干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
干细胞之家 - 中国干细胞行业门户第一站 干细胞之家论坛 干细胞行业新闻 Cell:美国学者发现杜氏肌营养不良症是一种干细胞疾病。
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 32744|回复: 1
go

Cell:美国学者发现杜氏肌营养不良症是一种干细胞疾病。 [复制链接]

Rank: 3Rank: 3

积分
496 
威望
496  
包包
1265  

优秀会员 金话筒 新闻小组成员

楼主
发表于 2010-12-11 11:02 |只看该作者 |倒序浏览 |打印
本帖最后由 细胞海洋 于 2010-12-11 15:30 编辑 3 g! g2 y) n$ `

- J$ T) o- b9 A+ Q: o主题:Cell:美国学者发现杜氏肌营养不良症是一种干细胞疾病。
+ d$ m5 W5 H9 t5 i
9 u7 _* n5 e% G2 J说明:http://www.sciencedaily.com/releases/2010/12/101209121421.htm: P0 g0 X+ U: S% C
由干细胞之家新闻小组成员qingshui1985翻译(转帖请注明)) r5 U+ n: W/ x. K

. _1 K9 U* ]6 O多年来,科学家们试图了解为什么杜氏肌营养不良症会使得儿童肌肉严重萎缩和最终导致儿童死亡。; s. |8 i, E* K# w3 ~3 I1 K
(注:这是一种遗传性肌肉萎缩病。它的基因( Dystrophin gene)存在于X性染色体中( Xp21 ),因此它是透过性连锁式隐性遗传型态传播的。男性只有一个X性染色体,因此病患者大多为男性;若女性的一对X性染色体中其一个携有异变的 Dystrophin 基因,她便成为一个 DMD 的携带者,她的儿子有二分一的机会成为病患者,她的女儿则有二分一机会成为 DMD基因携带者。)  R! F2 w9 p7 e2 A5 G0 B: r# ?
  Z# c+ B8 _- x9 l5 Y& f/ l
但是,实验室小鼠发生与人类相同的基因突变,却只表现有轻微的症状。
/ r  N; V3 f; J3 D. z6 n# S+ e/ l1 D& d
现在,由斯坦福大学医学院疾病与新动物模型所的科学家给予了一个很好的解释。他们通过研究发现儿童这一疾病可能是由于肌肉中的干细胞功能紊乱,引发的持续性的伤害造成的。
0 i* y2 R3 p" C1 J, X: s; u: A9 |- ]0 A& y  U
“肌肉萎缩症的经验与慢性肌肉损伤的病人,启动了由修复到废弃的再到修复,然后再废弃的无休止循环。”海伦.布劳博士和Donald E.和德丽雅.E.巴克斯特教授说: “我们发现,在小鼠的肌肉干细胞能跟上这一循环的需求。” $ C; I  `. D4 m
7 U7 H  L* H) h9 d6 I& j4 b7 O) p
研究人员发现所不同的是,小鼠可以大大延长染色体末端的保护帽。这一结构被称作端粒,使细胞继续分化和补充受损的肌肉细胞。而这些细胞的分裂持续时间要比先前报道的人肌肉干细胞保持持续分裂能力时间长。 5 r8 H/ u, ^5 c; d" F; K
" b! e: E' @; n% F6 m
科学家们这项研究,标志着肌肉萎缩症被首次证明是一类基于干细胞层次的疾病。科学家也构建了产生了杜氏肌营养不良症的第一个小鼠模型,可以模仿人类的这一疾病。类似于人类的症状,模型小鼠表现出严重的肌肉无力,寿命缩短。这一模型小鼠将帮助临床医师和研究人员更好地研究和测试新的疾病疗法。
: C! Q8 ~5 B+ E( X8 M" V7 |8 [+ d: p+ ~( H
“结果表明,治疗杜氏肌营养不良症仅在定向的去治疗肌纤维是不够的,甚至可能会加剧病情。肌肉干细胞必须加以考虑”布劳博士说道。贾森博士后研究员,是医学博士,共同通讯作者,现在是在加州大学旧金山分校的助理教授,他说,“如果治疗不及时补充干细胞,相关的治疗可能会失败,那将是像把油门踏板推到了地板上,而没有任何的储备。“
  g6 k2 y: t) z8 m# V! @
5 ^1 L8 A3 q* s4 N5 \$ C4 Q( W布劳博士是研究的资深作者,这一成果将在12月9日cell杂志网络版上公布。萨科.亚历山德拉博士后、Foteini Mourkioti博士,都是本成果的第一作者。萨科博士现在是在桑福德-伯纳姆医学研究所助理教授。 1 Q& p* K* Z8 ~

$ m, T; R# F4 J. I: @  p& k. i; B/ y杜氏肌营养不良症是肌营养不良中的最普遍的一种疾病。这是由于dystrophin(抗肌萎缩蛋白)基因突变引起的,正常状态下这一蛋白可以将肌肉纤维内部骨架与外部的细胞外基质连接。它的缺失导致了肌肉组织的死亡和进步的衰弱,并最终影响到病人的呼吸能力,患者到了10岁时候就经常需要坐轮椅。患病20-30年后因为一个呼吸和心脏问题通常发生死亡。这种疾病在美国每3500个男孩之中大约就有一个患者。而女孩患者较少,因为该基因在X染色体上。
( x; q5 K% u9 i+ y6 l
" x. d2 D% f2 Z几十年来科学家试图在动物中找到合适的模型。但在小鼠实验一直不成功。小鼠跟人类一样具有相同的基因突变,却只表现为微弱的肌肉无力。使得科学家没有一个简单的方法能够测试的相关的药物和疗法。同时这也给科学家出了一个难题:为什么小鼠具有这么强的抵抗Dystrophin(抗肌萎缩蛋白)基因突变引起的肌肉受损的能力?
# G( N# ]5 M" ~. e
9 W9 V" y; R/ L& I布劳,Pomerantz,萨科和Mourkioti,一致认为,答案可能存在于肌肉干细胞中。像其他类型的干细胞一样,肌肉干细胞具有两种功能,自我更新,分化为新的肌肉细胞的前体。这些前体细胞能够取代肌肉纤维中受损或死亡的肌细胞。但是,即使肌肉干细胞具有其局限性。不过小鼠肌肉干细胞超过人类。
! C5 L" d) M4 u# o. H; H* u% D3 O1 i% D/ }! c+ R7 r- Q
为了研究其原因,斯坦福大学研究人员在对两个物种的DNA端粒的长度进行了研究。结果发现,在实验小鼠的端粒的平均长度为40个碱基以上;它在人体的约5至15个碱基。端粒作为对染色体末端保护帽,可以缓冲每次复制的逐渐缩短现象。而如果当端粒变得太短,细胞则不能够分裂。 2 S1 k1 ~6 G; }' ^: M/ @

& D' k& j0 t+ L为了检验他们的理论,研究人员阻断了端粒酶的一种组分的表达(参与维持端粒DNA)。同时进行抗肌萎缩蛋白基因突变和端粒酶表达的异常的小鼠,随着年龄增长肌肉逐步衰弱退化 (正如跑步机耐力测试和肌肉损伤的实验展示)-比对照寿命也较短。实验组小鼠肌肉干细胞的无论是在动物体内和还是培养的细胞都出现增殖能力下降。如果将培养的这种处理过的肌肉干细胞移植进入野生型小鼠,其迁移和生长都表现的较缓慢。 ( g* j6 P( E- w# u, q

2 q1 d9 |( @# A* m- S“我们现在看到的是,肌肉萎缩症是一种多因子疾病,”布劳博士说:“缺乏Dystrophin(抗肌萎缩蛋白)会造成肌肉损伤。这些损坏的肌肉被肌肉干细胞不断产生的新细胞替换,但干细胞分裂多次导致端粒缩短,直至肌肉干细胞不能修复损坏肌肉组织了。而恰恰这就发生在人类肌营养不良症患者身上,而我们的新的小鼠模型也出现了类似情况。“ ; E+ N% O6 L' [! l9 z- S: I8 y
# F" X$ p5 k  h: c2 D2 i( c( [+ Z
肌营养不良症的症状反映了其实质可能是干细胞不能跟上修复损坏的步子。这一观点也提供了有一些有趣的信息。这意味着,任何肌营养不良症治疗应尽早,在体内干细胞池耗尽前进行。报告还指出,研究人员和临床医生应探讨干细胞疗法,以及如何保护肌肉纤维。最后,它还提示,有针对性增加在肌肉干细胞端粒酶活性可能将是有效的治疗肌营养不良症方法。 / O3 y: p5 S7 G  n

9 V. a5 F- x! t2 n  T“找到了肌营养不良症的原因是干细胞缺陷造成的,是令人兴奋的,”布劳博士说。 “在20世纪80年代初,我们就报道,来自营养不良患者肌肉细胞具有分化能力较弱,但我们没有足够的实验材料来找出原因,因为在当时肌肉干细胞,肌营养不良蛋白基因和端粒的功能都尚未查明。最后,我们得到了一种实验材料来研究如何发生,如何更好地定位未来的治疗方法。拥有一种模型小鼠,可以模仿人类的相关疾病,造福于该疾病的所有病人,是非常令人兴奋的。“ ; j6 e' H* K1 t
7 Z1 {" V  I, X, y. D8 B2 ?! T$ U
该研究是由美国心脏协会,国家卫生部,肌肉萎缩症协会和巴克斯特基金会资助。
, t/ p7 L2 m% ?( c9 G1 q1 [- v
* R" R) P9 [* j" s$ x* ]6 ?$ \个人翻译,理解不准确的语句还望大家积极指出。
9 v7 G# m& }- a: j/ s
8 P6 a: ]) S" [, s: a% b' H# t3 o# j# u. A/ G6 Y, M
9 J$ \6 g( O0 q, G+ g

' J, _: c5 K8 L0 U. d# T7 X! j5 b4 ]* Z+ |, i0 u
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
已有 1 人评分威望 包包 收起 理由
细胞海洋 + 20 + 100 精品文章

总评分: 威望 + 20  包包 + 100   查看全部评分

Rank: 3Rank: 3

积分
496 
威望
496  
包包
1265  

优秀会员 金话筒 新闻小组成员

沙发
发表于 2010-12-11 11:11 |只看该作者
英文稿件:4 c$ B" B* e" E; `% t$ Q7 u' w
Duchenne Muscular Dystrophy Is Ultimately a Stem Cell Disease, Researchers Find
7 F. b4 _$ J) j+ {( c) @+ j/ T( x" |$ m" k# ?: D9 S1 Q/ a: p6 V9 e
"The results suggest that treatments directed solely at the muscle fiber will not suffice and could even exacerbate the disease. The muscle stem cells must be taken into consideration," said Blau. Former postdoctoral fellow Jason Pomerantz, MD, co-corresponding author and now an assistant professor at the University of California-San Francisco, said, "if a treatment does not replenish the stem cell compartment, it will likely fail; it would be like pushing the gas pedal to the floor when there is no reserve."
" v1 G4 _' Z3 M: Y4 p
: Z$ k6 o% B: F  Y1 JBlau is the senior author of the research, which will be published online Dec. 9 in Cell. Postdoctoral scholars Alessandra Sacco, PhD, and Foteini Mourkioti, PhD, are co-first authors of the work. Sacco is now an assistant professor at the Sanford-Burnham Medical Research Institute.
, i) v$ c$ R/ {/ \/ f8 u1 k& W5 }4 L
Duchenne muscular dystrophy is the most prevalent form of the muscular dystrophies. It is caused by a mutation in the dystrophin gene, which connects the interior cytoskeleton of the muscle fiber to the extracellular matrix. Its absence leads to death of the muscle tissue and progressive weakness, which eventually affects a patient's ability to breathe; 10-year-olds are often wheelchair-bound. Death usually occurs by the second or third decade as a result of respiratory and heart problems. The disorder affects about one of every 3,500 boys in the United States, whereas girls are generally spared because the gene lies on the X-chromosome.
. O9 x4 U# q- X! b( f2 r2 ^$ c) Y- W$ k# S: T, x9 ]
Unfortunately, for decades the trusty laboratory mouse failed scientists trying to study the disease in animals. Mice with the same mutation showed only minimal muscle weakness. This left researchers without an easy way to test drugs and therapies. It also gave them a puzzle: Why were the mice so resistant to the muscle damaged caused by the dystrophin mutation?% C7 o2 ^, t  w- X1 H
* t/ [9 E, N4 P
Blau, Pomerantz, Sacco and Mourkioti, thought the answer might lie in the muscle stem cells. Like other types of stem cells, the muscle stem cells can divide to both replenish themselves and to make new muscle cell precursors. These precursor cells can replace damaged or dead muscle cells that make up the muscle fiber. But even muscle stem cells have their limits, and in this case, the mouse cells outperform their human counterparts.
/ a: Q; i* N: w3 i' F, r; C  \  x7 d! _# z2 r
The reason, the Stanford researchers found, is in the length of the telomeres on the DNA of the two species. The average length of telomeres in laboratory mice is greater than 40 kilobases; in humans it's about 5 to 15 kilobases. Telomeres serve as protective caps on the ends of chromosomes, buffering them from the gradual shortening that occurs during each round of replication. When the telomeres become too short, the cells are no longer able to divide.
/ t9 F; i) Z" b! b; J& d( Q3 c! a5 I8 V' Y
To test their theory, the researchers blocked the expression of a component of the telomerase enzyme, which maintains telomeric DNA. Mice with both the dystrophin mutation and the faulty telomerase expression experienced progressive, debilitating muscle degeneration with age -- as exhibited by treadmill stamina tests and muscle damage assays -- and had shorter-than-normal life spans. Muscle stem cells from the mice also had a reduced ability to proliferate, both in the animals and in culture, and were less able to engraft and begin growing when transplanted into wild-type animals.- f. p' v0 R* u, e( E  n' h

+ U( Y& T: u) \8 I% {) F# C"What we're seeing is that muscular dystrophy is a multi-factorial disease," said Blau. "The lack of dystrophin causes muscle damage. These damaged muscles are replaced by dividing muscle stem cells, but the repeated rounds of division cause the telomeres to shorten until the stem cells can't fix the damage anymore. This is what happens in humans, and in our new mouse model.") w  K0 x% L6 H2 `

- e/ ~; r8 m, F, bThe idea that the symptoms of muscular dystrophy reflect an inability of stem cells to repair ongoing damage has some interesting implications. It implies that any successful treatment should begin early, before the stem cell pool is depleted. It also indicates that researchers and clinicians should investigate stem-cell-based therapies as well as those aimed at protecting the muscle fibers themselves. Finally, it suggests that a highly targeted approach to increase telomerase activity in the muscle stem cells could be useful.  z' Q) U/ w# i: K- B2 A3 b

4 g( p+ y$ d" N7 ~! R4 T; h"Finding out that this is a stem cell defect is really exciting," said Blau. "In the early 1980s we reported that muscle cells from DMD patients had less capacity to divide but we did not have the tools to figure out why, since muscle stem cells, the dystrophin gene and telomere function had yet to be identified. Finally, now we can get a handle on what is going on, and learn how best to target future therapies. Having a mouse model that mimics the human disease will benefit all in the field and is very exciting for patients."4 W: M8 d! D5 E. P+ [
; t6 j. n. o( L  b! {* M5 T1 y
Other Stanford researchers involved in the work include Rose Tran, now a graduate student; Peggy Kraft, research assistant and Blau lab manager; postdoctoral scholars Jinkuk Choi, PhD, and Marina Shkreli, PhD; research fellow Michael Llewellyn, PhD; Steve Artandi, MD, PhD, associate professor of medicine; and Scott Delp PhD, the James H. Clark Professor of Bioengineering, Mechanical Engineering and Orthopaedic Surgery.9 X( u! _0 F! S( a* q  U6 C8 R+ g8 x

+ m6 V) y2 s2 F. O+ z& K7 M8 {The research was funded by the American Heart Association, the National Institutes of Health, the Muscular Dystrophy Association and the Baxter Foundation.9 r& L1 y) s3 v! i
) f8 U9 J- D, G  r% A5 c. h% s
Journal Reference:
/ ~* L* Q5 l3 p8 Y+ K% u) B+ {  u$ f; x
Alessandra Sacco, Foteini Mourkioti, Rose Tran, Jinkuk Choi, Michael Llewellyn, Peggy Kraft, Marina Shkreli, Scott Delp, Jason H. Pomerantz, Steven E. Artandi, and Helen M. Blau. Short Telomeres and Stem Cell Exhaustion Model Duchenne Muscular Dystrophy in mdx/mTR Mice. Cell, December 9, 2010 DOI: 10.1016/j.cell.2010.11.039
9 Y0 D) V- o' E. i$ m
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-21 14:37

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.