干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
楼主: qianqianlaile
go

牙周膜干细胞的培养 [复制链接]

Rank: 8Rank: 8

积分
17665 
威望
17665  
包包
23467  

论坛元老 精华勋章 优秀会员 金话筒 专家

11
发表于 2011-3-21 23:02 |只看该作者
本帖最后由 tpwang 于 2011-3-21 23:16 编辑
/ X" U- b: V5 X7 q- i% r0 W
/ O. z" a' f$ v7 Y回复 qianqianlaile 的帖子
0 M. f% Z' ?  w# ?8 C( g+ S3 T% T, w& Y  K$ Z; o
没有充分通读原文就看一句翻译一句,其次翻译完后没有耐心地修订,这是通病。不养成好习惯的话,还不如不练,因为反而会把不好的习惯固化下来,以后就积习难改了。/ z% r; f& _% O4 |, F
8 x1 S# R. a  G1 P" I* l6 k
大部分的文字都是“自圆其说”,意思是通过上下文都可以读通。尤其是科技文献,逻辑性非常强。本来读文章是有规律的,即一定要一段一段读,不要一句一句读,尤其不要半句半句读。遇到一下子不通的地方,先顺下去,通过后面的内容来理解和验证前面的疑问。比如这一篇里面的proprietary,即使一下子不知道该如何理解,但往下读到下一句,就应该猜个差不多,然后再查字典等确定准确的意思。不少人阅读的毛病,尤其是读英文,只会从头一字一字往下读,不懂得从后往前“读”。作者表达一个意思往往不是一句话就能说明白的,需要一段甚至在文章结尾才能说清楚。古代有倒背如流的典故,其实说的就是这个道理。英文泛读练习规则里很重要的一条,就是要限定时间,逼着读者“跳过”暂时不懂得地方往下读,然后把握总体意思的基础上再来理解不懂得局部。翻译这种精读不存在时间限制,反而不容易训练整体把握和局部理解的技能和习惯。( J4 L  n; K- }+ f

! ?, F5 Q% x2 Y# q! ^" L3 p$ [8 {$ I从另一个角度来说,即使自己水平有限,还是有很多主观能动性可以调动的,比如把自己没有把握的地方标注出来,把自己的想法和疑问提出来。一来方便征求别人意见,二来自己思考过了才有真正的进步积累,三来表示自己的诚意。要是将来投文章,这些基本的非内容错误编辑是不会给你改的,直接就退了。4 v$ R% r6 ?% @; R

2 x2 u3 F+ n+ {% G- N7 @% s% `此外,与其粗制十书,不如精抠一篇。非此,不能提升境界,只能原地重复。5 \  W" }4 y7 K0 Y' E' R
+ \# \% Y& f- N, q
话说得重点,只是好意。另外,与各位翻译者讨论翻译内容,是一个非常好的学习机会,可以了解很多不在自己知识范围内的东西。. ]/ T: B% b% T5 H
已有 1 人评分威望 包包 收起 理由
细胞海洋 + 20 + 30 欢迎参与讨论

总评分: 威望 + 20  包包 + 30   查看全部评分

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

12
发表于 2011-3-22 08:46 |只看该作者
听君一席话,胜读十年书。
' x) x- R2 A- M- o& R7 Y3 r9 G真正会在我面前说我不足之处的人是朋友和亲人,我父母也常说我。在我身边只说好话是于我有害的。前辈能跟我说这么多是把我当朋友。
3 q/ M) T5 m! o前辈提出我的问题的同时还教了我解决的方法,感激不尽。
! b' b. q9 D! x. |8 h& O# I$ x! `

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

13
发表于 2011-3-22 22:19 |只看该作者
本帖最后由 qianqianlaile 于 2011-3-22 22:26 编辑 ( ]$ G2 `1 k' @# P
8 ?0 E, e7 k( ?6 J
MATERIALS AND METHODS
, `( H) W4 r9 O  M( d  l8 s0 t0 |" O; |Isolation of Dental-Derived Stem Cells (PDLSCs, SHEDs)
+ L$ V, Y* ]4 @8 `* v8 XPDLSCs and SHEDs were harvested as previously described (Miura et. al, 2003; Seo et.
& L+ u5 m& f) o( w- j# Nal, 2004).  Briefly, PDLSCs were scraped from the root surface of a tooth into a p60 dish
. `. G  h& W. o, O' X' Fcontaining minimum essential alpha medium (DMEM, Gibco) and SHEDs were harvested by 1 ]4 Z1 R- k& O/ H% d4 Q2 I
scraping out the dental pulp tissue from a deciduous tooth into a p60 dish containing DMEM.2 X! f- G( h4 |/ A$ ?3 z! i$ h
After collection, the cells were centrifuged at 1600 rpm for 5 minutes at room temperature. The - P! l# {3 G$ G( D: K& D* Q
supernatant was aspirated and the cells were resuspended in a phosphate buffered saline (PBS;
# D" F' ~: ^4 c/ ?/ L! I: kGibco #14190) solution with 4 mg/ml Dispase II (Roche  #04 942 078 001) and 2 mg/ml6 H* l5 q  I- [0 z
Collagenase Type II (Worthington # LS004196) and incubated at 37°C for 60 minutes.  The ) t  [8 E/ e$ f5 V/ k
enzyme solution was inactivated with 5 ml of DMEM- 15% FBS- 100µM ascorbic acid 2 / \  q) I( |: x' l# e
phosphate (ASAP, Sigma A-8960) and centrifuged at 1600 rpm for 5 minutes at room
/ S) Z$ M% w4 k$ Gtemperature.  Cells were resuspeneded in 5 ml DMEM- 15% FBS- 0.1mM ASAP and transferred
) e$ l0 D1 B( A. Oto T-25 flasks. Media was changed the next day and then every 2-3 days.
7 K$ d& J5 D+ |4 S4 eCell Culture
2 K* z+ w7 f) H8 s  p& f+ X Cells were expanded in culture in DMEM, Iscove’s modified Dulbecco’s media (IMDM,
- V& {9 Q+ y# F/ J+ l; s7 l: bGibco-Invitrogen #12571), Gibco Stem Pro Mesenchymal Stem Cell Serum-Free Media
6 l! d; M; }* y+ W, G(MSCSFM; Invitrogen# A1033401) or Lonza Therapeak Mesenchymal Stem Cell Growth $ A! K3 d9 i6 Q
Media- Chemically Defined (MSCGM-CD; Lonza #00190632) and grown in a 37°C humidified! R0 A7 q. B* I! n, v2 C# k& f
tissue culture incubator at 5% CO2.  Media formulations are as follows: DMem (Gibco-0 p4 t7 R: i* l1 y9 t
Invitrogen #12571) with 15% FBS (Gibco-Invitrogen-16000), 100µM ASAP and 5 µg/ml
" m0 N3 w5 ]' A1 Y0 V6 \Gentamicin (Invitrogen # 15750060) (FBS-M); DMem with 2% bovine serum albumin (BSA;
5 r3 l+ f9 z) X; oSigma A7888), 10ug/ml human insulin (Sigma), 4ug/ml low density lipoprotein, 200ug/ml" D" B0 l1 M- R: ~! \
transferrin, 10 nM dexamethasone, 100 uM ASAP, 50 uM ȕ-mercaptoethanol, 5 ug/ml
$ p' L$ S! n( q0 F2 e- }- H; g' sgentamicin, 10ng/ml platelet-derived growth factor (PDGF; Sigma), 10ng/ml epidermal growth
6 d) n1 ~6 m' Z4 E( Efactor (EGF; R&D Systems), 10ng/ml basic fibroblast growth factor (b-FGF, Sigma) (SDM);
% B3 w( Q2 h4 u8 q, z# T/ Y4 O& |- ?% RIMDM with 0.2% BSA, SITE 3 (Sigma #S5295), 384µM ASAP, 10 ng/ml PDGF, 10ng/ml( X0 I8 J" O: f+ v* J
hydrocortisone 5ng/ml b-FGF, 1 ng/ml EGF, 10-7$ J7 R/ V0 N! `7 _* W3 K5 \
mgm/ml parathyroid hormone (PTH) and 5 " c; M3 }1 {- P* i& a, H$ G
µg/ml gentamicin (K-M).  Media on the cells were changed every 2 or 3 days.  Cells were grown
/ w* g0 Q/ h4 N3 g& C0 `! Tin T-150 flasks to about 80% confluency then media was aspirated from the flasks, cells were ! s/ g; |! J, h6 D
washed with PBS and trypsinized with TrypLE Express (Gibco#12605) before being split into 126 }( T* e- f7 j# ?6 Q1 ]
well plates for the assays.
. o! z$ ^* |' ]6 G" ^Fibronectin Coating of Tissue Culture Plates' T& U  v% b) Q. Z9 p
Fibronectin (FN) was coated on the plates and flasks to provide growth and attachment- y6 j9 R2 k8 \
support for cells grown in the serum-free, IMDM media.   For the 12 well plates, 0.1% FN 2 @3 k, t3 P( i+ G. g+ o  I
solution (Sigma F-1141) was diluted in PBS so that each well received 3.8 micrograms per well
$ N! |- C& Y# Q' }4 U(1µg FN/cm2).  The T-150 flasks were coated so that each received 150 micrograms of FN (1µg : [  E( y0 I# N, y4 A/ ^/ d
FN /cm2).  The plates and flasks were tilted back and forth to ensure complete coverage of the
! s% w; V# \9 R  sFN solution.  The FN coating was allowed to stand at room temperature for 90 minutes.  The FN , ?8 c) F4 O# J5 t4 t; }
solution was then aspirated before the resuspended cells were transferred to the flasks and plates.
$ y, B4 u: y& jProliferation Assays
" K: \% A5 t/ W& i6 d6 XAfter trypsinization cells were resuspended in an equal amount of the appropriate media( c) R$ `% r& L0 x& _4 c! V. r5 v; `
before an aliquot was removed for counting on a hemocytometer to determine the concentration.
/ M8 E& V$ D1 a5 N7 wThe cells were then centrifuged at ~1600 rpm for 5 minutes at room temperature.  Cells were
% O. K9 [' q( U) J) ]. u3 V  lresuspended in the appropriate media at a concentration of 3800 cells per ml. One milliliter of
4 i8 C0 D6 s% X1 ~% {- z$ r( mcells was dispensed into each well of a 12 well plate.  K-M plates were precoated with FN # M6 W7 S1 |, c+ ?  }' \/ E. Y7 {% P
solution (as outlined above).  Four plates for each cell type and media condition were plated and ; i! _- c) H) v4 x
counted on a hemocytometer at days 1, 3, 5 and 7 to determine the cell numbers within each
1 p- R, S& M% R; a0 T& B2 P2 f) u9 W1 Iwell.  All experiments were performed in triplicate. " a. A' a# Q7 w; j# M! b
RNA Isolation and Purification for MicroArray 4 o6 {* ~. A) M3 w; X3 Y5 J
PDLSCs and SHEDs were grown in T-75 flasks to 80% confluency before the cells were / \7 W1 z- o4 y/ A: S- O+ ^5 b  V
harvested for RNA.  The Trizol method (Invitrogen) was used for RNA isolation.  This involved
5 a$ k1 ~3 W7 L  K- i% |$ n4 xwashing the cell layer with PBS, adding Trizol directly to the cells and transferring this cell
, y/ V1 `2 \6 S( T1 z: Ssuspension to polypropylene tubes.    RNA was isolated from the cells by a Trizol-choloroform, n7 U5 H) D9 L
extraction, isopropanol precipitation, an ethanol rinse and resuspension of theRNA pellet in
8 @- v3 l  r, v$ X' ]Diethylpyrocarbonate (DEPC) water.   The RNA was further purified by column
- ^. K9 Z5 n. s; h! Nchromatography, following manufacturer’s instructions (Qiagen RNeasy Kit # 74104), and
/ F  e; f: m" a& l% yresuspended in DEPC water.  RNA concentration was determined by the 260/280 absorbance 9 s6 B1 U- K7 Z% A7 U# V2 a
measurement using a Beckman DU540 spectrophotometer.
" R0 C8 k9 G+ T+ n2 [In Vitro Multilineage  Differentiation
9 s/ F* ^& ~/ gMultipotency of PDLSCs and SHEDs was determined through lineage specific
$ l! |# W* u( d# |( h! B3 Yosteogenic, chondrogenic, and adipogenic induction, according to previously described methods
4 X+ K' y( f7 M4 i(Pittenger et. al, 1999).  Briefly, cells were plated at a density of 30,000 cells per well in 12 well
7 ]( R1 \! e8 W! C; G0 Fplates.   At 80% confluency cells were induced with osteogenic  [Growth media plus 5mM E-  W' z1 t8 M) {. I( V" ]3 g
glycerophosphate, 100nM dexamethasone, 50µM ascorbic acid 2-phosphate] or chondrogenic 4 m9 E' D$ V+ i
[growth media plus 50µM ascorbic acid 2-phosphate, 100nM dexamethasone,  5 µg/ml human
( R0 t: p. u4 e7 `0 n8 ]5 jinsulin (Sigma I-9278), 1 ng/ml TGFE, 400µM proline, 1X Non essential amino acids] or
+ p' u" h  _% \: L8 m8 fadipogenic [growth media plus 0.5mM IBMX, 1 µM dexamethasone, 10 µg/ml human insulin, ' i" |; A& f; H( A" M- P
200µM indomethacin] induction media.  Cells were grown at 37°C in a humidified 5% CO2; m2 w7 I. g6 u+ K( W
incubator.  The media was changed every 2-3 days.  At three weeks the cells were fixed and : N; G" {8 ]3 `" B* p4 M
stained as outlined below. 2 J% p2 x9 L7 t$ l2 v! \" u0 @: U
Multipotent Staining of PDLSCs and SHEDs
# U7 @* _  G# I" m% Y% N1 _% _To identify the mineralized nodules, induced PDLSC, SHED and DPSC were fixed in 4% , H, q$ b" i$ c+ |, p3 I/ z; c
paraformaldehyde for 30 minutes, immersed in fresh 5% silver nitrate and incubated in the dark , Z0 Z5 Y' Y% A# c3 v
for 30 minutes. After washing in water the PDLSC, SHED and DPSC were exposed to 8 t3 ]1 k2 W" L. E
ultraviolet light for 30 minutes followed by a four minute incubation in 1% sodium thiosulfate to 2 y& w# l: }$ ~- ?) p) K, `
neutralize the silver nitrate. Cells were washed twice with water before 1 ml of PBS was added & n/ a- C7 Z! }- ^# q" n
to each well and viewed.  Plates were stored at 4°C.
3 c2 z# M% M' Y0 y* u0 m& Q4 UTo detect chondrogenic differentiation induced PDLSC, SHED and DPSC were fixed in
  n  Y/ N  H% e% W& tcold 100% methanol for 30 minutes and then exposed to 1% alcian blue in 0.1N HCl for 30
8 P7 H2 z% @' _- M4 lminutes.  Cells were washed twice with 0.1N HCl before 1 ml of PBS was added to each well 9 W- s3 U) V' E- ^) F3 B/ C" m# h! r
and viewed.  Plates were stored at 4°C.9 d; s3 e5 M( `1 Z
To detect adipogenic differentiation by identifying lipid vesicles, induced PDLSC, SHED
# P; `! O7 k: jand DPSC were fixed in 4% paraformaldehyde for 30 minutes, and then immersed in 0.3% oil
" |' t- b. o& J( vred O solution for 30 minutes. Cells were washed twice with water before 1 ml of PBS was ! P; P8 C0 E* u, _, p0 ~
added to each well and viewed.  Plates were stored at 4°C. ' r" m! ~/ U( x5 k# `
Alkaline Phosphatase Activity and Detection
' J! ^2 z+ l! g6 u* x# h* JEarly osteogenic differentiation was detected and quantified by the alkaline phosphatase
8 Y* k+ d4 `$ Y) L+ x(ALP) enzyme assay.  Cells were plated at a density of 30,000 cells per well in 12 well plates.9 n/ [/ _( M  S. Z' \
At 80% confluence, cells were induced with osteogenic media as described above.   The media2 l. e9 Z4 M& A
was changed every 2-3 days and after one week, ALP activity was measured.- l! `/ }' a. p) z, \+ Z3 v9 a) M& c
To detect phosphatase activity, PDLSCs and SHEDs were fixed in 70% ethanol for 30 # m. X5 B7 @9 [5 c/ z+ D! q
minutes.  They were then incubated with freshly made substrate containing naphthol AS-TR ) i* p, z8 s4 f$ K7 Z# o& k
phosphate (Sigma) and Fast blue (Sigma) for 30 minutes. Cells were washed twice with PBS then
- |/ @2 t+ ?" {0 s8 U; Dviewed or stored at 4’C.; t' P  K" Y' u' |7 H
To quantify the ALP activity and normalize the results, cells were lysed in Passive Lysis * M& b% B* p7 U; R& R
Buffer (Promega) according to manufacturer’s instructions.  Cell lysates were then sonicated, # _1 P2 h" f) N4 X6 ]2 {
and centrifuged (10,000 rpm for 10 minutes at 4°C).  The supernatant was recovered for the
, l! E1 _, c* @, Z& |2 I$ u5 Hquantitative colormetric ALP assay (Manolagas et al., 1981) and the cell pellet was used for
4 ~/ B- z9 a" S9 W/ S  ], vDNA isolation and the determination of the DNA concentration using the Quant-iT™ dsDNA
) w: P+ B8 E  [/ d" G8 n) u/ V- cBR Assay (Invitrogen) per the manufacturer’s instructions.
6 U4 _5 t  z  N0 iReverse Transcriptase Polymerase Chain Reaction (RT-PCR) * B) s. u- M4 }! c2 w
To confirm chondrogenic and adipogenic differentiation, total PDLSC and SHED cellular 6 C  ^# K: b/ |. y
RNA was extracted, reverse transcribed, and amplified using osteoblast specific gene primers.7 {+ s, n( V7 ^( R; ~- j
Media from the wells of induced and uninduced PDLSCs and SHEDs were aspirated.   Cells , v$ F/ G7 B6 w% N- K. N
were immediately resuspended in 1 ml of Trizol (Invitrogen) and RNA was isolated according to ( z. w' A2 W; M1 I4 s
the manufacturer’s instructions.  Synthesis of cDNA was performed using Invitrogen’s 6 H' }( x, K  G- D
SuperScriptII kit and oligo dT.  PCR reaction components and concentrations were as described
, S$ P' R! h4 bin the Invitrogen Platinum Taq polymerase instructions using the primer sets below.  An MJ 7 V( \) M1 e# o7 U
themorcycler was used for the following two PCR reaction conditions:
5 P3 M5 @! _1 n*94°C 2 minutes       [94°C 45”        56°C 45”         72°C 1’] X 35 cycles       72°C 15’ 2 U( s, \5 E+ A& P% b  o$ B* u1 P
or! n5 j, S, l* F& S
**94°C 2 minutes      [94°C 45”         67°C 45”         72°C 1’] X 35 cycles      72°C 15’
( R% P$ A6 Z0 x1 j8 fPCR Primer Pairs 3 a7 D1 M2 V4 f, _
Primer Name Primer Sequence Product% y7 ~8 x( S! N- h! I1 o7 N
Size  f  A  W! c6 P: F, a
Accession
' M4 x4 Z  J4 o7 o, t  C6 qNumber
: V- l2 }; j5 m- t8 o*GAPDH FWD AGCCGCATCTTCTTTTGCGTC 815 bp NM_002046
1 J" q. E$ d, ]0 i* a- `% h+ Z*GAPDH REV TCATATTTGGCAGGTTTTTCT% [; }" K9 |( p# N7 ]
PPARJ2  FWD  GCTGTGCAGGAGATCACAGA 226 bp NM_005037/ C1 Y/ F6 L/ ?3 a6 ?
PPARJ2  REV  GGGCTCCATAAAGTCACCAA
1 Q2 B# w9 E! d; ]Lipoprotein lipase FWD GTCCGTGGCTACCTGTCATT 212 bp NM_000237
( I" _6 g! o) B, vLipoprotein lipase REV TGTCCCACCAGTTTGGTGTA
0 ^- o0 S2 U/ U' _: U' ZSox 9 FWD TTGAGCCTTAAAACGGTGCT 224 bp NM000346
5 n$ b: z* u# f7 D( a3 ~Sox 9 REV CTGGTGTTCTGAGAGGCACA- y1 l: V4 O% v2 s
Type X collagen FWD TGAGCAGCAACGTAAAAACG 471 bp NM_00049
. H/ q, S1 g7 X0 Z- NType X collagen REV AGGAAATGCCGAGTTTCTCA7 G; ~1 u8 W& s. p$ d
Statistical Analysis
1 N& W/ S' C- e/ tStatistical analysis was performed with the use of Instat software (GraphPad Software, San
" g6 j1 m7 M5 [Diego, CA, USA).  All data were plotted as mean ± standard error of the mean (SEM), unless 3 e3 g/ {; f, m6 E% ~
otherwise noted. Statistically significant differences were determined by two-tailed Student t
& z; j2 w- M. w: R4 v" |8 Ztests, and statistical significance was defined as p < 0.05.

Rank: 3Rank: 3

积分
429 
威望
429  
包包
1768  

新闻小组成员

14
发表于 2011-3-23 12:10 |只看该作者
干细胞之家微信公众号
本帖最后由 qianqianlaile 于 2011-3-23 12:14 编辑 / f1 G6 b9 `4 A4 ?1 u! R
( T( [8 o6 b9 p8 j) X
材料和方法. J# L- v+ x, K  V
牙源性干细胞的分离(PDLSc,SHEDs)

+ _- |/ F0 z" |# B" K如前所述方法获得牙周膜干细胞和脱落乳牙来源的干细胞。简而言之,将从牙根表面刮取的牙周膜干细胞浸入p60培养皿内最少量的基本α培养基(αMEM,Gibco)中,并将从乳牙牙髓组织中分离出的干细胞浸入p60培养皿的α培养基中。室温下每分钟1600转离心收集到的细胞5分钟。去除上清并用溶解了4mg/ml II型中性蛋白酶和2mg/ml II型胶原蛋白酶的PBS液重悬细胞,37OC培养60分钟。用5ml含15%胎牛血清和100μmol/L的抗坏血酸-2-磷酸(ASAP)的αMEM终止酶液消化,随后室温下每分钟1600转离心5分钟。将5ml含15%胎牛血清和0.1mmol/L的ASAP的αMEM重悬了的细胞悬液移入T-25烧瓶中。第二天更换培养基,之后每2到3天更换培养基。, @" f4 I* ^5 _7 P
细胞培养
; C, q! ]& V: _" f将四种培养基即αMEM,IMDM,Gibco Stem Pro间充质干细胞无血清培养基或Lonza Therapeak 化学合成间充质干细胞生长培养基分别培养扩增的细胞置于37OC,5%CO2湿培养箱中培养。培养基具体配方如下:含15%胎牛血清、100μmol/L的ASAP和5μg/ml庆大霉素的αMEM(FBS-M);含2%牛血清白蛋白、10μg/ml人胰岛素、4μg/ml低密度脂蛋白、200μg/ml转铁蛋白、10nmol/L地塞米松、100μmol/LASAP、50μmol/L β-巯基乙醇、5μg/ml庆大霉素、10ng/ml 血小板来源生长因子、10ng/ml 表皮生长因子、10ng/ml碱性成纤维生长因子的αMEM(SDM);含0.2%牛血清白蛋白、SITE3、384μmol/LASAP、10 ng/ml 血小板来源生长因子、10 ng/ml肾上腺皮质素、5ng/ml碱性成纤维细胞生长因子、1 ng/ml表皮生长因子、10-7mgm/ml(mgm是否是印刷错误?)甲状旁腺激素(PTH)和5μg/ml庆大霉素的IMDM(K-M)。每2到3天更换培养基。T-150烧瓶内的细胞生长至80%融合时,去除烧瓶内培养基并用PBS液冲洗细胞,之后TrypLE Express胰酶消化细胞并将其移至12孔板内待检测。, V& v8 P. k( P* ^3 o6 H( V$ m* a* ]
纤连蛋白包裹组织培养板1 R# ], F6 [" ?' O# E. q
培养板和烧瓶上的纤连蛋白涂层为无血清培养基即IMDM培养基中生长的细胞提供生长和粘附支持。将PBS液稀释的0.1%纤连蛋白(FN)溶液加入12孔培养板中,使每孔获得3.8μg纤连蛋白(1μg FN/cm2)。同理使每个T-150烧瓶获得150μg的纤连蛋白(1μg FN/cm2)。来回震荡培养板和烧瓶以确保纤连蛋白溶液完全覆盖(器皿表面)。室温下保留纤连蛋白液90分钟。之后去除纤连蛋白溶液并将重悬的细胞移入培养板和烧瓶。% U* b/ s# P* M
增殖分析8 f) e# X2 h( p
用等量适当培养基重悬胰酶消化了的细胞后,用血球计计算传代前的细胞以检测细胞浓度。然后室温下每分钟1600转离心细胞5分钟。适量培养基重悬细胞使其浓度为每毫升3800个,纤连蛋白溶液(如上所述)预涂布K-M培养板后向12孔板的各孔中分别加入1ml细胞悬液。将不同培养基培养的不同细胞分别接种到四个培养板内,血球计分别计算第1,3,5,7天的细胞数以检测每孔的细胞数量。所有标本重复3个。
# c! M; v. q# J! L# e! I; CRNA分离和纯化获得微矩阵) G( i- b. r2 \
采用Trizol法分离T-75烧瓶中80%汇合的人牙周膜干细胞和脱落乳牙来源干细胞的RNA。步骤如下:直接将Trizol加至PBS冲洗后的细胞层上,再将细胞悬液移入聚丙烯管中。用Trizol-choloroform提取法从细胞中提取RNA后异丙醇沉淀,再用乙醇冲洗,焦磷酸二乙酯(DEPC)水重悬RNA小球。根据使用说明柱层析进一步纯化RNA后再用焦磷酸二乙酯水重悬RNA。用贝克曼DU540分光光度计测量吸光度获得A260/A280的值以检测RNA浓度。5 N- ]/ M- p( _4 \
体外多向分化0 B7 n* x/ w% N& A. S- q
根据先前研究描述的方法,通过具体谱系即成骨、成软骨和成脂诱导确定人牙周膜干细胞和脱落乳牙来源干细胞多向潜能性。简而言之,细胞以每孔30000个的密度接种到12孔板中。待细胞生长至80%融合时,用成骨(生长培养基中加入5mmol/Lβ-甘油磷酸,100nmol/L地塞米松,50μmol/L抗坏血酸-2-磷酸)或成软骨(生长培养基加入50μmol/L抗坏血酸-2-磷酸,100nmol/L地塞米松,5μg/ml人胰岛素,1ng/ml转化生长因子β,400μmol/L脯氨酸,1X非必须氨基酸)或成脂(生长培养基加入0.5mmol/L3-异丁基-1-甲基-黄嘌呤,1μmol/L地塞米松,10μg/ml人胰岛素,200μmol/L消炎痛)诱导培养基培养细胞,并将其置于37OC,5%CO2湿培养箱中培养。每2到3天更换培养基。第三周固定细胞并按如下概述染色。8 \+ O6 P  Q: S9 V+ R9 }
人牙周膜干细胞和脱落乳牙来源干细胞多能染色
! Q0 a6 t& B0 i3 d" K' j8 ^2 [为检测矿化结节,用4%多聚甲醛固定成骨诱导培养基培养的人牙周膜干细胞、脱落乳牙来源干细胞和牙髓干细胞30分钟,再将其浸入现配的5%硝酸银中并于黑暗中静置30分钟。用水冲洗细胞后紫外灯照射30分钟,之后加入1%硫代硫酸钠中孵育4分钟中和硝酸银。接下来用水冲洗细胞两次,向每孔加入1mlPBS并观察。培养板置于4OC环境中保存。5 r) ~6 D8 W- ]9 w7 f
为检测成软骨分化,用100%冷甲醇固定成软骨诱导培养基培养的人牙周膜干细胞、脱落乳牙来源干细胞和牙髓干细胞30分钟,再用溶于0.1N HCl的1%阿辛蓝浸泡30分钟。之后用0.1N HCl冲洗细胞两次后每孔加入1mlPBS并观察。培养板置于4OC环境中保存。
6 h1 R) R' I$ i为检测成脂分化,用4%多聚甲醛固定成脂诱导培养基培养的人牙周膜干细胞、脱落乳牙来源干细胞和牙髓干细胞30分钟,再用0.3%油红O溶液浸泡细胞30分钟。之后再用水冲洗细胞两次后每孔加入1mlPBS并观察。培养板置于4OC环境中保存。
( s) C$ l; ~# |+ i碱性磷酸酶活性及其检测
* b- ^7 d6 n0 J: @& h2 F碱性磷酸酶分析检测并定量早期成骨向分化。向12孔板的各孔中接种30000个细胞。待细胞长至80%融合时,用上述成骨诱导培养基培养细胞。每2到3天更换一次培养基并于一周后定量检测碱性磷酸酶活性。
9 S. Q; c! d2 D为检测磷酸酶活性,用70%乙醇固定人牙周膜干细胞和脱落乳牙来源干细胞30分钟。之后用新鲜的含奈酚AS-TR磷酸盐和快蓝的基底培养30分钟,PBS冲洗细胞两次后观察或将细胞储存在4OC环境中。, b% u. H5 z; z( y: N1 D
为定量碱性磷酸酶活性并使结果正常化,根据说明书用Passive裂解液溶解细胞。之后声波处理(sonicated)并离心细胞裂解物(4OC每分钟10000转离心10分钟),收集上清液并用比色法定量检测碱性磷酸酶,从细胞沉淀中提取DNA后再根据说明书用Quant-iT™ 双链DNA BR分析法检测DNA浓度。/ S8 a" e  ^" ^2 V2 O& L
逆转录聚合酶链反应, Q2 ~" `- c; G4 q
为证实成软骨和成脂分化,提取人牙周膜干细胞和脱落乳牙干细胞的总RNA后逆转录并用成骨特定基因引物放大。具体操作如下:吸出已诱导和未诱导的人牙周膜干细胞和脱落乳牙干细胞培养孔中的培养基后立即用1ml曲拉通(Trizol)重悬细胞并根据说明书提取RNA。用Invitrogen公司的SuperScriptII kit 和oligo dT合成cDNA。PCR反应所需试剂及其浓度如Invitrogen公司Platinum Taq 聚合酶使用说明中所述,使用如下引物。一个MJ themorcycler被用于以下两种PCR反应条件中:
4 Z/ R3 L+ O" M4 J4 K; t94°C 2分钟→(94°C 45” → 56°C 45” → 72°C 1’) X 35 循环→72°C 15’或者1 f( F1 t% Q3 ~
94°C 2分钟→(94°C 45” → 67°C 45” → 72°C 1’) X 35 循环→72°C 15’7 I1 \# Z) h+ N9 w# C
PCR引物组
; A7 G6 \& F6 K, w5 R引物名称        引物序列        产品大小        Accession
' }5 N8 d% n+ X5 B9 D5 ?6 n*GAPDH FWD        AGCCGCATCTTCTTTTGCGTC        815 bp        NM_002046
" p% F% f- g# S; E& h*GAPDH REV        TCATATTTGGCAGGTTTTTCT               
0 Q. @& n5 W; C9 f% fPPARJ2  FWD        GCTGTGCAGGAGATCACAGA        226 bp        NM_005037
) ~7 H9 d8 u6 z+ D6 M4 P, EPPARJ2  REV        GGGCTCCATAAAGTCACCAA               
6 z* q6 p  t; G  l; rLipoprotein lipase FWD        GTCCGTGGCTACCTGTCATT        212 bp        NM_000237
7 S/ ]% U9 e5 l, eLipoprotein lipase REV        TGTCCCACCAGTTTGGTGTA                9 I0 P' u. k- k' G0 _
Sox 9 FWD        TTGAGCCTTAAAACGGTGCT        224 bp        NM000346
: p( }0 i+ Y2 S. E4 DSox 9 REV        CTGGTGTTCTGAGAGGCACA                ) G! k4 H& G2 v- T8 P
Type X collagen FWD        TGAGCAGCAACGTAAAAACG        471 bp        NM_00049. K% _  x. }$ a- u$ v/ @2 ]
Type X collagen REV        AGGAAATGCCGAGTTTCTCA               
4 [8 `- Q6 W6 ~统计分析
2 X: s7 d# q1 Q用instat软件进行统计分析。除特殊说明外所有数据均用均数±标准误表示。双侧t检验结果有显著性差异,p<0.05时有统计学意义。
& |1 W3 B$ A! ^$ A0 K0 N
已有 2 人评分威望 包包 收起 理由
细胞海洋 + 50 + 150 原创内容
tpwang + 10 + 10 原创内容

总评分: 威望 + 60  包包 + 160   查看全部评分

Rank: 8Rank: 8

积分
17665 
威望
17665  
包包
23467  

论坛元老 精华勋章 优秀会员 金话筒 专家

15
发表于 2011-3-24 14:51 |只看该作者
回复 qianqianlaile 的帖子
/ g7 u% `  K. x. Y% x0 ?
8 c& R+ B: F: B. d' X6 u楼主很勤快,这一系列牙齿干细胞学了不少东西。内容太多也太专业,有些超出本人的能力,就不一一校稿了,大部分我能说的建议也都说了并有举例。希望有所帮助。适当时候条件下有机会再看能有什么帮助。预祝翻译学习工作顺利!
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-10 10:24

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.