干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 21491|回复: 2
go

精子的3D螺旋前进轨迹 [复制链接]

Rank: 7Rank: 7Rank: 7

积分
13286 
威望
13286  
包包
34831  

论坛元老 精华勋章 金话筒 专家 优秀会员 优秀版主

楼主
发表于 2012-9-19 15:58 |只看该作者 |倒序浏览 |打印

作者:彬彬 来源:新浪环球地理 发布时间:2012-9-19 15:36:52
% Q. G) u, Y' A

科学家首次绘出精子3D轨迹图:以螺旋方式前进


$ ~) [3 x0 c# E1 |
' {+ v* k9 O: p3 O

2 @$ E+ E: n" `2 i
0 S3 N, p; ^, ]" n2 D( v; b. s& n" T

电子显微镜观测到,一个精子与一个卵子相遇。

北京时间9月19日消息,据美国国家地理网站报道,美国加州大学洛杉矶分校科学家近日首次成功绘制出精子的3D轨迹图,轨迹显示精子像拔塞钻一样螺旋前进,还像是一个个超级活跃的游泳高手。据研究人员介绍,此项研究采用的是一种传感器芯片成像技术,而不是像以往那种采用智能电话和数码相机成像的传统方法。新技术将有助于更好地研究男性生殖能力以及其他微生物的行为规律。' q3 ]5 B1 E* h# F7 i- u9 [, \, L

( s; H- J/ ]# A4 ^由于个体微小而且速度很快,人类的精子很难研究,这是科学家们的共识。然而,美国加州大学洛杉矶分校奥兹坎研究团队却迎难而上。研究负责人安多甘-奥兹坎表示,“精子是生命中最重要的微生物之一。”奥兹坎和他的研究团队从精子库中提取精子标本,然后将研究对象放置于一个硅传感器芯片上。研究人员从不同方向发出红色和蓝色LED光线,照射到移动的精子细胞上。每一个精子投射出不同颜色的阴影,硅传感器芯片记录下这些阴影。然后,研究人员再利用计算机程序将两组数据进行结合,重建细胞前进的轨迹。
/ C# w) o# H5 r  x9 g2 E: Y. x
6 x4 s2 A6 m2 }! @" z  \2 b  Y奥兹坎介绍说,“在任意给定时间内,传统光学显微镜在三维角度只能观测到数量有限的精子。但是,采用新的传感器技术,在仅仅一次很短时间的实验中,我们就能够很容易看到1500多个三维精子。”: v. v4 H  s) H) C2 |' v
( R" F) `2 r1 x9 p, t/ y- `
超级活跃的精子" D' @7 I" r- e5 g' u
- k: C5 d2 ]1 U5 _- s
所有的数据都显示,精子游泳的方式完全不同。大多数精子采用的是一种典型的轨迹,大致是一种直线。然而,还有一些精子游泳的方式却是螺旋式前进,就像一个开红酒瓶的拔塞钻一样螺旋前进。在此前的研究中,显微镜只能模糊地观测到这种奇特的现象。有些精子之所以被称为“非常活跃”,是因为它们前进时方向总是紧急转变的,就好像有某种力量在猛力拉着它们向相反方向改变。
: P. J. Z2 L4 V8 [+ U) `$ V: ~7 L5 I) }9 P; Q
奥兹坎表示,目前他们尚未搞清楚精子的健康度与其游泳方式之间是否存在某种联系,但是这种新的成像技术将开启精子研究领域的新大门。事实上,科学家们还利用新的传感器系统将红蓝两色光线照射到其他微生物上研究它们的运动情况以及它们对药物和化学试剂的反应。“这种新技术或其改进技术将可能用于观测和量化精子的能力。”
0 b7 H2 Y; ?. R" a' f) X9 D, N9 v! Q4 Q; V2 a0 A7 O0 Z0 o9 S! k
最新3D精子成像技术研究成果发表于本周出版的美国国家科学院院刊上。
5 V( Z: L/ D& k7 x, `$ f& ]7 O) A: U$ B! B) B/ |. y% y
Sperm Tracked in 3-D—A FirstCorkscrew paths, "hyperactive" swimmers among reproductive rarities.. P, n& O' J2 Z$ S$ K

$ s' c6 k+ ]/ V* @, W2 W
: o' u+ B: t2 ~: O
/ F8 d5 ~8 e% M& a

Ker Than

for National Geographic News

Published September 17, 2012

For the first time, scientists have successfully plotted the paths of sperm in 3-D, revealing corkscrew-like trajectories and "hyperactive" swimmers.
5 c% \7 i; \) \- N
5 V' c* ~1 D# v$ \; @Based on a sensor chip not unlike those in smartphones and digital cameras, the new technology could lead to better male fertility testing and insights into the behavior of other microorganisms, researchers say.* F0 J; U# F( L: R6 x% T
' n8 ^  y7 e: `
Tiny and fast—even for microorganisms—human sperm are notoriously difficult to study. Nevertheless the team trained their tool on the male reproductive cells rather than easier quarry. Why? Because "sperm is one of the most important microorganisms in life," study leader Aydogan Ozcan said.
9 W! a# Z( s( n$ m3 l(Find out how a man produces 1,500 sperm a second.)* ^- E0 R2 }; B, I, X) Z4 W% s- P+ v
Ozcan and his team began by placing the sperm—obtained from a sperm bank—on a silicon sensor chip.
1 l  E0 G9 Q) f$ u9 t! C1 fThe researchers shone red and blue LED lights from different directions on the moving sperm—24,000 cells over the course of the study. Each sperm cast two different, and different colored, shadows, which the chip recorded. Later a computer program combined the two sets of data to reconstruct the cells' meandering paths.
# x% U# Q# G; t6 ~/ yAt any given time, conventional optical microscopes "can only observe a very limited number of sperms" in three dimensions, said Ozcan, an electrical engineer at the University of California, Los Angeles, via email. But with the new sensor technique, "we can easily track more than 1,500 sperms in 3-D within a single experiment."
0 t. S& `8 H& f/ J3 G(Related: "Deep-Voiced Men Have Lower Sperm Counts, Study Says.")8 S1 d$ M3 M( T9 q3 U. w, \4 Q

( B! ?" D) j6 O  u/ m7 T6 z1 T"Hyperactive" Sperm
, e0 h! j% o9 o0 G& aAll that data revealed distinctly different swimming modes for sperm. The vast majority of the sperm followed a "typical" path—more or less a straight line.
5 m5 g1 c, j6 U2 X3 A8 ^But some swam in a helical, or corkscrew, pattern  previously only hinted at by fuzzy microscope results. Other sperm were labeled "hyperactive" due to their jerky direction changes, which sometimes sent them careening in reverse.
! a) \4 Z2 G" }5 Y. IVideo: Sperm Charted Swimming in Corkscrew Pattern
8 Y+ n) ?, J* h$ |+ A" S" }" I& x
http://news.nationalgeographic.com/news/2012/09/120917-sperm-3-d-proceedings-science-microorganisms-health/8 w! H) [: k' ], k1 y  m" J

' x7 {( u; Z6 Q' W1 G" O$ N4 H8 A1 M) Y
, P" v0 c& t: j( L
% j3 X9 F$ p8 |4 p' v1 c
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
已有 1 人评分威望 包包 收起 理由
naturalkillerce + 2 + 10 极好资讯

总评分: 威望 + 2  包包 + 10   查看全部评分

Rank: 3Rank: 3

积分
362 
威望
362  
包包
826  

金话筒 优秀会员

沙发
发表于 2012-9-19 20:36 |只看该作者
oh my goodness

Rank: 7Rank: 7Rank: 7

积分
13286 
威望
13286  
包包
34831  

论坛元老 精华勋章 金话筒 专家 优秀会员 优秀版主

藤椅
发表于 2012-9-20 21:45 |只看该作者

作者:Aydogan Ozcan 来源:PNAS 发布时间:2012-9-20 10:59:554 w0 \- r8 @8 O4 }/ h9 k

全息显微术能同时追踪上千精子
# @7 N. B; z) Q. e) ?" a8 W% u
据每日科学网9月17日报道,美国加州大学洛杉矶分校的研究人员开发出一种新方式,能够利用相干光源和全息显微技术,同时观察和追踪上千个快速移动的精子,并精确记录下它们的三维运动轨迹。相关研究报告发表在当日的美国《国家科学院院刊》在线版上。
5 j; S9 }7 ~9 ?. `
9 ]  h# ?3 R& v研究人员称,他们史无前例地追踪了2.4万个快速移动的细胞的路径,每个细胞的记录时间长达20秒。此次研究的主导者、该校电气工程和生物工程系教授埃道甘·奥兹坎说:“我们能精确追踪这些运动对象。每次能平行追踪上千个细胞的轨迹,并保持亚微米的精确度,以便了解数千个物体如何以不同的方式移动,同时揭示此前未知的细胞统计路径。”) y$ U0 i6 a+ U0 w
2 Z) a- ~! x3 L* u
奥兹坎及其同事利用了两个相干光源:波长为625纳米的红色LED(发光二极管)光源和波长为470纳米的蓝色LED光源,同时从两个不同角度照亮显微镜的视场。但他们并未使用传统的显微镜镜头进行观察,而是将感光芯片放置在透明的样本下。芯片会记录因上述光源生成的全息图,而软件算法则会基于获得的全息信息精确地显示显微镜下目标细胞的运动路径。
4 \  x5 X* |; Y' s( O# y  f6 }" T. U$ r5 k+ g( A" E) j
众所周知,精子活动很难会被镜头捕捉到。而研究人员在约为17平方毫米的视场内,同时追踪了1500多个人类精子的三维轨迹,耗时不过数秒钟。他们发现,精子细胞会沿不断变化的迂回路径旅行,偶尔还会呈螺旋轨迹前行,而在90%的时间内,它们都会沿顺时针方向运动。科学家表示,如若没有新型的高通量显微技术,他们就不可能观察到罕见的“螺旋行进”现象,其只会发生在给定样本内4%至5%的细胞上。
' H! c! O+ j& h! F2 f. Z& z, b2 r6 j: a7 p$ ^3 p
此外,这种基于透明材料运行的全息显微技术还能加快新药的研发速度,对于监控微生物疾病的药物治疗以及精子活动也十分重要。而科学家或许也可利用同样方法研究快速移动的细菌或其他浮游微生物,例如,新的全息成像技术有望披露更多未知的原生动物行为,并实时测试相关的药物疗法,以打击这些微生物最致命的种类或形式。(来源:科技日报 张巍巍)
' w1 W  i+ h- _7 B

: @' M0 E( N) T& D! d+ s) A
High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories

+ Author Affiliations

  • aElectrical Engineering Department, University of California, Los Angeles, CA 90095;
  • bBioengineering Department, University of California, Los Angeles, CA 90095;
  • cDepartment of Information Physics and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China;
  • dCalifornia NanoSystems Institute, University of California, Los Angeles, CA 90095; and
  • eDepartment of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
    - C) L/ W% J, I2 r6 r: j- N
  • Edited by Wallace F. Marshall, UCSF, San Francisco, CA, and accepted by the Editorial Board August 16, 2012 (received for review July 21, 2012)


    : i2 g2 g/ I; n# n7 s
5 J; v! `  a( |
Abstract

Dynamic tracking of human sperms across a large volume is a challenging task. To provide a high-throughput solution to this important need, here we describe a lensfree on-chip imaging technique that can track the three-dimensional (3D) trajectories of > 1,500 individual human sperms within an observation volume of approximately 8–17 mm3. This computational imaging platform relies on holographic lensfree shadows of sperms that are simultaneously acquired at two different wavelengths, emanating from two partially-coherent sources that are placed at 45° with respect to each other. This multiangle and multicolor illumination scheme permits us to dynamically track the 3D motion of human sperms across a field-of-view of > 17 mm2 and depth-of-field of approximately 0.5–1 mm with submicron positioning accuracy. The large statistics provided by this lensfree imaging platform revealed that only approximately 4–5% of the motile human sperms swim along well-defined helices and that this percentage can be significantly suppressed under seminal plasma. Furthermore, among these observed helical human sperms, a significant majority (approximately 90%) preferred right-handed helices over left-handed ones, with a helix radius of approximately 0.5–3 μm, a helical rotation speed of approximately 3–20 rotations/s and a linear speed of approximately 20–100 μm/s. This high-throughput 3D imaging platform could in general be quite valuable for observing the statistical swimming patterns of various other microorganisms, leading to new insights in their 3D motion and the underlying biophysics.

http://www.pnas.org/content/early/2012/09/10/1212506109.abstract
! K" {% a! |+ A, F* `# N
' m" p9 q' f- T; j2 I2 B% I
已有 1 人评分威望 包包 收起 理由
细胞海洋 + 2 + 10 极好资料

总评分: 威望 + 2  包包 + 10   查看全部评分

‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-5-8 07:58

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.