 Flow Cytometry‐Based Quantification of Cell Proliferation in the Mixed Cell Co‐Culture9 a9 p. G8 R! A* Z
• Unit 9.41 Kinetic Viability Assays Using DRAQ7 Probe: q& j1 m2 f8 a: n& Z( C" y
• Unit 9.42 Multiparameter Analysis of Apoptosis Using Lab‐on‐a‐Chip Flow Cytometry1 Z! `* H. I6 L
• Unit 9.43 Real‐Time Detection of Protein Trafficking with High‐Throughput Flow Cytometry
0 G, E: D7 n7 {5 V: p(HTFC) and Fluorogen‐Activating Protein (FAP) Base Biosensor6 ^. W d F" ^
• Unit 9.44 OpenSource Lab‐on‐a‐Chip Physiometer for Accelerated Zebrafish Embryo Biotests
p% c% e1 e. _) M0 E6 k• Unit 9.45 Measurement of Autophagy by Flow Cytometry8 U" }4 r1 W4 o" B2 k. x
• Unit 9.46 Immunophenotyping of Paucicellular Samples2 j$ {# A0 F: @6 l, H% V
• Unit 9.47 Attenuation of Replication Stress–Induced Premature Cellular Senescence to Assess j+ Y8 j$ {# m
Anti‐Aging Modalities: S( q! J/ i3 \
• Unit 9.48 High Throughput‐Based Mitochondrial Function Assays by Multi‐Parametric Flow
: Y' B4 K' t# K! L# ICytometry' V0 r: ~- _+ n9 a/ |% l
• Unit 9.49 Measurement and Characterization of Apoptosis by Flow Cytometry( _+ @/ A" C* h6 q6 P, P' t) O
• Unit 9.50 Identification of Human Memory‐Like NK Cells
; n$ z! O5 U$ j5 t• Unit 9.51 Quantitative Analysis of Cellular Senescence in Culture and In Vivo
3 x! F; E; Y4 H% B f4 A• Unit 9.52 Method to Detect the Cellular Source of Over‐Activated NADPH Oxidases Using( m: e% D2 u$ ?& Z9 Q
NAD(P)H Fluorescence Lifetime Imaging1 B8 p( U3 B: s) B3 q' x
• Chapter 10 Data Processing and Analysis
. }1 W2 N$ Y( [# y% G$ T• Introduction
! o- g: f) j2 C7 E% N& V• Unit 10.1 Data Management
; D! [0 Z) W3 u8 Z# O• Unit 10.2 Data File Standard for Flow Cytometry, FCS 3.0
! M7 c, W# G7 X0 ]5 h• Unit 10.3 Listmode Data Processing
" ?" e) {8 n9 m9 s# w0 ]" g" ?+ g• Unit 10.4 Multidimensional Data Analysis in Immunophenotyping, q5 V$ j* S2 U2 j/ S1 v: X8 Z- Z
• Unit 10.5 Two‐Dimensional Image Processing and Analysis
2 g& ]: v( D& a# R+ E8 P: Z• Unit 10.6 Data Presentation* W; a5 r8 J* S, z+ m# ?2 z. o
• Unit 10.7 Data Analysis Through Modeling
* N+ m( u3 ?. Z( D' s2 H, v! o/ ?( u• Unit 10.8 Multivariate Analysis
% L* Y" O, b0 m( |: u4 v' I8 {• Unit 10.9 Detection and Location of Hybridization Domains on Chromosomes by Image+ [$ N3 O$ h6 V/ U1 a8 R
Cytometry9 j6 e# k1 c$ l/ r
• Unit 10.10 Three‐Dimensional Image Visualization and Analysis
, S+ {/ e' U( B• Unit 10.11 Image Processing and 2‐D Morphometry
; n2 T" ?8 Q- C( Z3 z% F• Unit 10.12 Dial‐In Flow Cytometry Data Analysis. W* O. W; P7 y+ v- V9 v. _
• Unit 10.13 The Application of Data Mining to Flow Cytometry
4 |9 K3 J u1 P* Z' s) g• Unit 10.14 Intensity Calibration and Flat‐Field Correction for Fluorescence Microscopes
, a; i8 S5 Q% d7 r+ C- S• Unit 10.15 A Software Method for Color Compensation6 n& |0 N6 J0 z% w( V
• Unit 10.16 Alternatives to Log‐Scale Data Display
$ u c4 b; ?8 }; s7 \• Unit 10.17 Web‐Based Analysis and Publication of Flow Cytometry Experiments
# _8 Q' E+ K! d• Unit 10.18 Preparing a Minimum Information about a Flow Cytometry Experiment (MIFlowCyt)
: T6 {& l* h' Y, A K2 A+ r( ^3 v" FCompliant Manuscript Using the International Society for Advancement of Cytometry (ISAC)4 Z0 `, ^! S2 S' j& z) _9 T
FCS File Repository (FlowRepository.org)
& P9 L! h _& y( J( l, Q. J• Unit 10.19 Digital Data Acquisition and Processing
7 u/ ]8 {% p( ~- N( f L) ]• Chapter 11 Microbiological Applications
, Y7 o$ H% {/ s9 B$ G• Introduction
8 h$ ? u: e- I+ d• Unit 11.1 Overview of Flow Cytometry and Microbiology
' T# b7 N; C$ |& i4 X• Unit 11.2 Flow Cytometry and Environmental Microbiology2 }0 ]8 C9 {* U9 E
• Unit 11.3 Estimation of Microbial Viability Using Flow Cytometry$ ~# R4 u0 S! e
• Unit 11.4 Sorting of Bacteria- J+ J! E; i. U$ c3 W" |
• Unit 11.5 Detection of Borreliacidal Antibodies by Flow Cytometry4 P- R4 f) Z- A
• Unit 11.6 Flow Cytometric Detection of Pathogenic E. coli in Food
- A$ i4 U! \/ u1 c7 Z& h• Unit 11.7 Mycobacterium tuberculosis Susceptibility Testing by Flow Cytometry
! g4 |' p% v1 ~& u* Q- y2 _7 W• Unit 11.8 Antibiotic Susceptibility Testing by Flow Cytometry! ^) q' {5 E8 f7 O/ D1 U
• Unit 11.9 Determination of Bacterial Biomass from Flow Cytometric Measurements of Forward% e! F7 G/ a; K
Light Scatter Intensity) G4 a* N2 P; p* [3 g
• Unit 11.10 Flow Cytometry of Yeasts
% a# r- L- o/ o1 `• Unit 11.11 Enumeration of Phytoplankton, Bacteria, and Viruses in Marine Samples; ^' ^) g5 u# N, d" O2 q7 O
• Unit 11.12 DNA/RNA Analysis of Phytoplankton by Flow Cytometry% W9 R6 Y$ Y* X$ H
• Unit 11.13 Cell Cycle Analysis of Yeasts0 L" S! R2 L. r: H
• Unit 11.14 Flow Cytometric Assessment of Drug Susceptibility in Leishmania infantum$ Y( l7 i/ Z- W6 ~/ T3 ~
Promastigotes
2 B8 ]1 d0 p' Q7 W- U6 i. _( ?• Unit 11.15 Resolution of Viable and Membrane‐Compromised Free Bacteria in Aquatic G0 I% {3 d* U
Environments by Flow Cytometry
# G& W# W4 ~. ]0 e1 z• Unit 11.16 Functional Assays of Oxidative Stress Using Genetically Engineered Escherichia coli
8 i2 v! ?3 k, P8 q q( } }7 dStrains' F0 y F2 c7 M1 h) G/ ]
• Unit 11.17 Labeling of Bacterial Pathogens for Flow Cytometric Detection and Enumeration
) W2 Q7 b: P1 c• Unit 11.18 Detection of Extracellular Phosphatase Activity of Heterotrophic Prokaryotes at the; n4 h1 Q. ~/ B1 ~3 d
Single‐Cell Level by Flow Cytometry
; W" O' Y% c6 R( u" H- @ v) G• Unit 11.19 Life Cycle Analysis of Unicellular Algae
+ P$ b/ `3 c) u, v• Unit 11.20 Cytometry in Malaria—A Practical Replacement for Microscopy?
: o" z2 F0 n1 r$ q* O! i7 S Y• Unit 11.21 Large Particle Sorting to Isolate Live Parasitic Nematode Eggs( t% E/ x* z A" ~. t$ v
• Unit 11.22 High‐Throughput Particle Uptake Analysis by Imaging Flow Cytometry% Y3 H# y2 _% P* [1 }( q
• Chapter 12 Cellular and Molecular Imaging! p( e+ y. X: n
• Introduction
1 P: X# F5 v- ?2 c2 ?; x# S2 K: R• Unit 12.1 Comparative Overview of Flow and Image Cytometry
: J' X# f1 r' A4 I+ U' a: D• Unit 12.2 Basics of Digital Microscopy6 `: c8 ?7 w( s( o
• Unit 12.3 Modern Confocal Microscopy4 o$ O9 ~; [8 I% z( m* U
• Unit 12.4 Time‐Lapse Microscopy Approaches to Track Cell Cycle and Lineage Progression at
3 d& ] c- f: P- I" Mthe Single‐Cell Level
5 d! t+ T- ]& y- T$ w• Unit 12.5 Three‐Dimensional Visualization of Blood and Lymphatic Vasculature in Tissue Whole; r6 Y% I p3 j' [9 O
Mounts Using Confocal Microscopy# F3 @8 J. L3 B# ~3 D
• Unit 12.6 Quantitative Fluorescence In Situ Hybridization (QFISH) of Telomere Lengths in
3 v, D5 S" |) p! k+ b" A$ _* |, tTissue and Cells
! Y3 N, s5 D i1 z8 F& g• Unit 12.7 Detecting Protein–Protein Interactions with CFP‐YFP FRET by Acceptor Photobleaching6 q; A" c; D j; r
• Unit 12.8 Measuring FRET in Flow Cytometry and Microscopy
$ h3 g1 o4 s: V0 s9 @• Unit 12.9 Live‐Animal Imaging of Renal Function by Multiphoton Microscopy( d% J7 Y8 |5 j V/ _: x9 M
• Unit 12.10 Detecting Protein‐Protein Interactions In Vivo with FRET using Multiphoton5 m V; \7 D, ?# D
Fluorescence Lifetime Imaging Microscopy (FLIM)0 y) F) ?2 ?8 h* y7 @: d# z
• Unit 12.11 Confocal Imaging of Cell Division' K$ l ~* y3 d/ x' M
• Unit 12.12 From In Vitro to In Vivo: Imaging from the Single Cell to the Whole Organism! x4 k6 s" U& [3 G) z. h3 }
• Unit 12.13 Use of Spectral Fluorescence Resonance Energy Transfer to Detect Nitric Oxide‐/ R3 D m' A% r3 ~2 H K) ^& P$ V
Based Signaling Events in Isolated Perfused Lung& t8 [" q. E3 l9 A1 Q5 D9 G/ ?
• Unit 12.14 Flow Cytometric FRET Analysis of ErbB Receptor Tyrosine Kinase Interaction T2 P/ w' s6 V3 a7 I
• Unit 12.15 Cryosectioning, {& G+ M7 N$ U! p2 {# `7 V) i$ ^: c
• Unit 12.16 Immunohistochemistry
' I3 R. n! X' j. f2 z- V• Unit 12.17 Simultaneous Optical Mapping of Intracellular Free Calcium and Action Potentials
+ t& _# P% r9 {9 {% Bfrom Langendorff Perfused Hearts" _! ^+ \1 s( A( R D% c* [: R5 B4 y/ l9 w
• Unit 12.18 Total Internal Reflection Fluorescence (TIRF) Microscopy
5 G8 @$ I0 K( f! H" h• Unit 12.19 3D Deconvolution Microscopy
% q- A6 C# C, e• Unit 12.20 Approaches to Spectral Imaging Hardware
0 T& Y$ {4 A. |0 J$ A• Unit 12.21 From Image to Data Using Common Image‐Processing Techniques
5 O! u7 B9 w$ x N0 `• Unit 12.22 Setting Up and Running an Advanced Light Microscopy and Imaging Facility
( a) z4 A7 P4 M# r# |• Unit 12.23 Photoactivation and Imaging of Optical Highlighter Fluorescent Proteins
7 Q+ N+ G1 w5 j T' c( |• Unit 12.24 Practical Methods for Molecular In Vivo Optical Imaging
" v' D( N8 k0 @& }' `+ i8 p& U$ `0 ~• Unit 12.25 Characterization of Surface FAS—Quantitative Morphological Analysis Using5 F8 f+ P6 ]/ Z# O
Quantitative Imaging Cytometry' W5 ~( @* x# |% \
• Unit 12.26 Two‐Photon Imaging of the Immune System
' J+ U0 L2 T: [8 s5 a• Unit 12.27 Near‐Infrared Molecular Probes for In Vivo Imaging& b7 x/ }, M: E
• Unit 12.28 Live Imaging of the Lung
+ U1 d" ~; |, L% y9 Y• Unit 12.29 Total Internal Reflection Fluorescence (TIRF) Microscopy Illuminator for Improved0 i5 G" @5 @5 _( Y& p% A
Imaging of Cell Surface Events" Z7 I9 n' q5 ]8 r5 a1 D
• Unit 12.30 A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and
! i& K! J& q. h: I) `! KStructures, Part I: BacMam Labeling and Reagents for Vesicular Structures( d, L# t- K8 v4 V {/ b
• Unit 12.31 A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and
( e/ ~- Y" Y' f( TStructures, Part II: Reagents for Non‐Vesicular Organelles
- `" V6 x# |: {" _# Q* i• Unit 12.32 A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and( K, |: n9 e6 q3 J/ T; z# W: ^' k
Structures, Part III: Reagents for Actin, Tubulin, Cellular Membranes, and Whole Cell and6 ~" B& q8 i7 o) |* v1 N7 P
Cytoplasm5 }! O/ i( |* s. j/ {' D
• Unit 12.33 A Rapid and Sensitive Automated Image‐Based Approach for In Vitro and In Vivo
2 ^! B0 J4 X! r3 w1 l$ ACharacterization of Cell Morphology and Quantification of Cell Number and Neurite Architecture* V% G% n$ J3 Z% Z
• Unit 12.34 Imaging Autophagy
. p' u) ^7 I' e( P/ x6 f; n( m( [% I• Unit 12.35 The Application of KillerRed for Acute Protein Inactivation in Living Cells( d% w1 D6 h. |2 T. G: N
• Unit 12.36 Correlative Fluorescence and Electron Microscopy* ?+ Z) \7 L- E; a8 `9 X
• Unit 12.37 Light Sheet Fluorescence Microscopy (LSFM)
; H+ m+ s: J0 m2 a7 C• Unit 12.38 Semi‐Automated Object Tracking Methods in Biological Imaging- N- n% p7 Y$ t( I4 ?
• Unit 12.39 Cell Volume Measurements by Optical Transmission Microscopy
# O3 }, R8 ^: g; p9 t- E• Unit 12.40 Visualization of Telomere Integrity and Function In Vitro and In Vivo Using; X2 m1 r/ g4 c% r- W
Immunofluorescence Techniques3 F/ |/ p% b1 A0 i; C$ z* d; J
• Unit 12.41 Microscopic Investigation of Protein Function in C. elegans Using Fluorescent. m* w* I1 e R$ u' l
Imaging
1 w+ v4 E* J+ N1 j) U9 I2 t7 C1 k• Unit 12.42 In Vivo Immuno‐Spin Trapping: Imaging the Footprints of Oxidative Stress
( m5 T! R' Y. N% D9 y5 N• Unit 12.43 High‐Content Microscopy Analysis of Subcellular Structures: Assay Development* w: v* S4 G0 L* F! G! E
and Application to Focal Adhesion Quantification- x( Z4 ^9 E5 C5 N
• Unit 12.44 Automated Measurement of Blood Vessels in Tissues from Microscopy Images
. G7 A1 U6 Y( E1 |9 D8 ^, W* n$ R• Unit 12.45 Correlative Fluorescence and Electron Microscopy in 3D—Scanning Electron0 }- ?+ H3 x% V7 ~2 w
Microscope Perspective
' F( q5 k' Q) ~• Chapter 13 Multiplexed and Microparticle‐Based Analyses T+ y" ~& A! ^7 j
• Introduction
, e2 z' t+ D0 w2 b• Unit 13.1 Multiplexed Microsphere‐Based Flow Cytometric Immunoassays6 K+ c( ^ x$ q- ~! V8 X
• Unit 13.2 Microsphere Surface Protein Determination Using Flow Cytometry
, P( _8 m" _& G( m• Unit 13.3 Use of Microsphere‐Supported Phospholipid Membranes for Analysis of Protein‐Lipid
3 e3 q j8 K @' k/ q2 s; f6 [Interactions
- Q* K5 \+ _% N% o! c2 b3 q( B. `, [• Unit 13.4 Multiplexed SNP Genotyping Using Primer Single‐Base Extension (SBE) and
' X+ ]7 Q' N+ m( q1 hMicrosphere Arrays- j/ y/ B1 n9 m
• Unit 13.5 BeadCons: Detection of Nucleic Acid Sequences by Flow Cytometry$ W2 j' d0 s9 d4 {3 O( Z4 q8 `* l
• Unit 13.6 Characterization of Nuclear Receptor Ligands by Multiplexed Peptide Interactions! U l3 S4 R: T' l
• Unit 13.7 Detection of Gene Fusions in Acute Leukemia Using Bead Microarrays' L7 t- H& b' }, ^
• Unit 13.8 Reagents and Instruments for Multiplexed Analysis Using Microparticles
! h/ P9 [- y8 W4 R, ]+ b7 V6 m3 W• Unit 13.9 Multiplexed Detection of Fungal Nucleic Acid Signatures
; F7 g3 @ W, s• Unit 13.10 Multiplexed Analysis of Peptide Antigen‐Specific Antibodies
+ e. ]2 ^; ~0 `7 t. ~9 _• Unit 13.11 Use of Flow Cytometric Methods to Quantify Protein‐Protein Interactions
2 r0 m7 c( `" v% a7 R' Y4 y• Unit 13.12 Microsphere‐Based Flow Cytometry Protease Assays for Use in Protease Activity
* ?4 B5 I6 l5 K& T- i8 `Detection and High‐Throughput Screening
* ^ K5 q' L) y" O c3 _! I• Unit 13.13 Application of the PrimRglo Assay Chemistry to Multiplexed Bead Assays
2 y3 P. Q6 D1 Q2 D5 @( B6 v• Unit 13.14 Flow Cytometry of Extracellular Vesicles: Potential, Pitfalls, and Prospects
' `: D) _) x H9 O& } Y, p• Unit 13.15 Optimized MOL‐PCR for Characterization of Microbial Pathogens
& k6 C' y4 n1 _! M8 [) A) g• Appendix 1 Abbreviations and Useful Data
. @+ o) X( J2 _5 c4 ?! y+ a$ Z• Appendix 1A Abbreviations Used in this Manual
8 f4 \# |# r, I, g* c( c) ]5 [• Appendix 1B Common Conversion Factors8 L& G7 e- F/ a; ]/ t
• Appendix 2 Stock Solutions, Equipment, and Laboratory Guidelines
* }9 d" }. q8 p+ @5 A9 X) {# X• Appendix 2A Common Stock Solutions, Buffers, and Media' U& b* [+ D+ _) n% j0 Y4 ?3 O
• Appendix 3 Commonly Used Techniques( {$ l) e! q8 t5 D
• Appendix 3A Cell Counting
( n# |0 t5 Z! ~ l% F2 h• Appendix 3B Techniques for Mammalian Cell Tissue Culture/ y; x7 z" G2 k" w: J) h) W& M
• Appendix 3C Diagnosis and Treatment of Mycoplasma‐Contaminated Cell Cultures3 d l% w; H! B! @' V+ G' Q
• Appendix 3D Wright‐Giemsa and Nonspecific Esterase Staining of Cells
0 I$ L) p, f4 Q( q7 I3 a2 }- P* a• Appendix 3E Techniques for Bacterial Cell Culture: Media Preparation and Bacteriological Tools
$ c2 K2 u$ w5 ]; m5 g• Appendix 3F Growing Bacteria in Liquid Media# b1 s; t$ @- c
• Appendix 3G Growing Bacteria on Solid Media- ~4 Z* ~4 M% T3 U
• Appendix 3H Importing Biological Materials
1 `" L% K2 U# V- o; x4 N. }• Appendix 3I Production of Polyclonal Antisera" Y" \) |) g3 v! P( K0 W9 v1 x9 a
• Appendix 3J Production of Monoclonal Antibodies
! {! J: s, H$ V6 n• Appendix 3K Enzymatic Amplification of DNA by PCR: Standard Procedures and Optimization |
|