  
- 积分
- 8
- 威望
- 8
- 包包
- 898
|
作者:高立艳 徐开林 潘秀英作者单位:徐州医学院护理学系,江苏 徐州 221002
' Y, b" {$ ~( e7 f6 O
+ v2 |" |5 Z8 l) |4 Z9 q9 W8 m : h, g E5 Y7 j' C
`* s& o# m9 @; t9 a/ L : @# H \$ T4 ~+ ]% Z
' U$ W9 A+ y2 o! W% |
+ { g- d5 Z3 {: b* m3 s- J
+ c& w: F) s( C
$ S& M2 @( ]/ c0 W/ a# p- b
! H- U( k; r; q+ `/ E) [ ( ~3 g( C! D' n2 h' c2 q0 _5 T- M1 u4 m
. t$ \( N9 G( g- V 【摘要】 目的 观察粒细胞集落刺激因子(G-CSF)和粒-巨噬细胞集落刺激因子(GM-CSF)单独、同时或序贯联合应用动员小鼠外周造血干细胞时,外周血T细胞亚群的变化。方法 72只BALB/c小鼠随机分成A、B、C、D、E、对照组6组,皮下注射:A组,重组人(rh)G-CSF 400 μg·kg-1·d-1;B组,rhGM-CSF 400 μg·kg-1·d-1;C组,rhG-CSF 200 μg·kg-1·d-1 rhGM-CSF 200 μg·kg-1·d-1;D组,rhGM-CSF 400 μg·kg-1·d-1(前3天)+rhG-CSF 400 μg·kg-1·d-1(后2天);E组,rhG-CSF 400 μg·kg-1·d-1(前3天)+rhGM-CSF 400 μg·kg-1·d-1(后2天);对照组,生理盐水0.2 ml,连续注射5天。动态观察外周血白细胞计数,同时通过流式细胞仪测定外周血T细胞亚群的变化。 结果 rhG-CSF与rhGM-CSF联合方案动员外周血白细胞计数较高;动员后各实验组CD 3细胞、CD 3CD 8细胞、CD 3CD-4CD-8细胞增加,CD 3CD 4/ CD 3CD 8比值下降,GM-CSF明显提高了CD 3CD-4CD-8细胞比例。结论 G-CSF和GM-CSF动员小鼠外周血造血干/祖细胞过程中对T淋巴细胞亚群的数量和比例有一定的影响,其可能有免疫调节作用。 & [. @" e$ q6 b, o9 O& \6 g5 d
【关键词】外周血干细胞 动员 粒细胞集落刺激因子 粒-巨噬细胞集落刺激因子 T淋巴细胞亚群
9 K& |/ \: f1 y8 N4 u& D1 J! x, c$ s* j Changes of T cell subsets in the peripheral blood of mice after mobilization of2 e8 E! @/ l# O7 d& ]8 l
- F( h& X6 o9 Z& I1 P1 }: V8 Ohematopoietic stem cells by G-CSF and GM-CSF
0 N* e* C" D0 F7 S- O5 u
: q+ L" U g y/ A$ c- MGAO Li-yan1, XU Kai-lin2, PAN Xiu-ying2! |7 V' y) f# H* S U
8 z5 q7 Q6 v: N1 [$ S
(1. School of Nursing, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China;
8 e3 \. R ?) l( }! j/ Q1 A0 w: a$ e( C* m# u' H, J: Y
2. Department of Hematology, Affiliated Hospital of Xuzhou Medical College)% W4 }3 C" r+ W6 _5 R" _( S( [
. P3 @6 g' c2 s! T9 {, aAbstract: ObjectiveTo observe the changes of T cell subsets in the peripheral blood of mice after the mobilization of hematopoietic stem cells with granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factors (GM-CSF) given alone, concurrently, or in sequential combination. Methods72 BALB/c mice were divided into 6 groups (n=12 each): groups A, B, C, D, E, and the control group to proceed with the following regimens for mobilization respectively: group A. rhG-CSF 400 μg·kg-1·d-1 alone; B. rhGM-CSF 400 μg·kg-1·d-1 alone; C. concurrent combination of rhG-CSF 200 μg·kg-1·d-1 and rhGM-CSF 200 μg·kg-1·d-1; D. sequential combination of rhGM-CSF 400 μg·kg-1·d-1 for 3 days followed by rhG-CSF 400 μg·kg-1·d-1 for 2 days; E. sequential combination of rhG-CSF 400 μg·kg-1·d-1 for 3 days followed by rhGM-CSF 400 μg·kg-1·d-1 for 2 days; and control group. subcutaneous saline 0.2 ml for 5 successive days. The white blood cells (WBC) were counted under microscope; the percentile changes of T cell subsetswere assayed by flow cytometry at serial time points. ResultsThe yields of WBC were significantly higher after the combined use of G-CSF and GM-CSF for mobilization than those after the use of rhG-CSF or rhGM-CSF alone. Compared with that in the control group, the percentages of CD 3,CD 3CD 8 and CD 3CD-4CD-8T cells were all increased, and the ratio of CD 3CD 4/CD 3CD 8 was reduced in the experiment groups. The use of GM-CSF caused marked increase in the proportion of CD 3CD-4CD-8. ConclusionIn the process of mobilization of hematopoietic stem cells, G-CSF and GM-CSF will alter the number and the proportion of T cell subsets, possibly through an immunoregulatory function.. c' e. T2 o# d7 Q, [
7 n$ b3 R% g0 `! C! B; rKey words: mobilization; granulocyte colony stimulating factor; granulocyte-macrophage colony stimulating factor;T lymphocyte subsets
# ]2 r. A F" R F& w: }7 ]( _) w# E
近年来外周血干细胞移植(PBSCT)技术正越来越多地应用于恶性肿瘤尤其是恶性血液病的治疗。与异基因骨髓移植(allo-BMT)相比,异基因外周血干细胞移植(allo- PBSCT)后造血重建和免疫重建速度均较快,虽然allo-PBSCT输注的移植物中淋巴细胞数量显著高于allo-BMT,但急性移植物抗宿主病(aGVHD)的发病率并没有明显增加,而移植物抗肿瘤(GVT)效应则有所增强,无病生存率提高[1~3]。目前,allo-PBSCT多采用粒细胞集落刺激因子(G-CSF)和粒-巨噬细胞集落刺激因子(GM-CSF)的动员方案,因此人们除了重视G-CSF和GM-CSF的动员效应以外,也日益重视其在干细胞动员过程中对免疫细胞的作用。我们在比较G-CSF和GM-CSF单独、联合应用动员小鼠外周血造血干细胞效果的同时,对T淋巴细胞亚群的变化进行了初步研究,现报道如下。
. i! h0 J% b7 A5 k# }/ \1 ~" j0 ]" C1 ^2 ~+ Y4 J! a4 ?9 |" Z
1材料和方法$ Y. E0 z4 M; y9 p
% x3 ?1 D9 a4 b h& C, z$ P0 l1.1实验动物BALB/c小鼠72只,雌雄各半,体重18~22 g,为清洁级近交系小鼠,鼠龄10~14周,购自徐州医学院实验动物中心,按清洁级标准饲养。* \. Y0 g9 z% T. \, {
1 D c9 G3 q% L- ^1 k/ G A1.2主要药品试剂和仪器重组人(rh)G-CSF购自杭州九源基因工程有限公司;rhGM-CSF购自厦门特宝生物工程有限公司;CD45-PC5、CD34-PE、CD38-FITC单抗购自BD公司;培养基IMDM购自Hyclone公司;流式细胞仪(BECTONDICKINGON公司);CO2培养箱(FORMA公司)。/ S+ _" f8 U0 b5 A; O) y8 a
4 T! O- O+ V: L: s& H$ u1.3分组与给药方法BALB/c小鼠72只,随机分成6组,每组12只。A组: rhG-CSF 400 μg·kg-1·d-1;B组:rhGM-CSF 400 μg·kg-1·d-1;C组:rhG-CSF 200 μg·kg-1·d-1 rhGM-CSF 200 μg·kg-1·d-1,A、B、C各组连续皮下注射5天。D组: 前3天皮下注射rhGM-CSF 400 μg·kg-1·d-1,后2天皮下注射rhG-CSF 400 μg·kg-1·d-1;E组: 前3天皮下注射rhG-CSF 400 μg·kg-1·d-1,后2天皮下注射rhGM-CSF 400 μg·kg-1·d-1;对照组:连续5天皮下注射生理盐水0.2 ml。
( @. V, A! {6 {6 b' @) Z
6 e6 I: a2 {, B9 J1.4检测指标2 y( y# G. t# w! }
5 N0 ~: d1 O5 ~7 K% j1 p( g
1.4.1外周血白细胞计数分别于0~6天连续取小鼠尾静脉血5 μl,加入预先配置的3%的稀盐酸中,混匀后,利用细胞计数板在显微镜下进行白细胞计数。
" f! `5 `5 w# m) U% `7 W$ q
3 n6 [! @/ Z! i+ K8 K6 S( v1.4.2外周血T淋巴细胞亚群检测3~6天取小鼠尾静脉血50 μl,加入CD4-Cy单抗5 μl,CD8-PE单抗5 μl,CD3-FITC单抗5 μl混匀,室温下避光20 min进行单抗标记,加入2 ml溶血素后避光8 min,PBS洗涤2次,1000 r/min离心2 min,即上机测定。用流式细胞仪(FCM)检测CD 3细胞、CD 3CD 4细胞、CD 3CD 8细胞、CD 3CD-4CD-8细胞、CD 3CD 4细胞和CD 3CD 8细胞比例。4 d+ ]' t+ `% Z$ D$ |% k8 o6 g
2 v5 S6 E- M) R1.5统计学处理所有数据应用SPSS 11.0软件进行数据处理,采用方差分析和t检验。
* A4 ^1 r5 `, F5 ~5 `7 X/ |! d; D/ i
2结果
1 }1 x' S7 H* I# q/ _& I: x$ F7 _& F P. k2 f+ \( Q: Z- E8 P
2.1动员前后小鼠外周血白细胞的变化除对照组外,各实验组在注射后24 h白细胞升高幅度最大,随用药时间延长白细胞数进一步升高,各组均在第5天达高峰,明显高于对照组和用药前(P﹤0.01)。第5天达高峰时,A、C、D、E各组白细胞数均显著高于B组(P﹤0.01),而 A、C、D、E各组间相比较无显著性差异(P﹥0.05),动员剂停用后24 h各实验组白细胞数均开始下降。提示单用G-CSF或G-CSF与GM-CSF联合的动员方案较单用GM-CSF组白细胞升高更明显(表1)。表1不同动员方案各时间点外周血白细胞计数; [6 m' H; t+ j! U+ f8 N$ A
4 h3 `. j1 |6 E8 y: b8 ?5 }% e. f. q2.2动员前后外周血T细胞亚群变化动员第5天,白细胞升高达高峰时,各实验组外周血CD 3细胞比例均显著高于对照组(P﹤0.001),各实验组间对比CD 3细胞比例无显著性差异(P﹥0.05)。CD 3CD 4细胞、CD 3CD 4CD 8细胞比例,各实验组与对照组相比无明显差异(P﹥0.05)。外周血CD 3CD 8细胞比例,各实验组明显高于对照组(P﹤0.05),各实验组间比较CD 3CD 8细胞比例无显著性差异(P﹥0.05)。动员高峰期各实验组CD 3CD 4/ CD 3CD 8比值较对照组(P﹤0.05)降低,各实验组间无显著性差异(P﹥0.05)。A、B、C、D、E各实验组CD 3CD-4CD-8细胞比例在动员高峰期明显高于对照组(P﹤0.001),CD 3CD-4CD-8细胞增高顺序依次为实验B组﹥D组﹥C组﹥E组﹥A组。提示:动员后CD3 细胞、CD3 CD8 细胞增加,CD4 / CD8 比值下降,各实验组间无显著差异。CD 3CD-4CD-8细胞比例增高以单用GM-CSF组最高,单用G-CSF组最低(表2)。表2不同动员方案各时间点外周血T细胞亚群变化
3 J7 A+ C8 p" G
4 B. B' n) ^% a8 r- S3讨论
% \0 F1 R3 _8 W) T; }6 o( n
5 `$ b* ^! A" E2 K4 @* M, F9 zT淋巴细胞亚群在移植免疫中发挥着重要作用,异基因造血干细胞移植(allo-HSCT)后的aGVHD及自体造血干细胞移植后免疫功能的恢复均与其密切相关。已有研究发现经G-CSF和GM-CSF动员PBSC的过程中T细胞亚群的比例、数量产生了相应的变化,如Th0向Th2、Tc2细胞分化,而Th2、Tc2亚群比例增高,Th1、Tc1亚群降低,从而导致allo-PBSCT后GVT作用增强,aGVHD发生率及严重程度并未增多,而慢性GVHD的发生有增高趋势[1~5]。我们的实验结果显示在G-CSF和GM-CSF动员PBSC的过程中,随着白细胞计数的增高,不同的动员方案对T淋巴细胞亚群产生了不同影响。, H9 S t$ P0 t( c" R# Z+ F
. s! u3 C+ B1 P& p9 S# x3 }
在稳定的生理状态下,存在于骨髓中的免疫细胞为较不成熟的免疫细胞,而外周血中存在的是成熟的、经过胸腺选择的并具有各种功能的效应细胞。研究发现,G-CSF动员后引起T细胞黏附分子L-选择素的表达降低,从而阻碍了T淋巴细胞穿越血管内皮细胞进入淋巴组织或其他血管周围组织,这样T细胞在血管循环池中发生积蓄而使得外周血T细胞数量在动员后大量升高[6-7]。大量动物实验发现,G-CSF动员能够极化T细胞所分泌的细胞因子,使T淋巴细胞亚群发生变化,IL-4、IL-6、IL-10等Ⅱ类细胞因子分泌增加,而促发GVHD发生的IL-2、TNF-α、IFN-γ等Ⅰ类细胞因子分泌减少,aGVHD的发生率和严重程度降低[4-5,8]。本实验结果表明,细胞因子在动员小鼠PBSC的同时,改变了小鼠外周血T淋巴细胞的数量及比例,各实验组CD 3细胞、CD 3CD 8细胞比例明显高于对照组,CD 3CD 4/ CD 3CD 8比值低于对照组,初步提示免疫应答的负调节占优势,具体的免疫调节机制需进一步分析CD 3CD 4、CD 3CD 8细胞分别向Th1、Th2、Tc1、Tc2分化的能力。; c F0 k! `% m
/ P; F3 x# B3 U1 o
在T淋巴细胞的分化过程中,最先出现的是CD 3CD-4CD-8细胞,在经过胸腺的过程中进行阳性选择及阴性选择后,细胞表达CD 3CD 4CD 8,当此种细胞经过胸腺髓质的过程中,CD 3CD 4CD 8细胞进一步分化为CD 3CD 4细胞和CD 3CD 8细胞,进入外周血循环并执行其生理功能。研究结果显示,在G-CSF/GM-CSF动员小鼠PBSC的同时,CD 3CD-4CD-8细胞在外周血的比例明显增高。CD 3CD-4CD-8细胞为外周血成熟T细胞的前体细胞,动员后明显上升,说明T淋巴细胞与造血干细胞迁移具有较好的一致性。CD 3CD-4CD-8细胞又称为自然抑制细胞,能够抑制混合淋巴细胞反应中的增殖反应并可抑制CD 3CD 4、CD 3CD 8细胞对异体细胞的细胞毒作用,从而降低了allo-PBSCT后aGVHD的发生率[9-10]。亦有研究发现CD 3CD-4CD-8细胞是通过抑制CD 3 CD 8细胞的活化、增殖,并通过Fas-FasL途径破坏已激活的CD 3 CD 8细胞、CD 3CD 4细胞而实现免疫抑制作用[11~13]。因此,细胞因子动员后CD 3CD-4CD-8细胞的过度表达可能有利于抑制aGVHD,对T细胞增殖、分化功能的改变起着协同作用。从不同动员方案CD 3CD-4CD-8细胞数量变化中也说明GM-CSF或GM-CSF与G-CSF联合的方案较单用G-CSF方案有可能降低GVHD发生,促进细胞免疫功能发挥。基于此,目前国内在进行非血缘或半相合allo-HSCT时已将G-CSF/GM-CSF动员后的骨髓+外周血造血干细胞作为移植物可减轻GVHD的发生而保留GVT效应并取得了较好的移植效果[14]。
5 K+ M3 t$ Z& {$ a- w% h d8 g" l
# A# n1 ]' Q2 h4 e* E
' }4 l! G1 s5 ?, z 【参考文献】5 z7 \+ @3 P* g3 e) j; E/ u* p
[1] Champlin RE, Schmitz N, Horowitz MM, et al. Blood stem cells compared with bone marrow as a source of hematopoietic cells for allogeneic transplantation. IBMTR Histocompatibility and Stem Cell Sources Working Committee and the European Group for Blood and Marrow Transplantation (EBMT)[J]. Blood, 2000, 95 (12): 3702-3709.
! _* T4 ^ W) H. ]1 O
7 q' R( X9 ^& ]9 H/ {) G: B# B: K# H; g& f# m+ ~4 q
8 K, j$ l) e, S8 Z9 O [2] Couban S, Simpson DR, Barnett MJ, et al. A randomized multicenter comparison of bone marrow and peripheral blood in recipients of matched sibling allogeneic transplants for myeloid malignancies[J]. Blood, 2002, 100 (5): 1525-1531.+ O2 i: }; B3 p3 K& G
5 \. ] l( G; [" j' H/ ]( Z3 y. M7 p9 J3 H H- M0 m
9 G3 N; [ p2 R" b [3] Ringdén O, Labopin M, Bacigalupo A, et al. Transplantation of peripheral blood stem cells as compared with bone marrow from HLA-identical siblings in adult patients with acute myeloid leukemia and acute lymphoblastic leukemia[J]. J Clin Oncol, 2002, 20 (24): 4655-4664.: M* W7 V0 w V; J$ L$ A
( [; Y7 F6 Y$ [5 d
0 q. Y, z4 d7 M9 B. a* t) C4 W! W6 Q% b# l% V
[4] Fowler DH, Kurasawa K, Smith R, et al. Donor CD4-enriched cells of Th2 cytokine phenotype regulate graft-versus-host disease without impairing allogeneic engraftment in sublethally irradiated mice[J]. Blood, 1994, 84(10): 3540-3549.
0 V% i+ d1 H' P6 |+ k& R! [. X: w% {8 N
! R- J- B! e* Y6 t6 j2 o
2 ^, i+ \( Y( n3 {( A& m
[5] Pan L, Delmonte J, Jalonen CK, et al. Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease[J]. Blood, 1995, 86(12): 4422-4429.7 X( P& S: H6 [2 J
! N2 M7 e. f" g7 N3 J( W
& r& G3 t/ T: Z4 Q' L: K
+ E* y: R; d+ `
[6] Takami A, Nakao S, Yachie A, et al. Successful treatment of Epstein-Barr virus-associated natural killer cell large granular lymphocytic leukaemia using allogeneic peripheral blood stem cell transplantation[J]. Bone Marrow Transplant, 1998, 21(12):1279-1282.
. k/ t) A1 ~0 Z4 t$ ~6 W h. r! ?
: ~" ]" \ ~& z+ h( [
# ?/ c t/ z0 O7 p* R* j
* G! d0 v' E7 K' S# O9 E+ W [7] Rutella S, Pierelli L, Bonanno G, et al. Role for granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells[J]. Blood, 2002, 100(7): 2562-2571.
! v2 }3 B2 L" _' G" T" C/ W
, @5 V5 N! }; w7 P3 w1 A5 u% p( _( Q/ { D1 D% k/ e' a g! d" D
+ k; h' H: Q% J: l( x" r
[8] Zeng D, Dejbakhsh-Jones S, Strober S, et al. Granulocyte colony-stimulating factor reduces the capacity of blood mononuclear cells to induce graft-versus-host disease: impact on blood progenitor cell transplantation[J]. Blood, 1997, 90(1): 453-463.1 K3 P }0 J) w' {* z% R. [& @
7 E+ E0 r* \9 B; i( ^2 ` V* Z6 Y; f/ E5 T2 ?
, Y* k& \& r# ]3 I [9] Winter JN, Lazarus HM, Rademaker A, et al. Phase I/II study of combined granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor administration for the mobilization of hematopoietic progenitor cells[J]. J Clin Oncol, 1996, 14 (1): 277-286.
, j* I3 M% d1 Q" g' c5 D: o+ l, i! ~: B; Q
- d1 ]! _) Z& u. Y1 K& _; z( t; R* [
) ~ W' w2 o# L8 S# u/ l8 e: d [10] Arora M, Burns LJ, Barker JN, et al. Randomized comparison of granulocyte colony-stimulating factor versus granulocyte-macrophage colony-stimulating factor plus intensive chemotherapy for peripheral blood stem cell mobilization and autologous transplantation in multiple myeloma[J]. Biol Blood Marrow Transplant, 2004, 10 (6): 395-404.
, V! d3 k$ g3 J8 g B$ t% F6 s6 a! Z; K( d/ Y* G' b* S; K
. g* \0 C8 |$ X
& ]: r% [1 M; T9 R; l; s! X1 j [11] Zhang ZX, Yang L, Young KJ, et al. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression[J]. Nature Medicine, 2000, 6(7): 782-789.+ V1 \$ {; }/ J5 P5 z/ t; D0 f
: b: N/ }+ g- O) L# b# s, C
+ ]4 g2 B& J8 P |3 ]4 r5 k7 i! K- {; C5 { k
[12] Young JK, DuTemple B, Phillips MJ, et al. Inhibition of graft-versus-host disease by double-negative regulatory T cells[J]. The Journal of Immunology, 2003, 171(1): 134-141.
7 o4 j+ h4 Y( f. ?& {. z! l) w
# D; b! ?. ~; p! ]8 j8 n
& {/ S3 i- w _6 U$ r! u) e. N4 j0 J4 T, h7 C! T4 G* q
[13] Fond MS, Young KJ, Zhang Z, et al. The immune regulatory function of lymphoproliferative double negative T cells in vitro and in Vivo[J]. The Journal of Experimental Medicine, 2002 , 196 (2): 261-267.$ ] Z2 ]$ n- Q7 O7 k* d1 A$ S
$ a: D# F2 g8 j- |. c" V
% _# G8 ^. L, R8 V( T |9 |" u
* i& {: Y5 I- _* i
[14] 纪树荃,陈惠仁,琚新生,等. 异基因骨髓移植供者使用粒细胞集落刺激因子对骨髓重建与移植物抗宿主病的影响[J]. 空军总医院学报,1998, 14 (3): 143-145. |
|