干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
干细胞之家 - 中国干细胞行业门户第一站 干细胞之家论坛 干细胞行业新闻 2018年度巨献:那些打破教科书挑战常规的突破性研究解读
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 14079|回复: 0
go

2018年度巨献:那些打破教科书挑战常规的突破性研究解读 [复制链接]

Rank: 7Rank: 7Rank: 7

积分
24651 
威望
24651  
包包
140356  

优秀版主 博览群书 美女研究员 优秀会员

楼主
发表于 2018-12-18 06:32 |只看该作者 |倒序浏览 |打印
2018年度巨献:那些打破教科书挑战常规的突破性研究解读+ ~1 ]4 @" `' j) z6 F  r
来源:本站原创 2018-12-17 22:20+ b* I4 A' t' ]( p# n
很多教科书中的理论知识及日常生活中的传统观点仅限于目前科学家们的研究结果,然而随着时间推进,科学研究在不断在发展的同时,一些新的研究成果也会层出不穷,很多教科书中的观点也会被覆盖更新,很多传统认知也会被替换。那么2018年都有哪些打破教科书或挑战传统认知的突破性研究成果呢,本文中,小编就对2018年的相关研究进行了筛选整理,分享给大家!: d4 y0 ], h: a8 K2 W' f7 y6 t

8 d+ N8 ?2 Y9 Q6 @8 d【1】Nature:挑战常规!不是α-Klotho蛋白,而是FGF23蛋白才具有抗衰老功能; e; D. F. v2 d
doi:10.1038/nature25451
- a! j, a$ L( H7 l在一项新的研究中,来自中国温州医科大学、美国纽约大学医学院和德克萨斯大学西南医学中心的研究人员解析出一种被称作α-Klotho的蛋白的分子结构,以及它如何协助传递一种延缓衰老的激素信号。相关研究结果于2018年1月17日在线发表在Nature期刊上。
; i( h. k  e% t9 M$ q这项研究驳斥了一项存在了20年的猜测---以纺织生命之线的希腊女神Klotho的名字命名的α-Klotho蛋白是一种重要的抗衰老激素。相反,这些研究结果将这种功能归因于成纤维细胞生长因子23(FGF23),并且解释了α-Klotho如何协助FGF23介导它的抗衰老作用。9 R4 H/ |. R! S# s% |" @% V" x8 w
早在1997年的研究就已表明,经过基因操纵缺乏α-Klotho或FGF23小鼠过早地衰老,包括早发性心血管疾病、癌症和认知下降。通过首次研究包括FGF23、它的受体蛋白(FGFR)和α-Klotho在内的一组相关蛋白的结构,当前的这项研究推翻了α-Klotho独自地作为一种长寿因子发挥作用的主流观点。
7 ~$ A. I% y. {$ `【2】Nature:改写教科书!揭示SNARE蛋白协助细胞间和细胞内沟通新机制% [$ _& C1 n3 O) d
doi:10.1038/nature25481
! _  y2 A; w; N, J通过谷歌搜索“SNARE蛋白”,美国威斯康星大学麦迪逊分校神经科学教授、霍华德休斯医学研究所研究员Edward Chapman获得满屏的螺旋形分子的结构图。当这些蛋白抓住两个细胞的外膜时,它们缠绕在一起。他说,“如今,我们证实这种结构模型是错误的。需要对教科书进行调整。”9 u# ~+ C7 |* r6 f2 [
SNARE蛋白产生“融合孔(fusion pore)”,从而允许化合物穿过分隔细胞或细胞内亚组分的膜。SNARE在所有含有细胞核的有机体(从很多单细胞生物到植物、动物和人类)中产生融合孔。Chapman说,这些融合孔和产生它们的SNARE蛋白很可能在十亿年前就已进化出来。这意味着这些融合孔的结构和功能在生物学中发挥着至关重要的作用。+ d  @% I6 m) w
他说,“有些人认为细胞是一袋原生质,但实际上它含有数百或数千个细胞器,每个细胞器都被膜包围着。所有的这些细胞器含有或处理各种物质,并对无数的信号作出反应。为了排出或摄入物质,这些细胞器需要在膜上形成融合孔。”' m$ G! W- @! ~" Y6 N4 g
  [1 U* `  x5 [# Q' @. z( L8 t, x
【3】Nat Commun:打破教科书!星形胶质细胞帮助大脑调节呼吸节律!
9 h, p* D3 ]2 mdoi:10.1038/s41467-017-02723-6
5 c  `2 W) q4 \: y6 w5 J* _传统来讲,科学家们认为星形胶质细胞是安静稳定的,默默地支持着它们周围话多的线状神经元。但是现在一项NIH的研究表明星形胶质细胞也可能具有它们的话语权。该研究表明沉默大鼠大脑呼吸中心的星形胶质细胞会导致大鼠呼吸频率下降,在跑步机上比正常小鼠更快疲惫。这仅仅是操纵星形胶质细胞与周围细胞交流方式导致呼吸改变的两个案例。
5 A7 d3 y8 J  Z; I$ W& Z% \2 Y! E数十年来我们都认为呼吸由大脑神经元控制,但是我们的结果表明星形胶质细胞帮助控制着呼吸节律。”NIH神经紊乱和中风国立研究所资深研究人员Jeffrey C. Smith博士说道,他也是这篇发表在《Nature Communications》的研究的通讯作者。“这些结果表明我们应该改变对星形胶质细胞以及大脑工作模式的看法。”' r! ]- f2 g, D3 ~* O
【4】PNAS:打破教科书!科学家找到p63突变导致AEC综合征的原因/ X6 f8 {% N5 p: ^9 ]1 y# c
doi:10.1073/pnas.17137731152 u! k, ^3 V- `! g0 [# _* U
p63蛋白突变会导致一系列疾病,但是任何一种都不如AEC综合征严重。来自法兰克福大学的科学家们与那不勒斯“费德里科二世“大学的研究人员合作发现与其他p63相关综合征相比,这种综合征更像阿尔兹海默症、帕金森或ALS等疾病。他们的结果于近日发表在《PNAS》上,为开发新疗法奠定了基石。# X. D# ?. O( Q1 p7 s
许多疾病的起因都由基因异常产生的异常蛋白导致。一个著名的基因就是p53,一种肿瘤抑制蛋白。P53失活是癌症发展最初的现象。但是其同源蛋白p63的突变却会导致一系列综合征,这些综合征都伴随着胚胎发育缺陷。
: U+ h1 r+ g+ z, Z9 `% Y, x转录因子p63在皮下干细胞中发挥作用,可以调节它们的发育和增殖。该基因某些部分的突变会导致AEC综合征,特征就是睑缘黏连、外胚层发育不全及面裂。通过手术可以修复或者缓解某些症状,但是由于对突变分子p63的功能不甚了解,因此迄今为止还没有一种方法可以从根本上治疗该疾病。
" u4 R3 l' o0 T" D* K' j* t; G3 b8 i% v* w
【5】Cell:挑战教科书!揭示大脑中的多巴胺释放机制, N/ f* o! j% W; @* c
doi:10.1016/j.cell.2018.01.008
4 U$ I* n1 J! r7 e+ u4 }& e经过数十年来对神经递质多巴胺在运动控制和寻赏行为中发挥的关键作用的研究,它已成为理解它的活性的无数努力的焦点,特别是当它在帕金森病和成瘾等疾病中发生偏差时。1 G+ t" A. L6 I
尽管科学家们已取得了长足的进展,但对健康的多巴胺细胞释放这种神经递质的机制知之甚少,这一差距限制了科学家们开发治疗一系列多巴胺相关疾病的方法的能力。如今,在一项新的研究中,来自美国哈佛医学院的研究人员首次鉴定出大脑中负责精确分泌多巴胺的分子机制。相关研究结果发表在2018年2月8日的Cell期刊上。
. E  Y6 I! B5 G这项研究鉴定出产生多巴胺的神经元中的特定位点,这些神经元以一种快速的空间精确的方式释放多巴胺---这一发现与关于这种神经递质如何在大脑中传递信号的当前模型相冲突。- I2 E: k/ o5 \
论文通信作者、哈佛医学院神经生物学助理教授Pascal Kaeser说,“这种多巴胺系统在许多疾病中发挥着至关重要的作用,但很少有研究提出健康的多巴胺神经元如何释放这种神经递质的基本问题。” 更好地在实验室中理解多巴胺可能对治疗多巴胺信号发生偏差的疾病的能力产生巨大的影响。9 R# B8 P7 q; E- a! |4 ?
【6】Science:挑战常规!利用基于CRISPR/Cas9的DNA标记技术观察动态的DNA舞蹈
0 a" @8 g$ z. @& Ndoi:10.1126/science.aao3136! p2 C/ }! I( h8 }. v
DNA在转录期间发生抽动,让相距较远的基因组区域接触,从而增强基因表达。在一项新的研究中,来自美国斯坦福大学的研究人员开发出一种新的方法来标记单个非重复性的DNA序列。相关研究结果于2018年1月25日在线发表在Science期刊上。9 ]# D6 t# g: |* D: s
研究人员发现DNA在转录期间甩动,就像一束意大利面条被吸入噘起的嘴唇中。就像由此产生的失控飞行的酱汁一样,这个令人吃惊的发现与传统观点---它推测将相隔较远的增强和促进基因表达的基因组区域聚集在一起需要静态的DNA环---背道而驰。% y) ?/ I8 q1 }1 w: Q9 h+ J
这种新的DNA标记技术能够利用荧光分子精确地标记任何单个DNA片段,并追踪它们的三维位置和运动,从而允许揭示出这种DNA舞蹈。这些研究人员将这种技术称为嵌合gRNA寡核苷酸阵列(chimeric array of gRNA oligo, CARGO)。它是CRISPR/Cas9基因编辑工具的一种变体,有望引发基因组动力学研究变革。0 e- d+ w, r5 l5 f; J! O

: g/ @3 ]+ x8 v* E8 }+ N2 W【7】Nature:挑战常规!98%的人体肠道微生物组差异竟由环境决定!
) H. f8 u7 a, _8 J6 _doi:10.1038/nature25973% [* M( k2 Q# l2 d3 `# D$ {) s7 x
关于与生俱来与后天培养(nature vs nurture)的问题延伸到了我们的微生物组(microbiome)---我们每个人携带的细菌(它们中的大多数是有益细菌)群体。接二连三的研究已发现我们的微生物组几乎影响到我们的健康的每一个方面;它的微生物组成因人而异,而且可能是包括从体重增加到情绪在内的一切的关键因素。一些微生物组研究人员认为,这种差异始于我们的基因上的差异;但是,如今,以色列魏兹曼科学研究所开展的一项大规模研究挑战了这一观点,并提供证据证实微生物组和健康之间的关联性可能比我们想象中的更加重要。相关研究结果于2018年2月28日在线发表在Nature期刊上。: Q* p  p9 Y8 G4 P# F
事实上,现行的假设一直认为遗传学在决定人与人之间的微生物组差异方面起着重要的作用。根据这一观点,我们的基因决定着我们的微生物组所占据的环境,并且每种特定的环境允许某些细菌菌株茁壮成长。然而,在这项新的研究中,这些研究人员令人吃惊地发现宿主的遗传因素在决定微生物组的组成方面起着微小的作用---仅导致人与人之间的微生物组差异的2%。
! q- L3 \0 x  a- E/ S【8】Science:挑战常规!维持骨髓造血干细胞所需的TPO蛋白竟由肝细胞产生/ g3 T, }# e( f
doi:10.1126/science.aap8861
2 I" L/ R" k3 k* n/ ~造血干细胞(hemapoietic stem cell, HSC)是存在于造血组织中的一群原始造血细胞,它不是组织固定细胞,可存在于造血组织及血液中。造血干细胞在人胚胎2周时可出现于卵黄囊,妊娠5个月后,骨髓开始造血,出生后骨髓成为干细胞的主要来源。在造血组织中,所占比例甚少。现代医学中,造血干细胞在骨髓移植和疾病治疗方面有重要作用。造血干细胞(HSC)一直被认为是所有血细胞的祖先。在我们出生后,这些多能性干细胞产生了我们的所有血细胞谱系:淋巴系细胞(lymphoid cell)、髓系细胞(myeloid)和红系细胞(erythroid cell)。' [5 t7 Y" D* k+ f4 q5 @( j1 m- l' `
1988年法国的Gluckman教授在国际上率先成功采用脐血造血干细胞移植,救治了一名贫血患儿,标志着脐带血造血干细胞移植时代的开启。全球现每年约进行6万例骨髓移植术,其中使用自体和同种异体造血干细胞完成骨髓移植术的患者人数分别为近3.5万和2.5万例。
1 v) J' V! Q& N( r7 a
/ n* \* d7 x) y3 n【9】Cell:挑战常规!胎儿T细胞竟是成年时对感染作出最快反应的生力军6 k" L/ Y3 q; Z0 c( r* S; U! o* Q
doi:10.1016/j.cell.2018.05.0290 Z: H5 @, U  u  N5 |4 r
在一项新的研究中,来自美国康奈尔大学的研究人员发现,在抵抗体内入侵病原体的免疫细胞之间存在着分工。他们首次发现胎儿免疫细胞存在于成年动物中,并且在感染期间发挥着特定的作用。事实上,这些在生命早期产生的首批免疫细胞是成年动物体内对微生物感染快速作出反应的首批响应者。相关研究结果于2018年6月14日在线发表在Cell期刊上。
" Q0 [2 V* @: l5 T  T这些被称作CD8 + T细胞的免疫细胞存在胎儿类型和成年类型,它们起源于身体的不同部位,并且天生就具有本质上不同的特性。当前的流行观点是在出生时,身体从产生和使用胎儿T细胞切换到产生和使用成年T细胞来进行自我保护。但是这些研究人员采用一种独特的研究设计来证实胎儿T细胞持续存在于成年期,并且在抵抗感染方面存在着与成年T细胞不同的作用。: U; N# P, L! J6 b! M# v2 P  ]
【10】Cell:挑战常规!细胞周期的G1期和G2期是非常类似的
& X) P/ f; x$ w  ]& K! Ndoi:10.1016/j.cell.2018.03.065
3 f- i' G7 H& U3 W0 C  J  j我们体内的细胞通过一个四阶段过程进行增殖:在G1期间,细胞首先增加它们的质量并为DNA复制作好准备;在S期间,它们复制DNA;接下来,在G2期间,它们检查重复DNA的保真度并组装细胞分裂所需的材料;最终,在有丝分裂期间,它们对复制的染色体进行排列并进行分裂。从一个阶段过渡到下一个阶段是受到严格调节的,需要组装和分解各种蛋白复合物来执行许多不同的功能,包括提供细胞周期进展的分子检查点。# @% A4 Y4 x$ V* k8 A- T3 E. O
长期以来,科学家们认为细胞周期的G1期和G2期处于不同的调节控制通路中,但是在一项新的研究中,来自新加坡科技研究局(A*STAR)分子与细胞生物学研究所的P?r Nordlund及其同事们推翻了这个观点。他们发现在细胞周期的G1期和G2期中形成的蛋白复合物是非常类似的,这提示着当细胞没有活跃地复制遗传物质或进行自我分裂时,它本能地存在着一种默认的生化操作模式。相关研究结果近期发表在Cell期刊上。
! Z& t9 }# r: B" w. G& J7 H( q, F# Q; f0 S& S
【11】Science子刊:改写教科书!重新确定抗体IgM的结构
% H; Z* H: K9 v+ z) p6 rdoi:10.1126/sciadv.aau11994 V: A6 B9 B7 \- r* J# j- A
在一项新的研究中,来自日本东京大学的研究人员通过利用计算机图像分析和现代的电子显微镜成像揭示了一种至关重要的称为免疫球蛋白M(IgM)的免疫蛋白的结构,从而为未来开发出针对从癌症到神经系统疾病的一系列疾病的更加有效的药物提供了可能性。相关研究结果发表在2018年10月10日的Science Advances期刊上。2 [& `; F3 P1 x3 V! L, g
IgM是免疫系统的一个重要的组成部分。这些研究人员利用IgM的人类版本和小鼠版本对天然的IgM的结构进行了验证。他们认为IgM如今应当被理解为形状像不完整的六边形,或者像是有楔形缺口的五边形。Miyazaki说,“我们将不得不改写教科书。”
' Q4 ]! O% e% d! h/ AIgM是首个在人类胎儿中产生的免疫系统蛋白,并且在一生当中始终首先对病原体入侵作出反应的蛋白分子。 IgM的结构于1969年首次被确定为“五角星形状的桌子(five-pointed, star-shaped table)”,并于2009年更新为五面圆顶(five-sided dome)或“蘑菇形帽(mushroom cap)”。0 ^0 r3 Y* S9 @; H- L( R
【12】Cell:挑战常规!揭示肥胖导致肝癌的一种新机制
' E$ l4 b8 c8 N/ Tdoi:10.1016/j.cell.2018.09.053" F9 t( {# S% W
根据2017年美国疾病控制预防中心(CDC)的报道,在过去的十年中,40%的癌症与肥胖有关,超过吸烟成为癌症的主要原因。在女性中,肥胖是子宫内膜癌和乳腺癌的主要驱动因素,而在男性中,肥胖引起的主要癌症之一是肝细胞癌(HCC)或者说肝癌。
# t" {3 S" d& b/ W4 n肝癌是全球第五大常见癌症,也是癌症死亡的第三大常见原因。在过去的20年中,美国的肝癌发病率翻了一番,澳大利亚的肝癌发病率翻了三番。这种肝癌增加的30%~40%是由肥胖流行病导致的。
0 f7 b" G8 C. X3 ^2 F) |大多数患上肝癌的肥胖者首先产生非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NALFD),随后是更严重的非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)。这可能导致肝硬化和肝功能衰竭,在某些情况下会导致肝癌。+ ~9 T6 D) N# _2 b; C% N% c
/ R( g# x( `5 ~5 u) t0 Q  V8 m
【13】Cell:挑战常规!真核生物基因组周期性竟由突变导致% N. q& m& I1 L
doi:10.1016/j.cell.2018.10.004  i' y5 z; B1 V
自从21世纪初人类、小鼠和果蝇等生物的基因组序列为人所知以来,一些科学家们就已注意到由腺嘌呤(A)和胸腺嘧啶(T)组成的碱基对在基因组中的比例具有明显的周期性。事实上,在基因组中,每隔10个碱基对观察到A/T碱基对存在的几率就会增加。这种周期性与DNA缠绕核小体的方式有关。科学家们给出的解释是自然选择有利于A/T碱基的出现,这些因为这两种碱基为DNA结构提供更大的灵活性,从而允许DNA缠绕在组蛋白上形成核小体。% D5 Y" \1 h, O$ Y' u
在一项新的研究中,来自西班牙巴塞罗那生物医学研究所(IRB Barcelona)的研究人员通过研究突变在3000多种人类肿瘤样品中的分布,观察到这些突变也每隔10个DNA碱基对积累一次。相关研究结果发表在2018年11月1日的Cell期刊上。$ }9 T* y) g+ V* |' D
【14】Cell:挑战常规!细胞膜并不类似于液体,其实更类似于半固体
7 i0 ^0 [: O8 v, Y3 }& m% gdoi:10.1016/j.cell.2018.09.054& y( `: R  }8 w) W. {4 ~3 F  ~6 X6 B
长期以来,科学家们一直认为,细胞膜的作用类似于粘性的液体,这意味着构成它的脂质分子被卡在细胞膜的平面上,但是在这个平面内,这些分子能够四处移动。人们已开展了一些实验,在这些实验中,对位于膜中的跨膜蛋白进行标记,并且能够观察到它们四处扩散,不过这些实验通常是利用“合成(synthetic)”膜开展的。鉴于细胞膜类似于液体,如果拉扯它的一侧,它就会流动,直到张力再次保持平衡。人们认为这种张力扩散是非常快的,而且这可能是细胞从细胞膜的一部分向它的另一部分发送信号的一种方式。不过,尽管很多研究已提出细胞膜以这种方式发挥作用,但是很少有实验证据来支持这一点。
1 \% Q( g# Q; z1 W+ h在一项新的研究中,美国哈佛大学化学与化学生物学教授Adam Cohen、Cohen实验室博士后研究员Zheng Shi及其团队推翻了关于细胞膜的液体性质及其对张力作出反应的方式的常规观点,发现细胞膜实际上更接近于像吉露果子冻(Jell-O)这样的半固体。相关研究结果于2018年11月1日在线发表在Cell期刊上。
. v( r' w. w# |1 z7 d! H
0 w! B+ ?! o3 L; [+ G, `【15】Nature:改写教科书!中国科学家阐明保护卵母细胞独特表观基因组的新型机制!4 o" W3 @; F7 }; H  R' E8 f& D& ^8 r
doi:10.1038/s41586-018-0751-5* Q8 R' A( G- ~* V( o
在哺乳动物中,雌性机体的卵母细胞数量往往有限,卵母细胞拥有一套独特的表观基因组,其甲基化程度相当于精子的一半,而且卵母细胞也是一种分化程度最高的体细胞;截至目前为止,研究人员并不清楚这种独特的DNA甲基化的调控模式以及其相关的功能。' a( O# w+ j+ T0 S3 ^% K
近日,一项刊登在国际杂志Nature上的研究报告中,来自中国科学院生物物理研究所朱冰教授的研究团队通过研究就鉴别出了一种新型的DNA甲基化调节子—Stella,其在体细胞中的异位过量表达会通过干扰DNA甲基化调节子UHRF1的功能来诱发全面的DNA去甲基化作用。
: ?( @" x! ?2 C" s+ P# N, v文章中,研究者揭示了Stella如何通过一种活性的核输出过程将调节子UHRF1从细胞核隔绝,而Stella缺失所引发的UHRF1功能失调会导致卵子发生期间异常DNA甲基化的积累,相关研究发现揭示了首个调节性因子能够保护卵母细胞基因组特殊的甲基化状态。7 A4 A8 b4 M& s) y8 [& b
【16】PNAS:改写教科书!中美科学家发现父亲线粒体DNA也能够传递给子女, {1 w: l% B# p! T
doi:10.1073/pnas.1810946115$ k* }' Q/ {0 _+ _2 t* K: S$ M
在一项新的研究中,来自中国广西妇幼保健院、台大医院以及美国辛辛那提儿童医学中心、贝勒医学院和梅奥诊所的研究人员发现一些罕见的父亲将线粒体DNA(mtDNA)传递给子女的例子。相关研究结果于2018年11月26日在线发表在PNAS期刊上。# ]! j  b; p- k# }, L9 B, d6 r' Z
线粒体是存在于每个人细胞内的细胞器---它们的功能是产生能量。线粒体的独特之处在于它们具有自己的与细胞核中发现的DNA分隔开来的DNA,因此将之称为线粒体DNA(mtDNA)是非常恰当的。之前的研究已表明一旦卵子受精,精细胞内的mtDNA就会受到破坏。因此,后代仅遗传母亲的mtDNA。鉴于mtDNA的这种独特性质,它已被广泛用于研究人类和其他动物的遗传史。(生物谷Bioon.com)
, B* H: s$ _# }: y
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-4-27 02:04

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.