  
- 积分
- 0
- 威望
- 0
- 包包
- 483
|
作者:Piero Anversaa, Annarosa Leria, Marcello Rotaa, Toru Hosodaa, Claudia Bearzia, Konrad Urbaneka, Jan Kajsturaa, Roberto Bollib作者单位:aCardiovascular Research Institute, Department of Medicine, New York Medical College, Valhalla, New York, USA;bInstitute of Molecular Cardiology, University of Louisville, Louisville, Kentucky, USA
/ J1 I. F( k3 k7 }
$ F0 ]2 S; m+ F( O5 k# K- Z
/ ?2 ~ i! R/ ~# }# \1 w$ e
t' O# D9 r6 z3 r; H, G 6 z2 [7 i1 e5 x2 \/ X
" z# t. A! {6 b; E$ m9 e! _
% `' k, z* l# |6 U, j6 f6 \
' K* H- u- Q$ r4 M
+ q. K* l7 `& E& H5 a1 t" m 2 L. u7 W8 I& p$ a/ S; e) u
7 L/ s8 b+ P9 W% V4 T4 j* K5 r
9 f, p6 Q. U/ P# |: J6 r: `; c
" W" { [9 ^2 W/ E6 R( j" J 【摘要】
! o' k; r/ X1 d' L, [- ^$ i This review discusses the current controversy about the role that endogenous and exogenous progenitor cells have in cardiac homeostasis and myocardial regeneration following injury. Although great enthusiasm was created by the possibility of reconstituting the damaged heart, the opponents of this new concept of cardiac biology have interpreted most of the findings supporting this possibility as the product of technical artifacts. This article challenges this established, static view of cardiac growth and favors the notion that the mammalian heart has the inherent ability to replace its cardiomyocytes through the activation of a pool of resident primitive cells or the administration of hematopoietic stem cells. . ?2 n) M! C1 U% X/ ` F* o! Y
【关键词】 Heart Confocal and light microscopy Mitosis Chimerism Bone marrow cell transdifferentiationEnhanced green fluorescent protein autofluorescence
3 p5 j) D f- y& q p8 i, k `/ u: {
【参考文献】+ v- b9 L* y1 x$ G) j% u4 D
+ L7 {$ @) Z! W1 }& Z7 f3 B' h8 J' _- t! u/ y2 I
Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 1998;83:15¨C26.4 R7 M$ @* ]- t; i+ B: V; S9 \# {
- f0 [& U7 Z$ i; ^# p. G
Rubart M, Field LJ. Cardiac regeneration: Repopulating the heart. Annu Rev Physiol 2006;68:29¨C49.
1 ^% w1 s+ C: r$ }5 k# t: a J( X
4 o5 Z1 ]- w8 o) o& \) S) W" x2 a/ F4 HMenasche P. You can't judge a book by its cover. Circulation 2006;13:1275¨C1277.- ^$ C6 ^% {1 A0 S" P4 l
: i+ I8 e) P8 SMurry CE, Field LJ, Menasche P. Cell-based cardiac repair reflections at the 10-year point. Circulation 2005;112:3174¨C3183.% o& a2 Y( p" G2 x& L: j. G7 Y+ |
0 S8 x* f7 Y7 jLinzbach AJ. Heart failure from the point of view of quantitative anatomy. Am J Cardiol 1960;5:370¨C382.
% O6 J( d( W& t, B6 O$ b6 b: q3 N$ v" {) p
Anversa P, Kajstura J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 1998;83:1¨C14.' G N( K- v6 E& Y5 j t
7 r2 Q# n$ i5 B, s% V; I1 Q5 ]9 w
Anversa P, Kajstura J, Leri A et al. Life and death of cardiac stem cells. A paradigm shift in cardiac biology. Circulation 2006;113:1451¨C1463.
# @4 T& X8 c' ?5 D: Q7 }$ j2 Q0 {( H g! U$ o$ f
Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell 2004;116:639¨C648.
' }6 [. p3 q3 ~0 f2 r! O- v4 @7 d* _. S) r
Chien KR. Stem cells: Lost in translation. Nature 2004;428:607¨C608.
, a C' _9 l% Z' K
8 C: R/ }+ o% [8 M3 z I8 GLaflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol 2005;23:845¨C856." ]7 N& C) d9 \/ O
; O% s& _* b2 ^/ O2 n+ aMenard C, Hagege AA, Onnik Agbulut O et al. Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: A preclinical study. Lancet 2005;366:1005¨C1012.+ v( H0 T. Y I( D9 ?& U- _7 l0 Y$ Q
3 _8 i; j. w5 ~- n u* N& l; a' cLeri A, Kajstura J, Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 2005;85:1373¨C1416.
9 V, K% }+ L3 O6 s! P% n& y* C5 g. y6 o+ a, u9 Z
Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763¨C776.+ S4 H! A( \4 g. b
8 m [; L, D' r' UZhu O, Skoultchi AI. Coordinating cell proliferation and differentiation. Curr Opin Genet Dev 2001;1:91¨C97.
/ m5 b2 d2 n4 d. x+ z, T0 v: _5 N+ M8 q6 Z# m1 w" O* J) A
Mariadason JM, Nicholas C, L'Italien KE et al. Gene expression profiling of intestinal epithelial cell maturation along the crypt-villus axis. Gastroenterology 2005;4:1081¨C1088.5 S6 Q6 J4 {3 a, y$ i
" W$ T' s) j5 B1 r4 w: q
Chen P, Zindy F, Abdala C et al. Progressive hearing loss in mice lacking the cyclin-dependent kinase inhibitor Ink4a. Nat Cell Biol 2003;5:385¨C387.
- s0 v5 T; b! I' G* R. r9 w2 T/ E
Hotchin NA, Gandarillas A, Watt FM. Regulation of cell surface beta 1 integrin levels during keratinocyte terminal differentiation. Cell Biol 1995;6:1209¨C1219.
_. ^- v5 \8 |" @: v9 X
8 m; _! N3 r0 g* ATaub R. Liver regeneration: From myth to mechanism. Nat Rev Mol Cell Biol 2004;5:836¨C847.
) K! H% Y$ n# j) J
0 n) t7 d: q9 X. G9 g2 ?! lVessey CJ, de la Hall PM. Hepatic stem cells: A review. Pathology 2001;33:130¨C141.3 h g" ]+ } G0 O% O6 x' [
5 b2 B6 Y# _6 H' W: A; CFausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 2003;120:117¨C130.( J1 ~- `4 R. _1 @7 d
1 x+ ]( u9 a1 B9 ]
Eriksson PS, Perfilieva E, Bjork-Eriksson T. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313¨C1317.
( R: d! [. \" }/ U' H& v# d" a: z/ I
Sanai N, Tramontin AD, Quinones-Hinojosa A et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004;427:740¨C744.2 t! I0 F2 `0 u1 V' S
y' F1 |% z5 H& `- l9 H0 X
Rakie P. Neuroscience: Immigration denied. Nature 2004;427:685¨C686./ {) Q# p6 D# y" y
. T; K0 ?, K- n4 o1 nLie DC, Colamarino SA, Song HJ et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005;437:1370¨C1375.
( v7 a- A5 Y4 z+ S3 [( |# e( O# v7 n7 l9 L2 ^7 i2 G
Blanpain C, Lowry WE, Geoghegan A et al. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 2004;118:635¨C648.
% R( ]0 V, K4 M7 f4 M$ |% c. a& H |
Uchida N, Tsukamoto A, He D et al. High doses of purified stem cells cause early hematopoietic recovery in syngeneic and allogeneic hosts. J Clin Invest 1998;101:961¨C966.& `; f$ H0 N. V1 I# l
+ l/ d' B2 N$ {3 e8 [ n. F) v% {% L
Dhawan J, Rando TA. Stem cells in postnatal myogenesis: Molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 2005;15:666¨C673.
) t& q& x `' J' R( O2 M0 q" _# {9 R
3 Z% a8 y* N3 S7 C! n" kNakamura T, Schneider MD. The way to a human's heart is through the stomach. Circulation 2003;107:2638¨C2639.7 W, z& j |) j n
' G# z9 A5 v4 T7 z2 Z! Q [6 U
MacLellan WR, Schneider MD. Genetic dissection of cardiac growth control pathways. Annu Rev Physiol 2000;62:289¨C319.2 q' h0 a' c' A" X( k
& E9 e7 l& ^" B# B! W- A! r
Anversa P, Rota M, Urbanek K et al. Myocardial aging: A stem cell problem. Basic Res Cardiol 2005;100:482¨C493.
# {( [3 n: H W9 e" `5 W
. y, h3 d: A1 e% g8 Z% VKarsner HT, Saphir O, Todd TW. The state of the cardiac muscle in hypertrophy and atrophy. Am J Pathol 1925;1:351¨C371.
' ?( j* d+ l" y( ]# }- o# u$ f, g% S2 x* f' X& Y' \
Petersen RO, Baserga R. Nucleic acid and protein synthesis in cardiac muscle of growing and adult mice. Exp Cell Res 1965;40:340¨C352.
4 c; _! { b. s$ h0 h# \8 [$ [7 z- |1 |- j1 G$ p0 Y3 m Q/ O
Morkin E, Ashford TP. Myocardial DNA synthesis in experimental cardiac hypertrophy. Am J Physiol 1968;215:1409¨C1413.. B$ b0 o0 X3 A( }- U/ G1 u+ p
6 J7 b! Q0 A! tGrove D, Nair KG, Zak R. Biochemical correlates of cardiac hypertrophy. 3. Changes in DNA content: The relative contributions of polyploidy and mitotic activity. Circ Res 1969;25:463¨C471.
# {0 b+ h+ A4 d: j0 R7 s% p2 i$ b: P4 y7 |7 O0 [0 G
Grove D, Zak R, Nair KG et al. Biochemical correlates of cardiac hypertrophy. IV. Observation on the cellular organization of growth during myocardial hypertrophy in the rat. Circ Res 1969;25:473¨C485.
7 C9 [& E4 J( {
/ V: z5 q) f5 I0 PZak R. Development and proliferative capacity of cardiac muscle cells. Circ Res 1974;35:17¨C26.% j; |3 p. a/ X/ L& g6 i. Q& H
4 o5 ?3 V, k. CSpector DL, Goldman RD, Leinwand LA. In: Spector DL, Goldman RD, Leinwand LA, eds. Cells: Light Microscopy and Cell Structure.Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press,1997;94.1¨C94.53.
3 u- }# w0 I8 |$ W, Q' C! m$ E+ N. ?3 \/ Z
Linzbach AJ. Mikrometrische und histologische Analyse hypertropher menschlicher Herzen. Virchow Arch Pathol Anat Physiol 1947;314:534¨C594.
- p% ~5 R# \, h# m- j }1 y$ H9 }/ H: V' E
Linzbach AJ. Muskelfaserkonstante und das Wachstumsgesetz der menschlichen Herzkammern. Virchows Arch 1950;318:575¨C618.
. r- M; a) P9 B4 ]1 ]$ }3 s1 [& }4 z' o3 z5 C
Astorri E, Chizzola A, Visioli O et al. Right ventricular hypertrophy: A cytometric study on 55 human hearts. J Mol Cell Cardiol 1971;2:99¨C110.
6 A5 w' Q* z8 [& ^- H/ z3 o
% {1 C* q( t/ z8 I& _ n/ `! b5 @Astorri E, Bolognesi R, Colla B et al. Left ventricular hypertrophy: A cytometric study on 42 human hearts. J Mol Cell Cardiol 1977;9:763¨C775.9 W6 `2 X x" p: Y7 Z+ t4 m' F d
$ b5 H4 l( e% E5 N" k
Adler CP, Friedburg H. Myocardial DNA content, ploidy level and cell number in geriatric hearts: Post-mortem examination of human myocardium in old age. J Mol Cell Cardiol 1986;18:39¨C53., {' }, s: @: q- W3 v
# y; n. K8 o# X
Olivetti G, Cigola E, Maestri R et al. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J Mol Cell Cardiol 1996;29:1463¨C1477.% z3 S# X/ k$ \0 \) W
: c5 }. F) k+ a# zAnversa P, Olivetti G. Cellular basis of physiological and pathological myocardial growth. In: Fozzard HA, Solaro RJ, eds. Handbook of Physiology: The Cardiovascular System. The Heart.New York: Oxford University Press,2002;75¨C144.+ B# K/ H0 I4 d, v6 u
, d9 k, w8 e( h: h% F! g0 H. H
Limana F, Urbanek K, Chimenti S et al. bcl-2 overexpression promotes myocyte proliferation. Proc Natl Acad Sci U S A 2002;99:6257¨C6262.
& ?# d( d/ _1 B7 J" t: r
9 R& Y% Q* b+ m* D& {7 s2 uAnversa P, Palackal T, Sonnenblick EH et al. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 1990;67:871¨C885.! E: E$ @9 b7 {
9 r0 f, o$ x. N7 e# `( TKajstura J, Zhang X, Liu Y et al. The cellular basis of pacing-induced dilated cardiomyopathy. Myocyte cell loss and myocyte cellular reactive hypertrophy. Circulation 1995;92:2306¨C2317.
; `& S. Y$ s5 A2 m$ \6 m6 v' N. Y+ S3 n3 \
Linke A, Muller P, Nurzynska D et al. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A 2005;102:8966¨C8971.6 W" c) h7 V% q( D' |- y; n5 g) X; J
% ?5 B5 C' R u3 {& h5 [Spinale FG, Zellner JL, Tomita A et al. Relation between ventricular and myocyte remodeling with the development and regression of supraventricular tachycardia-induced cardiomyopathy. Circ Res 1991;69:1058¨C1067.
4 W# N z* X! c. }( F
+ |. i( Q5 Q- U- R9 F/ S: |- dUrbanek K, Quaini F, Tasca G et al. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci U S A 2003;100:10440¨C10445.7 B" i/ m3 J6 v% \: I
( ^/ N( B* ]2 M% I
Adler C-P, Costabel U. Fleckenstein A, Roma G. Cell number in human heart in atrophy, hypertrophy, and under the influence of cytostatics. Recent Advances in Studies on Cardiac Structure and Metabolism: Pathophysiology and Morphology of Myocardial Cell Alteration.Baltimore MD: University Park Press,1975;343¨C355.) f4 h6 y0 }2 w8 |
( X8 F* U) _2 i% b, n
Grajek S, Lesiak M, Pyda M et al. Hypertrophy or hyperplasia in cardiac muscle: Postmortem human morphometric study. Eur Heart J 1993;14:40¨C47.
, y8 B# z: D0 f: c- p
& F. A6 @+ x9 A7 I+ ^Olivetti G, Cigola E, Maestri R et al. Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophic senescent heart in humans. J Am Coll Cardiol 1994;24:140¨C149.: x% g& w0 U) P3 |# d1 V( R) y
2 P& D$ W/ k# @' h# S5 E5 r8 m$ eLinzbach AM, Akuamoa-Boateng E. Die Alternsveränderungen des menschlichen Herzens I. Die Herzgewicht im Alter. Klin Wochenschr 1973;51:156¨C163.2 x, d/ X* d0 \& L2 z% i% w
+ n& p' l5 U6 R$ h9 }( o/ Q4 N2 xBeltrami CA, Finato N, Rocco M et al. Structural basis of end-stage failure in ischemic cardiomyopathy in humans. Circulation 1994;89:151¨C163.
3 e/ E# k; F3 O t4 @# Q0 O* Y2 g& D; A7 s2 e
Beltrami CA, Finato N, Rocco M et al. The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol 1995;27:291¨C305.) q+ f1 z3 X& }) ]9 N+ r- ^
+ [" @: O( z; S7 p9 J) ]* GNadal-Ginard B, Mahdavi V. Molecular basis of cardiac performance, plasticity of the myocardium generated through protein isoform switches. J Clin Invest 1989;84:1693¨C1700.6 b1 \' {8 Y4 p) h
, l! X) Z) h* W7 G
Tam SK, Gu W, Mahdavi V et al. Cardiac myocyte terminal differentiation, potential for cardiac regeneration. Ann N Y Acad Sci 1995;752:72¨C79./ U. w) y. a( n0 X: k
( ~0 p$ n; D# p! U4 k. O- K
Soonpaa MH, Daud AI, Koh GY et al. Potential approaches for myocardial regeneration. Ann N Y Acad Sci 1995;752:446¨C454.' t/ \& X' U7 I
3 L3 X4 ~) ]5 K" j" Z
Chien KR. Cardiac muscle diseases in genetically engineered mice: Evolution of molecular physiology. Am J Physiol 1995;269:H755¨CH766.
( u/ V& q, L$ V0 L1 N5 [( A
) s. v6 _. z! W7 jSchneider MD. Myocardial infarction as a problem of growth control: Cell cycle therapy for cardiac myocytes? J Card Fail 1996;2:259¨C263.
) o# P& }( _+ R
# K, ]2 f$ H7 B" z* T$ tSugden PH. Signaling in myocardial hypertrophy: Life after calcineurin? Circ Res 1999;84:633¨C646.7 U, i) N- D- ^1 x
2 [ b5 M+ x* O' ]' X1 \' ~Von Harsdorf R¨¹diger. Can cardiomyocytes divide? Heart 2001;86:481¨C482.
+ R! l. X6 |3 b* q8 X: R& ]3 E
1 f. [: [" y. k" I$ L, t+ L5 f3 iPasumarthi KB, Field LJ. Cardiomyocyte cell regulation. Circ Res 2002;90:1044¨C1054.
0 J) W( P0 d+ F8 R* m' N) N7 D" q' v' H! w/ u% c! d9 b" }% g Q
Field LJ. Modulation of the cardiomyocyte cell cycle in genetically altered animals. Ann N Y Acad Sci 2004;1015:160¨C170.
6 J9 G1 T9 p+ Y1 w0 F5 K; ^" J. w, b [" o G6 l
Marino TA, Haldar S, Williamson EC et al. Proliferating cell nuclear antigen in developing and adult rat cardiac muscle cells. Circ Res 1991;69:1353¨C1360.& b" z# W: k+ n% b0 b! b
/ w9 i2 X% \% {1 _0 X
Reiss K, Cheng W, Ferber A et al. Overexpression of insulin-like growth factor-1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc Natl Acad Sci U S A 1996;93:8630¨C8635.! ]) Q! S# }; u; c0 O, ]
( j+ v7 V2 H; i0 e4 X
Baba HA, Takeda A, Schmid C et al. Early proliferative changes in hearts of hypertensive Goldblatt rats: An immunohistochemical and flow-cytometrical study. Basic Res Cardiol 1996;91:275¨C282.
% r3 R4 A' r& J m+ Z' T' }- M) P# ~& `" O; C$ b' S5 U7 x2 t# D4 ?( E: t
Reiss K, Cheng W, Giordano A et al. Myocardial infarction is coupled with the activation of cyclins and cyclin-dependent kinases in myocytes. Exp Cell Res 1996;225:44¨C54.; y. g8 G( Z' P+ b, S
1 \2 k4 E$ U( \6 l) ~5 Q6 N: g- K
Soonpaa MH, Koh GY, Pajak L et al. Cyclin D1 overexpression promotes cardiomyocytes DNA synthesis and multinucleation in transgenic mice. J Clin Invest 1997;99:2644¨C2654.9 i3 p# r8 ]2 C( i' y. U
1 ]/ \6 M; |. |# Z& k) s% v
Agah R, Kirshenbaum LA, Abdellatif M et al. Adenoviral delivery of E2F-1 directs cell cycle reentry and p53-independent apoptosis in postmitotic adult myocardium in vivo. J Clin Invest 1997;100:2722¨C2728.
s3 m, W7 A8 c; u8 L9 d
& ~9 ?8 h. t K7 HKajstura J, Leri A, Finato N et al. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 1998;95:8801¨C8805.6 x9 {( m/ V: ?! h8 n: L& f$ Y
( [* A8 M! w. ~" @: u$ T! U" DSetoguchi M, Leri A, Wang S et al. Activation of cyclins and cyclin-dependent kinases, DNA synthesis, and myocyte mitotic division in pacing-induced heart failure in dogs. Lab Invest 1999;79:1545¨C1548.
7 z) D; t+ u+ E$ V: ^' G6 Y& n3 F9 ]( ^) d8 `4 X' T, H5 @
Leri A, Malhotra A, Liew CC et al. Telomerase activity in rat cardiac myocytes is age and gender dependent. J Mol Cell Cardiol 2000;32:385¨C390.
. n s4 y- p2 p" z
! }6 ^! z2 ?9 b. m5 r4 FLeri A, Barlucchi L, Limana F et al. Telomerase expression and activity are coupled with myocyte proliferation and preservation of telemetric length in the failing heart. Proc Natl Acad Sci U S A 2001;98:8626¨C8631.
0 \. U6 h4 P# j4 C0 c2 V! ~; D* U" i
Leri A, Franco S, Zacheo A et al. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J 2003;22:131¨C139.9 E( s2 ^) Y' f0 A
# {9 H4 r; c7 a/ }' H9 |5 rTorella D, Rota M, Nurzynska D et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res 2004;94:514¨C524.
: y+ N4 R4 g% e
% Q8 @0 L! v7 u% g2 YPasumarthi KB, Nakajima H, Nakajima HO et al. Targeted expression of cyclin D2 results in cardiomyocytes DNA synthesis and infarct regression in transgenic mice. Circ Res 2005;96:110¨C118.* ^- ^2 _0 P% [4 E3 r* ^! u$ X0 Q
. }- L' `+ Q6 |
Urbanek K, Torella D, Sheikh F et al. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proc Natl Acad Sci U S A 2005;102:8692¨C8697.1 @# x! B4 g, u( X
% M9 c; R' V4 _5 p9 ?! E
Ledda-Columbano GM, Molotzu F, Pibiri M et al. Thyroid hormone induces cyclin D1 nuclear translocation and DNA synthesis in adult rat cardiomyocytes. FASEB J 2006;20:87¨C94.$ J5 ~5 x0 H" @+ s8 P0 T: G: h
9 f; Z& S! o2 n
Samper E, Fernandez P, Martin-Rivera L et al. Long-term repopulating ability of telomerase-deficient murine hematopoietic stem cells. Blood 2002;99:2767¨C2775.
8 f8 j. f! `, }2 i
0 r2 _9 q& F/ p, @Baerlocher GM, Roth A, Lansdorp PM. Telomeres in hematopoietic stem cells. Ann N Y Acad Sci 2003;996:44¨C48.& D# Z* b, \ t5 }2 e7 p5 y6 V0 V
; x! i/ h3 x8 o" n' yFlores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 2005;309:1253¨C1256.
- x* w' ^/ C( C+ M N7 |
; ? ]+ p) @/ p% o' D2 t; X0 a0 kChimenti C, Kajstura J, Torella D et al. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ Res 2003;93:604¨C613.
R) \! I1 \7 l) _% O9 {* j! l! J* k) n) U# u# t6 {2 q1 E4 |
Klinge O. DNS-Synthese und Kernteilung im normalen und im infarzierten Rattenherzen. Verh Dtsch Ges Path 1967;51:157¨C161.6 l: Z6 `/ q# g! x; x! b
' p5 A2 _% x, Q- H1 q T; nManasek FJ. Mitosis in developing cardiac muscle. J Cell Biol 1968;37:191¨C196.
; s4 [6 C. c" d
3 `9 u3 |" f4 s0 O0 I4 ZAnversa P, Vitali-Mazza L, Loud AV. Morphometric and autoradiographic study of developing ventricular and atrial myocardium in fetal rats. Lab Invest 1975;33:696¨C705.
1 n5 e/ `- `) v
8 l4 ^7 k* E1 k- @) C3 ?4 NLi F, Wang X, Capasso JM et al. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol 1996;28:1737¨C1746.3 y" J# X1 g$ a f: S
1 ?% p$ m& l- S8 ?9 i7 \
Quaini F, Cigola E, Lagrasta C et al. End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ Res 1994;75:1050¨C1063.
6 f7 q( K0 R/ O7 a
: h% U- r8 `& l5 @Beltrami AP, Urbanek K, Kajstura J et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750¨C1757.0 z# P# \* V/ X2 _
: ]1 a4 H% P9 G' _, O3 X' z0 E
Sonnenblick EH, Spiro D, Cottrell TS. Fine structural changes in heart muscle in relation of the length-tension curve. Proc Natl Acad Sci U S A 1963;49:193¨C200.1 e0 G* x) c7 v3 c: k
; @9 ?4 Y" o$ n% n; O) G; |
Anversa P. Myocyte death in the pathological heart. Circ Res 2000;86:121¨C124.
. Y- T& g ~ d0 C- ^$ a: A2 t/ n8 V3 F1 l
Kajstura J, Zhang X, Reiss K et al. Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing-induced cardiomyopathy in rats. Circ Res 1994;74:383¨C400.6 Z) o3 ]/ y# c T& E4 z
) D g" N9 ?0 K+ G; R4 o0 ]Laflamme MA, Myerson D, Saffitz JE et al. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ Res 2002;90:634¨C640.# h% s" D$ Y0 W8 x0 y
' g+ p I. ~5 R- c! [3 B; t9 a
Minami E, Laflamme A, Saffitz JE et al. Extracardiac progenitor cells repopulate most major cell types in the transplanted human heart. Circulation 2005;112:2951¨C2958.0 ?4 ^" C( a6 L2 z) \7 ^- B
0 _: ^" ^$ A6 E1 E
Carter D. Practical considerations for collecting confocal images. Methods Mol Biol 1999;122:35¨C57.8 D+ ~$ ?% n1 s0 V( k
& q# R- r1 d+ O$ g
Sheppard CJ, Wilson T. The theory of the direct-view confocal microscope. J Microsc 1981;124:107¨C117.
% D# @1 ~" n1 n0 c% A1 B6 U
! S% I5 Y4 ^! W' p: L' D; _1 W* S7 H! kWhite JG, Amos WB, Fordham M. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 1987;105:41¨C48.! g, O3 {/ [4 I2 g) V9 Z6 W
/ R# a! v+ k3 @) M4 iQuaini F, Urbanek K, Beltrami AP et al. Chimerism of the transplanted heart. N Engl J Med 2002;346:5¨C15.
: e* J! Y1 M& _2 y* ^2 E5 i- _
; ^+ U- s- T# f6 j+ GHruban RH, Long PP, Perlman EJ et al. Fluorescence in situ hybridization for the Y-chromosome can be used to detect cells of recipient origin in allografted hearts following cardiac transplantation. Am J Pathol 1993;142:975¨C980.
% q9 a. ]: ~( F9 p2 t( p/ r9 d; q
M¨¹ller P, Pfeidder P, Koglin J et al. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 2002;106:31¨C35.2 {4 O1 d+ l" `9 H* ?; G
3 \: k7 A* m. n4 o; X( _* V7 G0 `Bayes-Genis A, Salido M, Sol¨¦ Ristol F et al. Host cell-derived cardiomyocytes in sex-mismatched cardiac allografts. Cardiovasc Res 2002;56:404¨C410.9 V+ b) S, f: p: T2 Y3 h
3 ?* p# ~! u: a, C) c; A) WThiele J, Varus E, Wickenhauser C et al. Chimerism of cardiomyocytes and endothelial cells after allogeneic bone marrow transplantation in chronic myeloid leukemia. An autopsy study
) l% d2 o m% |/ K- R# S; r8 E
! m* [" z6 P: r4 sGlaser R, Lu MM, Narula N et al. Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation 2002;106:17¨C19.0 K& ~* P6 I4 Z0 \
3 p/ J, E. [. }Körbling M, Katz RL, Khanna A et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 2002;346¨C738.
% E0 ^# ^2 }8 K* }% ~4 M
( x7 p9 e" Z! O* T; m! D1 y5 R8 ?Caplice NM, Bunch TJ, Stalboerger PG et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc Natl Acad Sci U S A 2003;100:4754¨C4759. D: T' S2 z$ F& ?
0 ]7 e5 l- u6 F' k, l/ m c8 a3 VKleeberger W, Versmold A, Rothämel T et al. Increased chimerism of bronchial and alveolar epithelium in human lung allografts undergoing chronic injury. Am J Pathol 2003;162:1487¨C1494. A' M8 a. |2 u& R
E* o- l+ W7 C, F) y4 S# a
Deb A, Wang S, Skelding KA et al. Bone marrow-derived cardiomyocytes are present in adult human heart. Circulation 2003;107:1245¨C1247.
9 U8 v1 r9 M2 \, O" d7 s3 U
/ s9 Y& r0 [2 [/ r, CThiele J, Varus E, Wickenhauser C et al. Mixed chimerism of cardiomyocytes and vessels after allogeneic bone marrow and stem-cell transplantation in comparison with cardiac allografts. Transplantation 2004;77:1902¨C1905. I r2 S- d |- t& o
4 c6 d9 L$ T9 p5 n4 w
Höcht-Zeisberg E, Kahnert H, Guan K et al. Cellular repopulation of myocardial infarction in patients with sex-mismatched heart transplantation. Eur Heart J 2004;25:749¨C758.5 m2 t# h7 L2 |* p+ k( `( `3 h0 b7 i5 r
: u$ Z) r7 m, c( t
Mathur A, Martin JF. Stem cells and repair of the heart. Lancet 2004;364:183¨C192.) A: o3 S+ }9 k. `4 @; B- c) T
) v0 m7 `1 K3 K9 k, b2 vvon Harsdorf R, Poole-Wilson PA, Dietz R. Regenerative capacity of the myocardium: Implications for treatment of heart failure. Lancet 2004;363:1306¨C1313.- O: e# ?& p+ x
' I l" a( ~9 J! U( _9 ?# fCogle CR, Yachnis AT, Laywell ED et al. Bone marrow transdifferentiation in brain after transplantation: A retrospective study. Lancet 2004;363:1432¨C1437.3 ?3 O5 w3 N/ u7 I6 [
' G% Q3 ]8 j) V: l5 F
Angelini P, Markwald RR. Stem cell treatment of the heart. Tex Heart Inst J 2005;32:479¨C488.
' y' M* }8 \1 @" v) c2 p& `
& q: L: i6 T- m+ M9 w! q, @# ]Taylor DA, Hruban R, Rodriguez ER et al. Cardiac chimerism as a mechanism for self-repair. Does it happen and |
|