干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 409343|回复: 249
go

INVITED REVIEWPhysiology of the renal medullary microcirculation [复制链接]

Rank: 1

积分
威望
0  
包包
0  
楼主
发表于 2009-4-21 13:32 |只看该作者 |倒序浏览 |打印
作者:Thomas L.Pallone, ZhongZhang,  KristieRhinehart作者单位:Division of Nephrology, University of Maryland Schoolof Medicine, Baltimore, Maryland 21201-1595 - b3 d. ]* R( h8 d3 h
                  + Q6 T2 d" ~: a5 _, {
                  + _. X' g) U# \+ z, ~
          8 _8 l! X/ p1 j  T- a/ r
                        
3 J* b4 f- s4 J1 e! J2 o6 n            2 [" I* c" W, Z1 i* C" _3 {% X  N- O$ k! Y
            ! ^$ [$ z7 x; ]5 m8 s, j/ Z0 c
            
% i/ I) N2 v2 k            
! T; L( `, X' a2 W. Z                      - B+ `% H! D% }( _7 r, g0 t
        " Y/ Q! _3 M2 D( A
        2 H' L5 [+ T  u0 F5 z
        
4 z% ], I7 b4 T- f) H7 f* U          【摘要】
7 @. r  T; |. _7 O. H& U      Perfusion of the renal medulla plays animportant role in salt and water balance. Pericytes are smoothmuscle-like cells that impart contractile function to descending vasarecta (DVR), the arteriolar segments that supply the medulla with bloodflow. DVR contraction by ANG II is mediated by depolarization resulting from an increase in plasma membrane Cl conductance thatsecondarily gates voltage-activated Ca 2  entry. In thisrespect, DVR may differ from other parts of the efferentmicrocirculation of the kidney. Elevation of extracellular K   constricts DVR to a lesser degree than ANG II orendothelin-1, implying that other events, in addition to membranedepolarization, are needed to maximize vasoconstriction. DVRendothelial cytoplasmic Ca 2  is increased by bradykinin, aresponse that is inhibited by ANG II. ANG II inhibition of endothelialCa 2  signaling might serve to regulate the site of originof vasodilatory paracrine agents generated in the vicinity of outermedullary vascular bundles. In the hydropenic kidney, DVR plasmaequilibrates with the interstitium both by diffusion and through waterefflux across aquaporin-1. That process is predicted to optimizeurinary concentration by lowering blood flow to the inner medulla. To optimize urea trapping, DVR endothelia express the UT-B facilitated urea transporter. These and other features show that vasa recta havephysiological mechanisms specific to their role in the renal medulla.
+ C/ N7 `* `7 `. G( B# \          【关键词】 vasa recta perfusion hypertension oxygenation urinaryconcentration patch clamp calcium fura
' ~8 k/ j! [3 P# o. A7 j' t+ c4 G                  INTRODUCTION
' |! \& y) u. Q6 i) u& j0 h* r% {7 b' y. L) C( Y  E/ y
THE MICROCIRCULATION OF THE kidney isregionally specialized. In the cortex, afferent and efferent arteriolesgovern the driving forces that promote glomerular filtration. A denseperitubular capillary plexus arising from efferent arterioles surroundsthe proximal and distal convoluted tubules to accommodate enormous reabsorption of glomerular filtrate. In contrast, vasa recta serve needs specific to the medulla. Through the counterflow arrangement ofdescending (DVR) and ascending vasa recta (AVR), countercurrent exchange traps NaCl and urea deposited to the interstitium by collecting ducts and the loops of Henle. This is vital to maintain corticomedullary osmotic gradients but conflicts with the need tosupply nutrient blood flow to medullary tissue. Metabolic substrates that enter the medulla in DVR blood diffuse to the AVR to be shunted back to the cortex. To deal with the threat of medullary hypoxia resulting from this process, the kidney has evolved a capacity to exertsubtle control over regional perfusion of the outer and inner medulla.The details are far from clear, but much experimental evidence pointsto the complex interactions of many autocoids and paracrine agents tomodulate vasomotor tone at various sites along the microvascularcircuit. The goal of this review is to summarize recent insights intothe control of medullary perfusion and the cell biology and mechanismsthat govern vasa recta transport and vasoactivity./ {0 Y4 @8 I- q

3 D; q% `) L% m/ {; O1 ERENAL MEDULLARY MICROVASCULAR ANATOMY
8 F9 Y( K1 M3 J$ w* a1 j, M( i6 b5 {. \% K3 _
Studies of regional perfusion have consistently shown thatthe fraction of total renal blood flow that is distributed to the innercortex and medulla is subject to regulation ( 2, 17, 18, 28-30, 73-80, 88, 90, 110, 113, 180-185 ). Tounderstand the sites at which such regulation might occur,microvascular anatomy will be briefly reviewed (Fig. 1 ). For greater detail, the interestedreader is directed to a number of well-illustrated sources ( 6, 7, 48, 49, 55, 56, 60, 81, 85, 86, 99, 105, 110, 113, 163 ).7 g; b& T+ J2 ~
8 u/ K( a' Q0 N' Y
Fig. 1. Anatomy of the medullary microcirculation. In thecortex, interlobular arteries arise from the arcuate artery and ascendtoward the cortical surface. Juxtamedullary glomeruli arise at arecurrent angle from the interlobular artery. The majority of bloodflow reaches the medulla through juxtamedullary efferent arterioles;however, some may also be from periglomerular shunt pathways. In theouter medulla, juxtamedullary efferent arterioles in the outer stripegive rise to descending vasa recta (DVR) that coalesce to form vascularbundles in the inner stripe. DVR on the periphery of vascular bundlesgive rise to the interbundle capillary plexus that perfuses nephrons(thick ascending limb, collecting duct, long looped thin descendinglimbs; not shown). DVR in the center continue across the inner-outermedullary junction to perfuse the inner medulla. Thin descending limbsof short looped nephrons may also associate with the vascular bundlesin a manner that is species dependent (not shown). Inner medulla:vascular bundles disappear in the inner medulla, and vasa recta becomedispersed with nephron segments. Ascending vasa recta (AVR) that arisefrom the sparse capillary plexus of inner medulla return to the cortexby passing through outer medullary vascular bundles. DVR have acontinuous endothelium ( inset ) and are surrounded bycontractile pericytes. The number of pericytes decreases with depth inthe medulla. AVR are highly fenestrated vessels ( inset ). Asblood flows toward the papillary tip, NaCl and urea diffuse into DVRand out of AVR. Transmural gradients of NaCl and urea abstract wateracross the DVR wall across aquaporin-1 water channels.
9 O3 f9 X3 [$ Y) w  @" d& o' d! s4 ~0 M+ f5 @+ c! Q
The medulla of the kidney is perfused by the efferent arteriolar bloodflow that leaves juxtamedullary glomeruli. In the outer stripe of theouter medulla, juxtamedullary efferent arterioles give rise to many DVR(Fig. 1 ). There is also strong anatomic evidence that periglomerularshunt pathways give rise to some DVR ( 16 ). The innerstripe of the outer medulla is characterized by its separation intovascular bundles and the interbundle region. Vascular bundles containall DVR destined to perfuse the interbundle region and those thateventually penetrate beyond the inner-outer medullary junction to theinner medulla. DVR on the bundle periphery give rise to a capillaryplexus that perfuses the interbundle region, where metabolicallydemanding, salt-transporting epithelia of the thick ascending limb andcollecting duct are located. DVR in the bundle center traverse theinner stripe of the outer medulla to reach the inner medulla. Thelatter may be larger and more muscular than peripheral DVR. Vascularbundles contain all AVR returning from the inner medulla and, to adegree that varies with species, short looped thin descending limbs ofHenle ( 6, 7, 56, 60, 99, 110 ). Based on anatomicconsiderations alone, it seems evident that the vascular bundles placeDVR and AVR into close apposition to favor efficient equilibration.They are also likely to be an important site for regulation of the regional perfusion of the outer and inner medulla because preferential vasodilation of DVR on the bundle periphery or constriction of DVR inthe bundle center should enhance perfusion of the interbundle region.: j) T# Y, K3 x4 W
. i2 T* F# U3 _: ~0 \+ F* Y6 ^3 e: C
DVR occupy a functional niche that is partially arteriolar andpartially capillary in nature. The DVR wall is characterized by smoothmuscle remnants that surround a continuous endothelium and impartcontractile function. The pericytes persist into the inner medulla buteventually disappear ( 111, 120 ). Near their termination,DVR become fenestrated and give rise to a sparse capillary plexus. Theplexus coalesces to form AVR that are characterized by a high degree offenestration ( 117, 138 ). The fraction of the AVR walloccupied by fenestrations is larger in the inner medulla than in theouter medulla.4 E+ X/ B1 Y) u# O5 c6 E6 R7 A" K9 K

: q; ?5 k1 F8 F% TROLE OF DVR IN REGULATION OF MEDULLARY BLOOD FLOW: h+ b7 \4 W' ?* V7 U
9 h! ?: L2 M! e6 c: o
Regulation of blood flow to the renal medulla has been a subjectof interest for decades. The methods used to measure blood flow and theconclusions derived from the associated studies have been frequentlyreviewed ( 17, 73, 76, 90, 105, 110 ). Laser-Doppler is nowthe dominant method for measuring regional perfusion of the kidney.That method relies on the Doppler shift imparted to monochromatic lightby backscatter from moving red blood cells (RBCs) in a localized areaof tissue. Many regional perfusion studies have been performed inanimals that have had optical fibers acutely or chronically implantedinto the renal parenchyma ( 2, 17, 28-30, 70, 73, 76 ).Studies of the extent of autoregulation of medullary perfusion withvariation in renal perfusion pressure have produced variable results( 17, 70, 76, 90 ), but much evidence points to a possiblerole for variation of medullary autoregulation with extracellular fluid volume status to regulate "pressure natriuresis" ( 17, 76, 78, 131 ). Laser-Doppler studies with implanted flow probes yield asignal from a fixed volume of tissue and thus the probes are sensitiveto probe orientation. Direct measurement of DVR blood flowusing dual-slit videomicroscopy has also been performed. Cupples andMarsh ( 19 ) found that flow in a single descending vasarectum was regulated between 85 and 160 mmHg. The latter doesnot rule out the possibility that recruitment of flow might occurthrough previously unperfused DVR, as described by Roman et al. (seebelow) ( 131 ). In the latter case, single-vessel flow mightbe autoregulated while overall flow is not. Apart from the issue of regional autoregulation, a number of consistent themes haveemerged. Blood flow to the medulla is dependent on the tonic vasodilatory influence of prostaglandins and nitric oxide (NO) ( 74, 75, 79, 83, 84, 88, 119 ). Blockade of renal medullaryvasodilator synthesis leads to a reduction of medullary blood flow,salt retention, and hypertension. Thus, apart from the anticipated roleof medullary blood flow to contribute to urinary concentration andwater balance, a role in the regulation of sodium balance may alsoexist. The effector mechanisms that connect medullary perfusion toregulation of epithelial sodium transport are not well established, butvarious possibilities exist. It has been demonstrated that increases inperfusion pressure cause a secondary increase in renal interstitialpressure and that the latter leads to inhibition of proximalreabsorption ( 128 ). Some forms of hypertension areassociated with regulation of sodium transport pathways( 71 ), but this would not account for the immediate abilityof increased perfusion pressure to cause saliuresis. If medullaryperfusion modulates local NO release, a secondary effect on salt andwater excretion could result ( 94, 95 ).
& w: I, [5 N9 v5 h7 e7 k
/ i" E% l; u+ dGiven the importance of medullary perfusion in influencing salt andwater balance, we were motivated to determine which location(s) alongthe microvascular circuit provides control of medullary blood flow.Afferent and efferent arterioles of juxtamedullary glomeruli couldconstrict and dilate to serve this purpose, but that hypothesisconceivably conflicts with the need for them to simultaneously controljuxtamedullary glomerular filtration pressures. The possibility thatperiglomerular pathways for perfusing the medulla are important in thisscheme has been proposed ( 16, 17 ). Based on anatomicconsiderations (Fig. 1 ), it seems probable that DVR are an importantsite of regulation. The latter has been impossible to test directlybecause the outer medulla and most of the inner medulla areinaccessible to observation in vivo. When DVR are isolated from ratsand examined in vitro, contractile pericytes are observed and thevessels exhibit vasoreactivity, responding to numerous constrictors anddilators (Fig. 2 ). Vasoactive agonistsinclude many paracrine agents that are synthesized within the medulla( 104, 111-113, 129, 144-146 ). Because DVR arebranches of efferent arterioles, it seems logical to conclude thattheir vasomotion could affect glomerular filtration pressures; however, compensatory changes in afferent arteriolar tone could hypothetically offset that effect with the response to signals arising fromtubuloglomerular feedback and myogenic response. The details areuncertain, but it is likely that DVR are an important regulator ofmedullary perfusion.
4 w3 I4 x  ]/ Y# b$ ]) Y; N1 ^# [6 z# n7 `
Fig. 2. Vasoconstriction of isolated, microperfused outermedullary DVR. A : DVR isolated and microperfused in vitro isexposed to ANG II (10 nM) by abluminal application from the bath. a andb, Vessel before and after constriction, respectively. Two cell typescan be seen. Pericyte cell bodies project from the abluminal surface,and endothelia line the lumen. B : quantification of DVRconstriction through measurement of luminal diameter. Results areexpressed as %constriction = 100 × ( D o D )/ D o, where D o is basal diameter and D isdiameter after constriction. The mean luminal diameter of perfused DVRis ~14 µm. Constriction has been induced by abluminal exposure toendothelin 1 (0.1 nM, n = 6), ANG II (10 nM, n = 15) or by raising of extracellular K   concentration from 5 to 100 mM by isosmotic substitution for NaCl( n = 6). Data are reproduced from Refs. 104, 146, and 176.
2 u+ W! ~- c6 F. q: K" \9 v) U  A8 _& Z
The parallel arrangement of DVR within outer medullary vascular bundlesraises two questions. First, does global constriction of DVR regulatethe rate at which blood crosses from the cortex to the medulla, i.e.,influence total medullary perfusion? Second, does DVR vasomotion withinvascular bundles regulate distribution of blood flow between theinterbundle region of the outer medullary inner stripe and the innermedulla? Those actions are not mutually exclusive. Some quantitativeand qualitative observations are germane. Roman and colleagues( 131 ) reported that variation in inner medullary tissueperfusion is related both to changes in blood flow through singlevessels and to the recruitment of blood flow into previouslynonperfused DVR. Given that the luminal diameter of DVR is similar tothat of RBCs, it seems plausible that flow through them could bestopped by intense foci of constriction in the outer medulla. If thatoccurs, excessive back-pressure might not result because blood from theefferent arteriole could still traverse adjacent vessels that lie inparallel within the vascular bundles (Fig. 1 ). This possibility isqualitatively supported by the observation that bolus spurting of RBCsthrough the lumen of DVR can sometimes be seen on the surface of thepapilla (inner one-third of the inner medulla) when the papilla isexposed for micropuncture (Pallone, unpublished observations).Goligorsky and colleagues ( 34, 61 ) have postulated thatmembrane fluidity changes related to local production of NO contributeto such processes. Finally, differential regulation of outer vs. innermedullary perfusion by vasopressin has been observed when opticallaser-Doppler probes were inserted into the medulla at various depths( 28 ).
7 c  Z: K' e9 Q/ \1 [0 L; R; S& N+ X& K3 Z  {
VASOACTIVITY OF DVR6 [  E/ ^# B0 V& K, r

" y5 u2 \9 e+ v( Y9 ?8 H$ c# i0 KWhen DVR are isolated from outer medullary vascular bundles,perfused in vitro, and exposed to contractile agonists, they constrictat various foci along their length (Fig. 2 ). Of the various agents thusfar examined, endothelin-1 and -2 yield the most intense and durableconstriction ( 146 ). They have threshold effects at10 14 M and most often obliterate the vessel lumen athigher concentrations (100% constriction, Fig. 2 ). These agents inducedurable constriction that does not wane and is only slowly reversibleafter washout. ANG II is also a consistent constrictor that, onaverage, reduces luminal diameter of microperfused vessels by 40- 60%( 104, 114, 129 ). As in cortical vessels, thromboxanes arepartially responsible for mediation of ANG II DVR constriction( 140, 143, 164, 165 ). In contrast to endothelins,vasoconstriction by ANG II tends to maximize 5-10 min afterapplication and then slowly wane toward a stable baseline (Fig. 2 ).Microperfused DVR seem to exhibit a minimum of intrinsic tone and toshow no myogenic activity when pressurized ( 104 ). It mustbe recognized, however, that these observations are obtained fromisolated vessels placed into artificial buffers without supportinginterstitum, often hours after the death of the rat.. V2 O# l0 a9 [) o- T% x7 Z8 V0 z
/ \' t" l$ c. Q6 ^  W, }
Pericytes are the smooth muscle remnants that surround DVR andpresumably impart contractile function. Recently, the mechanisms bywhich ANG II induces vasoconstriction have been evaluated using fluorescent probes of intracellular Ca 2  concentration([Ca 2  ] i ) and membrane potential and byelectrophysiological recording. As expected for signaling via the ANGII AT 1 receptor, a classic peak-and-plateau intracellularCa 2  response is elicited in fura 2-loaded pericytes (Fig. 3 ) ( 130, 176 ). Both wholecell electrophysiological recording and measurements with apotentially sensitive fluorescent probe showed that ANG IIdepolarizes the pericyte cell membrane (Fig. 4 ) ( 107, 130, 175, 176 ).This seems to occur through activation of a Ca 2  -sensitiveCl conductance that shifts membrane potential away fromthe equilibrium potential of the K   ion toward that ofCl ( 107, 175 ). An 11-pS Cl channel has been identified in the pericyte cell membrane. This channelhas low basal open probability but is activated by ANG II or excisioninto high-Ca 2  buffers (Fig. 5 ). Membrane potential of ANG II-treatedpericytes often oscillates, and voltage-clamped cells held at 70 mVexhibit classic spontaneous transient inward currents typical ofvarious smooth muscle preparations (Fig. 4 C ) ( 35, 43, 46, 91 ).
% Y5 v* ]/ |$ _1 h+ T  m6 k; L' V1 [+ ], F( y" b* u' [5 f: g/ Z
Fig. 3. Measurement of intracellular Ca 2  transientsin DVR pericytes. A : appearance of an isolated DVR afterexposure to collagenase. B : isolated collagenase-treatedvessel has been drawn into a glass micropipette with a heat-polishedopening of ~6 µm diameter, stripping pericytes from the abluminalsurface. This process can be continued to isolate a group of pericytesfor loading with the Ca 2  -sensitive fluorescent indicatorfura 2 ( 130 ). Bar = ~10 µm. C :intracellular Ca 2  concentration([Ca 2  ] i ) response of fura 2-loaded DVRpericytes to ANG II (10 nM) is shown in the presence and absence ofdiltiazem, n = 6 and 7, respectively. In the controlgroup, diltiazem was added to the bath for 11-16 min. Diltiazeminhibits the plateau phase of the pericyte Ca 2  response.Data are reproduced from Refs. 130 and 176.
9 R: n4 q/ N- p: S
! l2 j/ ~- |/ M, Q5 C: P! RFig. 4. Nystatin-perforated-patch whole cell electrophysiologicalrecordings from DVR pericytes. A : membrane potentialrecorded from pericytes as they are exposed to ANG II (10 nM) for2-10, 2-3, or 20-25 min. Data were sampled at 10 Hz,averaged to 1 Hz, and then averaged for n = 6 cells/group. ANG II depolarizes the cells but cannot be reversed afterprolonged exposure. B : membrane potential oscillations in apericyte exposed to 10 nM ANG II. C : spontaneous transientinward currents in a DVR pericyte exposed to ANG II. The cell is heldat 70 mV and then exposed to ANG II (10 nM, arrow). Data arereproduced from Ref. 107.$ ~# p. M# V1 M  Z) g" z2 T7 q! @
9 Z6 L  D2 d. x- m; y+ ]. m
Fig. 5. 11-pS Cl channel recorded from DVR pericyte. A : recording showing channel activity in excised patch heldat potentials shown on the right. O and C, open and closed,respectively. B : excision of patch into 1 mMCa 2  buffer activates the channel. ANG II activates thischannel in cell-attached patches (data not shown). Data are reproducedfrom Ref. 175.9 o2 u3 |: i0 R6 q2 D1 y

- K. ^* m- }& U" \7 E, l& sThe role of membrane depolarization and changes in Cl conductance are well established in the afferent arteriole ( 13, 39, 47, 63 ) as a means of gating Ca 2  entry( 14, 15, 64 ). Until recently, however, the existence ofvoltage-gated Ca 2  entry pathways in the efferentcirculation has been uncertain. Rigorous examination of this issue withRT-PCR, immunochemistry, and the assessment of vasoreactivity inisolated arterioles has been reported by Hansen and colleagues( 38 ). T-type subunits, Ca(V)3.1 and Ca(V)3.2, andan L-type subunit, Ca(V)1.2, were found in efferent arterioles ofjuxtamedullary glomeruli but not superficial glomeruli. These subunitswere also identified in DVR ( 38 ). Based on this finding,membrane potential of DVR pericytes is expected to controlvoltage-gated Ca 2  entry and modulate[Ca 2  ] i, a prediction that received recentexperimental support. The L-type channel blocker diltiazem vasodilatesANG II-constricted DVR and reduces [Ca 2  ] i ofANG II-treated pericytes. Both high external K   concentration and the L-channel agonist BAY K 8644 are weak DVR vasoconstrictors. Finally, agents that repolarize pericytes, bradykinin (BK) and the ATP-sensitive K   channel opener pinacidil, areeffective vasodilators (Fig. 6 ) ( 176 ). The many downstream effects of pericyte ANG IIreceptor activation remain unknown; however, there are hints thatimportant effects result from actions independent of[Ca 2  ] i elevation. Principally,depolarization in the absence of agonist induces far less intenseconstriction than does ANG II or endothelins (Fig. 2 ). Phosphorylationevents that sensitize the intracellular contractile machinery to theeffects of Ca 2  are likely to be implicated( 133 ).& {6 B6 A/ R& p- U( k

6 o- h' a3 A6 f: v+ p4 k& ~  c8 EFig. 6. Repolarization of ANG II-depolarized pericytes byvasodilators. A : recording of membrane potential from a DVRpericyte successively exposed to ANG II (10 nM) and bradykinin (100 nM). Resting membrane potential of 48 mV depolarizes after ANG II. Abiphasic repolarization occurs after exposure to bradykinin. B : similar recording from a DVR pericyte exposed to ANG II(10 nM) and then the ATP-sensitive K   channel openerpinacidil (10 µm). Both bradykinin and pinacidil repolarize pericytesand vasodilate preconstricted DVR ( 109, 176 ). Data arereproduced from Ref. 176.0 v# z3 B; u) r2 `* d1 N
+ J7 o, R; i- r+ L! l1 |* _
ROLE OF DVR ENDOTHELIA IN THE REGULATION OF VASOACTIVITY
- y' j; G- N$ H2 c
' U# [# O+ F) n) H3 q: QAs a fortuitous consequence of the fact that theCa 2  -sensitive fluorophore fura 2 loads almost exclusivelyinto DVR endothelia (to the near exclusion of pericytes), it has beenrelatively easy to examine global Ca 2  transients generatedby endothelium-dependent vasodilators (Fig. 7 ). As expected, BK generates apeak-and-plateau Ca 2  response, enhances NO generation(Fig. 8 ), and induces vasodilation ( 112, 129, 130 ). An unexpected finding is that thevasoconstrictor ANG II suppresses basal Ca 2  and inhibitsBK-, acetylcholine-, thapsigargin-, and cyclopiazonic acid-inducedCa 2  responses in DVR endothelia (Fig. 7, B and C ) ( 114, 130 ). This is surprising for severalreasons. First, AT 1 receptors, which mediate the vastmajority of the effects of ANG II, signal through inositol3,4,5-trisphosphate generation and Ca 2  mobilization.Second, infusion of ANG II has been observed to lead to secondaryenhancement of NO levels within the medulla ( 182, 185 ) andin isolated cortical microvessels ( 153, 154 ). Given thatendothelial nitric oxide synthase (eNOS)/NOS3 is a Ca 2  -dependent isoform of NOS, suppression ofCa 2  would be expected to block rather than enhanceendothelial NO generation. As a possible answer to this paradox, wepointed out that adjacent nephrons also express NOS isoforms, so thatANG II elevation of Ca 2  in those structures would favor NOgeneration on the vascular bundle periphery. Hypothetically, this couldprovide a feedback loop (in addition to adenosine) through which themedullary thick ascending limb (mTAL) can regulate its own perfusion.As previously discussed, ANG II might suppress DVR endothelialCa 2  signaling as a means of turning regulation of DVRvasomotion away from the endothelium to the mTAL ( 114, 130 ).2 h; M: W% G$ ~/ g

2 ?, ^8 z1 O' j% M) w; }& [Fig. 7. Measurement of [Ca 2  ] i transients in DVR endothelia. A : white light and fluorescentimages from an isolated DVR loaded with fura 2. Abluminal pericytes(arrows, left ) are not visible in the fluorescent image( right ). In contrast, endothelial cells load fura 2 and emita strong fluorescent signal. B : example of DVR endothelial[Ca 2  ] i response after exposure to bradykinin(BK; 100 nM). C : means ± SE of n = 7 DVR exposed to ANG II (10 nM). Slight suppression of[Ca 2  ] i is seen. D : suppression ofDVR endothelial [Ca 2  ] i after exposure to ANGII (10 nM) is dramatic when [Ca 2  ] i has beenpreviously increased by exposure to the sarcoplasmic endoplasmicreticulum Ca 2  ATPase inhibitor cyclopiazonic acid (CPA; 10 µm). Data are reproduced from Refs. 112, 114, and 130.
1 a6 z7 c" B+ }$ E; o' k
! Z1 @9 ~  Y5 s* iFig. 8. Measurement of nitric oxide (NO) generation in isolated DVR using4,5-diaminofluorescein (DAF)-2. A : white light andfluorescent image shows that DAF-2 loads into both endothelia andpericytes. B : fluorescent emission at 535 nm duringexcitation at various wavelengths (abscissa). Successive recordings areobtained at 1-min intervals from DVR exposed to 2.5 mM sodiumnitroprusside (SNP) as a NO donor. Fluorescence increases without ashift in spectra. C : DAF-2 emission reflecting endogenous NOproduction in isolated DVR. In the control group, fluorescence declinesdue to leakage of DAF-2 from the cytoplasm. Fluorescence is greater onexposure to BK (100 nM) and increases further when the bath containsthe superoxide dismutase mimetic tempol (1 mM). Data are reproducedfrom Ref. 129. ** P P
( l, z: c8 H. [: m, D4 `0 s; g, F: {9 B
The concentrations of ANG II required to influence endothelialCa 2  signaling or to maximally constrict DVR in vitro(nanomolar) exceed circulating levels (picomolar). Compartmental ANG IIconcentrations within the kidney can be as high as 10 9 to10 10 M ( 89, 142 ). The renal outer medulla isinaccessible to micropuncture, so that direct sampling of outermedullary DVR plasma directly downstream of juxtamedullary glomerulicannot be performed. Seikaly and colleagues ( 142 ) foundthat ANG II concentrations in star vessel plasma sampled downstream ofsuperficial glomeruli exceed circulating levels by as much as1,000-fold. On this basis, it seems possible that DVR could be exposedto nanomolar ANG II in vivo.* ]4 L+ l( W  C" W; P) d" o

+ d0 z9 O( [+ c0 m0 i5 LThe vasodilatory influence of NO cannot be completely understoodwithout considering its interaction with O 2 free radicals. These are generated by one-electron reductions of O 2 togenerate superoxide (O 2 − ·), hydrogen peroxide (H 2 O 2 ), hypochlorous acid, and hydroxyl radical(·OH), the "reactive oxygen species" (ROS). ROS favorvasoconstriction and have been implicated in various forms ofhypertension ( 53 ). Mechanistically, this is at least inpart because O 2 − · reacts with NO to formperoxynitrite (ONOO ), a product that, compared with NO,is a weak vasodilator. ROS are generated by the "leak" of electronsfrom the mitochondrial electron transport chain as well as a variety ofenzymatic processes. Intrinsic mechanisms limit cellular levels of ROS.Several isoforms of superoxide dismutase (SOD) convertO 2 − · to O 2 andH 2 O 2. In turn, H 2 O 2 isdecomposed to O 2 and H 2 O by catalase and otherperoxidases. By limiting reaction of NO with O 2 − ·, the extracellular isoform of SOD found in plasma and endothelia hasbeen identified as a principal regulator of NO bioavailability ( 62, 96 ). Endogenous antioxidants are also responsible for scavenging ROS. For example, hemeoxygenase (HO) is a microsomal enzymethat degrades heme. In the process, it forms CO, a vasodilator, andbiliverdin, an antioxidant ( 27, 180 ). Both HO-1 and HO-2 isoforms are expressed in renal smooth muscle and nephrons ( 4, 40, 45 ).
5 H2 I9 A$ C) C: U  E* c6 F
0 P; ?  C1 ]" z; ?/ }! ZRenal generation of ROS favors vasoconstriction and may contribute tosome forms of hypertension. Tempol is a cell-permeant SOD mimetic thatreduces hypertension in the spontaneously hypertensive rat ( 139, 141 ). Of the several sources of O 2 − ·, NADPHoxidase appears to be important. Some NADPH oxidase subunit isoformsare upregulated and activated by vasoconstrictors ( 36, 57, 126, 159, 165, 177 ). It has been shown that both ANG II receptorblockers (ARBs) and the combination of hydrochlorothiazide, hydralazine, and reserpine (triple therapy) can normalize blood pressure in the SHR rat; however, only ARBs reduce excretion of ROSreaction product 8-iso-PGF 2. Interestingly,P O 2 values are lower in the SHR, and this toois normalized by ARB therapy or treatment with the SOD mimetic tempol( 1, 164 ). Tempol also has been shown to enhance medullaryperfusion ( 183 ). NO production by isolated DVR and themTAL is enhanced by tempol, and this agent blunts ANG II-induced DVRvasoconstriction ( 94, 129 ). Given the importance ofmedullary blood flow in the regulation of blood pressure, it isinviting to speculate that some forms of hypertension might be relatedto an increase in "oxidative stress" in the renal medulla.
; W  F3 X/ [0 Z" a, z& e1 P; r6 y( S0 ~
MEDULLARY P O 2 AND PERFUSION OF THEMEDULLA. m! R; S1 m; U0 J

$ ]! _. z. U! p6 M8 e& JP O 2 in the medulla of the kidney is low,in the range of 10-25 mmHg ( 11, 12, 22 ). This ispredicted to be a consequence of the countercurrent arrangement of vasarecta ( 173 ) because O 2 in DVR blood diffusesto AVR to be shunted back to the cortex. Evidence supports the notionthat O 2 consumption by the salt-transporting mTAL makes itvulnerable to ischemia ( 12 ). Several hormonal systems play a role in the protection of the medulla fromischemic insult. Each shares the ability to enhance medullaryblood flow and inhibit salt reabsorption along the nephron.Hypothetically, this should have a dual effect of enhancing the supplyof O 2 and simultaneously reducing the demand for itsconsumption. A first example is the generation of vasodilatoryprostaglandins through activation of cyclooxygenase (COX)( 58 ). It has been observed that perfusion of the renalmedulla is sensitive to COX inhibition ( 110, 113, 119 ).Furthermore, renomedullary interstitial cells have receptors for ANG IIand BK and release PGE 2 in response to these agents( 21, 72, 178, 179, 186 ). Recently, Qi et al.( 127 ) have shown that the COX-2 isoform is expressed inthose cells and is responsible for this action. In their study, ANG IIreduced medullary blood flow in COX-2-, but not COX-1-, deficient mice( 127 ). The ability of PGE 2 to promotenatriuresis may be explained in part by the ability of PGE 2 to inhibit Cl reabsorption by the mTAL ( 41, 146 ). PGE 2 is a vasodilator of in vitro perfused DVR( 104, 146 ).
# l, A* t: a* E: f6 y7 h. @) F9 O4 E5 |
In most vascular beds, ischemia favors generation of adenosine,a paracrine agent that enhances blood flow through local vasodilation. The actions of adenosine in the renal cortex are unusual because itinduces vasoconstriction, accompanied by a reduction of glomerular filtration rate ( 2, 90 ). Within the medulla, however,adenosine acts as a vasodilator and inhibits salt reabsorption by themTAL ( 2, 184 ). This presumably serves to reduceO 2 consumption while enhancing O 2 delivery( 2, 22 ). It is a reasonable hypothesis that adenosineproduced by the mTAL diffuses to and dilates outer medullary DVR on theperiphery of vascular bundles. Outer medullary DVR on the bundleperiphery supply the mTAL with blood flow, so such a mechanismrepresents a feedback system that would protect the mTAL from hypoxia.The mTAL has the capacity to produce adenosine ( 9 ) andthat A 1 and A 2 receptor mRNA is expressed inDVR ( 54 ). Adenosine A 1 and A 2 receptor stimulation favors DVR vasoconstriction and vasodilation,respectively ( 144, 145 )./ L* x+ Y! m  _% U

1 V: Y$ \) A9 J; a/ I2 LStudies have shown that renal medullary NOS activity and NO productionexceed that in the cortex ( 74, 75, 79, 80, 87, 166, 167, 182 ). Evidence is accumulating that NO acts in an autocrine andparacrine fashion to modulate both vasomotor tone and epithelial NaClreabsorption. Inhibition of NOS in the renal medulla hasisoform-specific effects. NOS1 inhibition reduces NO levels in themedulla and induces salt-sensitive hypertension but fails to altermedullary perfusion ( 50, 74, 77 ). Global inhibition ofNOS1, NOS2, and NOS3 isoforms with nonselective blockers decreasesmedullary NO levels and induces salt retention and hypertension. Inaddition, global NOS inhibition reduces medullary blood flow and tissueoxygenation ( 11, 42, 78, 124 ). NO generation may beimportant to abrogate tissue hypoxia that would otherwise arise fromrelease of vasoconstrictors. ANG II, norepinephrine, and vasopressinstimulate release of NO in the medulla ( 121, 150, 151, 181, 185 ). Subpressor infusion of N G -nitro- L -arginine methyl esterinto the renal interstitium does not affect medullary blood flow orP O 2 but enables otherwise ineffective doses ofANG II ( 185 ) norepinephrine ( 151, 181 ), orvasopressin ( 150 ) to induce a fall in these parameters.Taken together, the data support the conclusion that medullary NOproduction has a tonic effect in maintaining perfusion and protectingthe medulla from ischemic injury. In addition tovascular effects, NO inhibits solute and water reabsorption in thecollecting duct and thick ascending limb ( 31-33, 95, 122, 123, 148, 149 ). Studies in knockout mice implicated NOS3as the isoform responsible for autocrine stimulation of NO in the thickascending limb ( 122 ). Thus, like prostaglandins andadenosine, NO is a vasodilator that also inhibits salt reabsorption andtherefore O 2 consumption in the thick ascending limb.+ [# u( W) \1 b! D1 X1 s( d

6 I% R0 D/ |8 A1 v1 t4 ~0 e; ^& n' S, VTRANSPORT OF SOLUTES AND WATER ACROSS VASA RECTA
. s( X6 l5 R/ Y3 G
# Q! m4 r+ Q+ F- ^2 wDVR occupy a functional niche that is partially that of avasoactive arteriole and partially that of a transportingmicrovessel. As such, it is not surprising that evidence hasemerged to show that DVR endothelia have specialized characteristicsthat reflect the requirements endowed by their anatomic location anddual role. DVR have a continuous endothelial lining and zona occludens.It is expected that the paracellular pathway conducts diffusivetransport of NaCl and other small hydrophilic solutes ( 82, 109, 158 ). In addition to this, transcellular pathways have beenidentified that conduct transport of urea and water ( 51, 52, 92, 93, 97-99, 106, 108, 117, 118 ). The principal transport functions ofvasa recta will be briefly discussed. For a detailed explanation andhistorical perspective, the reader is referred to other reviews ( 25, 110 ).
+ R8 u. e+ T. h2 u! h' f2 G% |# k# j
The first evidence that DVR endothelia express a carrier for urea wasthat individual vessels, perfused simultaneously with [ 22 Na]- and [ 14 C]urea, often exhibited lowor moderate Na   permeability but always had very highpermeability to urea ( 117 ). This was surprising becausethe diffusivities of Na   and urea in water are nearlyidentical, so that transport via diffusion in an aqueous pore predictsidentical permeabilities to these tracers. The ability of phloretin andurea analogs to reduce DVR urea permeability supported the existence ofa carrier in DVR endothelia, implying a major contribution oftranscellular, facilitated diffusion to overall urea transport( 97, 117 ). That urea carrier was eventually identified asthe one expressed by the RBC (UTB), a form that is distinct from thevasopressin-sensitive and -insensitive splice variants of theepithelial carrier (UTA1-UTA4) ( 5, 8, 44, 51, 52, 125, 134, 135, 155-157, 168, 170 ). Taken together, the expression ofepithelial, endothelial, and RBC-facilitated carriers seems to ensurethat urea diffusing from AVR plasma will be efficiently recycled bydiffusing into thin descending limbs and DVR. Yang and Verkman( 171, 172 ) have shown that UTB exhibits water channelactivity and that UTB conducts water across the aquaporin-1(AQP1)-deficient RBC membrane. A role for UTB in the transport of wateracross DVR has not been established; however, it is notable that urea,glucose, and raffinose can drive substantial water flux acrossAQP1-deficient DVR ( 106 ).
0 r0 W2 w& U3 g1 c- b- s( \
; N& E0 s. h: d4 A( BIt has long been known that DVR plasma protein concentration increaseswith distance into the renal medulla due to water efflux from the DVRlumen to the papillary interstitium. That transport proceeds in adirection opposite to inwardly directed Starling forces (hydraulic andoncotic pressure), thus implicating transmural small-solute osmoticgradients as the responsible driving force ( 98, 118, 137, 138 ). For NaCl and urea gradients generated by the lag inequilibration between DVR plasma and medullary interstitium to inducewater efflux, the water must traverse a pathway of sufficiently smallpore size for these solutes to be osmotically active. The missing pieceof that puzzle was provided by the cloning of the AQP1 water channel,followed by the demonstration that it is expressed in DVR and otherendothelia ( 3, 92, 93, 132 ). When AQP1 was blocked by p -chloromercuribenzenesulfonate in the rat( 108 ) or deleted in the mouse ( 66, 106 ), thewater flux driven by transmural NaCl (but not albumin) gradients wasnearly eliminated, such that osmotic water permeability fell from~1,100 µm/s to nearly 0. Another surprising finding wasthat AQP1 deletion was accompanied by a marked increasein DVR diameter, the first demonstration of the capacity ofvasa recta to remodel (Fig. 9 ). Thequestion remained, How does the efflux of water from DVR to themedullary interstitium benefit urinary concentration? Insight derivedfrom mathematical simulations showed that shunting of water from DVR toAVR in the superficial medulla reduced blood flow to the deep medulla, secondarily improving plasma-interstitial equilibration. Thiswas predicted to improve the efficiency of inner medullary countercurrent exchange and enhance interstitial osmolality ( 23, 24, 106, 152 ).
5 {0 U) ~0 |5 V4 J
( b3 V* E: W4 j9 l! m. \& DFig. 9. Osmotic water permeability ( P f ) of DVR fromaquaporin-1 (AQP1)-deficient ( / ) and wild-type ( / ) mice. A : photomicrographs show the increase in diameter ofAQP1-deficient ( / ) murine DVR. B : P f measurements obtained from in vitro perfusedDVR of wild-type ( / ), heterozygous ( / ) and AQP1 null ( / ) mice. P f was measured by imposing transmural gradientsof NaCl to drive water flux across the DVR wall. Data are reproducedfrom Ref. 106 with permission.3 b# Q, }; U3 F. e

7 \8 {0 }  t0 D: |& ^4 dNephrons, collecting ducts, and DVR deposit water to the medullaryinterstitium. Thus, for mass balance, removal is delegated to AVR. Thelatter are highly fenestrated ( 110, 138 ) and have veryhigh hydraulic conductivity and solute permeability that exceeds thatof DVR ( 68, 69, 102, 103, 116 ). AVR are less wellcharacterized than DVR because they cannot be isolated for in vitroperfusion. AVR have been postulated to serve an unusual role in theclearance of macromolecules from the medullary interstitium. The renalmedulla is devoid of lymphatics, so albumin must be removed from theinterstitium into AVR ( 10, 20 ). The reflection coefficientof AVR to albumin is relatively low (0.58-0.78) ( 66-68, 101 ). Based on this and the ability of AVR to withstand ahydraulic pressure gradient without collapsing, it has been postulatedthat albumin is cleared from the interstitium by convective solvent drag across the AVR wall ( 67-69, 100, 160-162 ).A detailed simulation by Zhang and Edwards ( 174 ) verifiedthe feasibility of that mechanism and predicted the presence of anaxial gradient of albumin concentration in the medullary interstitium.
! U7 I* t3 H" c3 S1 g
( w% E& [% T9 {) h  RSUMMARY AND CONCLUSIONS
& q. Z& \, H. S# o
4 ]6 Q) ]1 y. B: L/ b7 V: ?& yThe microcirculation of the renal medulla serves several roles.The classic depiction of vasa recta as passive filters that providecountercurrent exchange and solute trapping belies the complexity oftheir structure and function. DVR are arterioles that respond to anarray of vasoactive agents ( 111 ). They are alsotransporting microvessels that express specific transporters for water(AQP1) and urea (UTB) ( 92, 93, 168 ). The ability toisolate and study these vessels has made it possible to examine transport properties, pericyte contractile mechanisms, and endothelial interactions. The physiology of AVR is less well characterized becausethey have only been studied on the surface of the exposed papilla in vivo.
4 Y6 m5 B, _$ b& g5 x7 T6 w/ }
. D. e. v. N( rWe have recently learned that DVR pericytes behave in ways that aretypical of smooth muscle from the afferent arteriole and othermicrovascular beds. When exposed to ANG II, pericytes depolarize byactivating a Cl conductance, a process that gatesvoltage-activated Ca 2  entry pathways ( 38, 107, 130, 176 ). It is surprising is that this process apparently occurs inthe juxtamedullary efferent circulation that supplies the renal medullawith blood flow but not in smooth muscle of superficial efferentarterioles ( 13-15, 63, 64 ). The physiological purposeof this axial heterogeneity is uncertain, but prior observations thatL-channel antagonists enhance medullary blood flow seem betterexplained ( 26, 37, 65, 169 ). The ability to access DVRpericytes for electrophysiological examination and measurement ofintracellular Ca 2  transients is a recent development( 107, 130, 175, 176 ). Only cells from outer medullaryvessels have been studied, and it remains possible that those from theinner medulla will be found to have unique properties. In the innermedulla, extracellular Na  , K  ,Cl, urea, and osmolyte concentrations are high, and thismight have forced the evolution of unusual mechanisms to control andgate membrane potential and Ca 2  entry.% o+ Q* Z9 J0 i9 I) f

0 _3 W* i% w0 W0 H9 F- `+ kIt is clear that DVR endothelia are unusual. These cells express theAQP1 water channel that is responsible for small-solute-driven effluxof water to the medullary interstitium ( 118, 137 ). Thus, in opposition to the classic view of purely diffusive countercurrent exchange, water abstraction is an important mode of DVR equilibration. Furthermore, it has been predicted that the latter serves to lower blood flow and optimize interstitial solute concentrations in the deepmedulla, where axial gradients are largest ( 106 ). In addition to AQP1, DVR endothelia express the same urea carrier as redblood cells, UTB ( 125, 168, 170-172 ). Presumably,this provides for rapid equilibration of urea in DVR plasma, RBCinterior, and medullary interstitium. As expected, DVR endotheliagenerate NO, cellular levels of which may be regulated in part throughgeneration of superoxide anion ( 129 ). What has been moresurprising is that an elevation of endothelial[Ca 2  ] i, expected to stimulate the NOS3isoform, does not occur on ANG II stimulation. In fact, ANG II is foundto reduce endothelial [Ca 2  ] i and suppress[Ca 2  ] i responses to endothelium-dependentvasodilators. It has been hypothesized that this turns modulation ofpericyte constriction away from the endothelium to NO diffusion fromadjacent mTALs of the outer medullary interbundle region ( 114, 130 ). Because NOS3 is subject to regulation by a variety ofinfluences, confirmation of this hypothesis awaits sensitivemeasurement of DVR NO generation.7 Q! M( j( i$ z3 p; i

" f, p; S3 s$ u: YAlthough isolation of DVR for in vitro study has provided the keytechnique for delineation of the cell biology of these vessels, barriers to our understanding remain. It is uncertain how well observations translate to the in situ condition, where vessels aresupported by interstitium and lie in close proximity to paracrine influences arising from adjacent interstitial cells and epithelia ( 59 ). The notion that DVR play a role in the modulation oftotal and regional perfusion of the medulla remains a matter ofanatomic inference. Until methods specifically enable observation ofblood flow redistribution within vascular bundles in response tospecific agonists, uncertainty concerning their precise role willcontinue. Given the importance of medullary perfusion to salt and water balance, tissue oxygenation, and the pathophysiology of analgesic nephropathy and acute renal failure, the motivation to resolve thedetails of pericyte-endothelial interactions will be substantial.
8 d1 ^& D& j2 |. G
2 y0 l+ H( t0 Z0 |  a+ S- R6 e8 ZACKNOWLEDGEMENTS0 b1 B7 z- r1 d' z: H, C5 A
. M/ ]9 c! A% [5 I" H# A* ^6 A
This work was supported by National Institutes of Health GrantsDK-42495, HL-62220, and HL-68686.; y' c* @+ C: ^- u$ {" }( V0 G3 D
          【参考文献】& h9 C+ D% ~9 Y, o/ d, C/ J) i6 @
1. Adler, S,andHuang H. Impaired regulation of renal oxygen consumption in spontaneously hypertensive rats. J Am Soc Nephrol 13:1788-1794,2002 .
5 w8 h- r5 Z6 ]8 o" q: c; p0 k
# A1 v) d8 M; f- s. \& p
& V0 ]3 |2 e$ h/ o8 Z, _- @1 f- f" i1 Z2 f  d" y1 N, e# |  J
2. Agmon, Y,Dinour D,andBrezis M. Disparate effects of adenosine A 1 - and A 2 -receptor agonists on intrarenal blood flow. Am J Physiol Renal Fluid Electrolyte Physiol 265:F802-F806,1993 .
% D) m. L" C  C4 j/ `: c  r3 }8 w: w3 B. {4 {8 G: ?
$ s$ k; [  u0 n6 d

) ^7 p; i+ N2 N- `- g9 d2 e! m3. Agre, P,Preston GM,Smith BL,Jung JS,Raina S,Moon C,Guggino WB,andNielsen S. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol Renal Fluid Electrolyte Physiol 265:F463-F476,1993 .9 z& C* c1 ^5 z+ D" W! |9 s
* f5 o, \" h7 `2 h# {& H

4 w7 E- ?8 J, m3 |" N8 H- R) j- G
, ?7 J7 }0 y0 Z+ N% r) G, A6 Z* }4. Aizawa, T,Ishizaka N,Taguchi JI,Nagai R,Mori I,Tang SS,Inglefinger JR,andOhno M. Heme oxygenase-1 is upregulated in the kidney of angiotensin II-induced hypertensive rats: possible role in renoprotection. Hypertension 35:800-806,2000 .8 A+ D" a/ L1 \5 H  Z2 W; t+ b
2 w" `; }: k9 T/ b! Q

- f- q4 _1 G5 Z! @" w5 \
+ `. z3 t1 R) ]5. Bagnasco, SM,Peng T,Nakayama Y,andSands JM. Differential expression of individual UT-A urea transporter isoforms in rat kidney. J Am Soc Nephrol 11:1980-1986,2000 .
! y, E2 [. \* v$ F) X1 L+ c4 J/ d1 A' h4 O% Q9 ^3 R2 s- D
, z( J5 @) Y# R, z" g& M
0 H% j9 [) @8 w. Q+ p
6. Bankir, L,andde Rouffignac C. Urinary concentrating ability: insights from comparative anatomy. Am J Physiol Regul Integr Comp Physiol 249:R643-R666,1985 .
6 O2 N- J0 P( s5 w" b* i# B6 N. I' H" C

  @, o9 |3 D3 l0 a: b. o$ j# s
5 d2 W6 H! e. G6 p# C7. Bankir, L,Kaissling B,de Rouffignac C,andKriz W. The vascular organization of the kidney of Psammomys obesus. Anat Embryol (Berl) 155:149-160,1979 .+ b( W% k: u( v* c/ g! e
$ M) u) I& q1 r; B
- o0 R$ d- h7 t7 A
! d* Z- n2 a' ~/ @6 [
8. Bankir, LT,andTrinh-Trang-Tan MM. Renal urea transporters. Direct and indirect regulation by vasopressin Exp Physiol 85:S243-S252,2000 ./ ^- P8 B5 |. V. a7 R7 H7 }
, M* `8 [5 `* }, @

9 S$ V6 D$ x( v5 V! y9 M! J7 [4 w8 w- n4 s5 V2 w" I8 s
9. Beach, RE,andGood DW. Effects of adenosine on ion transport in rat medullary thick ascending limb. Am J Physiol Renal Fluid Electrolyte Physiol 263:F482-F487,1992 .
4 n! a( t+ ]0 n* o7 ]9 O6 K* @
7 ~# A. A) U8 G8 W5 r4 ], ]
$ J, i& K  J& g; p  G
: t9 r* J& m3 ?* m* g2 e10. Bell, RD,Keyl MJ,Shrader FR,Jones EW,andHenry LP. Renal lymphatics: the internal distribution. Nephron 5:454-463,1968  .
6 ~; ^! @7 C8 C% v; o! ~7 o# d$ l% a3 L0 x
! N. X& p4 T) }
8 A9 n. j9 G6 w9 W
11. Brezis, M,Heyman SN,Dinour D,Epstein FH,andRosen S. Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys. J Clin Invest 88:390-395,1991  .
8 |+ N' @# z7 T6 x, p" w4 P4 z# D0 a% t$ @7 n- `6 Y& f0 e
" M: ?  Q. M. X7 T( I- j

! W- i8 x/ ?8 k6 @, }% Q12. Brezis, M,andRosen S. Hypoxia of the renal medulla its implications for disease. N Engl J Med 332:647-655,1995 .
3 J$ L4 r% A; R, }5 a& B
; r0 r7 q% C8 v2 {9 {0 ?& t3 g. h; S; O, j& y, H$ w

, ~) x( `, L1 r: P13. Carmines, PK. Segment - specific effect of chloride channel blockade on rat renal arteriolar contractile responses to angiotensin II. Am J Hypertension 8:90-94,1995  .
1 N$ N, ~8 v3 C2 s- E+ q: C# \3 O, b
5 m7 Y& ]; J. j: A6 }/ R! p
8 l9 i# {4 `4 z! l
14. Carmines, PK,Fowler BC,andBell PD. Segmentally distinct effects of depolarization on intracellular [Ca 2  ] in renal arterioles. Am J Physiol Renal Fluid Electrolyte Physiol 265:F677-F685,1993 .
. E3 O$ C* [+ @  \2 c/ U8 e  S1 Z) T

( T, v3 z# Y. i5 G( j) b% t; t
: b' q4 m" L- @* x( H. C3 }: n; p; E15. Carmines, PK,andNavar LG. Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to ANG II. Am J Physiol Renal Fluid Electrolyte Physiol 256:F1015-F1020,1989 .' E2 l1 e% n- W3 G# ]4 j/ u" i: b
4 O% W( Q. Y5 l3 |5 E
5 q  ^$ L& p5 Q, t' P% G8 U

$ f# f2 \! u9 q! C  A, ]+ \$ ~16. Casellas, D,andMimran A. Shunting in renal microvasculature of the rat: a scanning electron microscopic study of corrosion casts. Anat Rec 201:237-248,1981 .4 o1 ~7 c% V; s+ O' a2 E6 [

+ y8 V) X* {) G5 M/ ~* J7 ?; X/ B  K! U  r( @1 ]

' X. q. p2 U5 {4 ?17. Cowley, AW. Role of the renal medulla in arterial blood pressure regulation. Am J Physiol Regul Integr Comp Physiol 273:R1-R15,1997 .
. Q1 h2 j, o6 q+ }2 R
7 k. y) R* G4 e" e! K, p
- h% o* U( l9 i) |( l8 X( d5 X' L2 i+ h7 ^, _& Y
18. Cowley, AW, Jr,Mattson DL,Lu S,andRoman RJ. The renal medulla and hypertension. Hypertension 25:663-673,1995 .; D7 }- P' g* ~5 j3 u3 ]
; c7 k* `5 c7 s& r

+ ^9 ^4 r# P9 J) W3 d
* i" W+ ^& A; J; S( N19. Cupples, WA,andMarsh DJ. Autoregulation of blood flow in renal medulla of the rat: no role for angiotensin II. Can J Physiol Pharmacol 66:833-836,1988  .( O& o, c- n( F; T' ~7 |

* m4 [# i+ l2 L. H
0 c2 k* P8 w( k  s, K
; @' |# f/ k5 ]! h4 _# n5 j20. Cuttino, JT, Jr,Clark RL,andJennette JC. Microradiographic demonstration of human intrarenal microlymphatic pathways. Urol Radiol 11:83-87,1989  .$ p8 E. P% j5 C. B& g6 `" ^+ g8 s; u" w
$ p0 t) z9 a6 `7 T/ f
- J! L% s( P5 |$ K, _: A3 ~+ V

! l3 h# J% f2 N$ D+ D& u3 S* d+ ]21. Dean, R,Maric C,Aldred GP,Casley D,Zhuo J,Harris P,Alcorn D,andMendelsohn FA. Rat renomedullary interstitial cells possess bradykinin B 2 receptors in vivo and in vitro. Clin Exp Pharmacol Physiol 26:48-55,1999  .' h1 z1 j1 t9 ]1 J  O. T

/ {7 E" x) v! L9 o, N- y5 o
6 T) T+ L. _1 Y" c5 m& u7 ?7 g& d/ ~1 C. q" `, J$ T$ F
22. Dinour, D,andBrezis M. Effects of adenosine on intrarenal oxygenation. Am J Physiol Renal Fluid Electrolyte Physiol 261:F787-F791,1991 .& m: i+ P, ^/ o
9 z* e; N) z( \& J- [- Z+ `! Y

7 {# ?# j3 F1 c, W8 [6 E
: k/ ~3 G% y4 a2 b8 s; g23. Edwards, A,Delong MJ,andPallone TL. Interstitial water and solute recovery by inner medullary vasa recta. Am J Physiol Renal Physiol 278:F257-F269,2000 .* c# W5 U; u2 n& q% {5 @

: T3 f0 r( g' x+ }
8 Q: J% E  V1 o" k; z% z5 P0 [5 c0 z- l9 ]8 u
24. Edwards, A,andPallone TL. A multiunit model of solute and water removal by inner medullary vasa recta. Am J Physiol Heart Circ Physiol 274:H1202-H1210,1998 .* F' S: l  N  o5 c8 J

0 Z( ?# H: v6 W$ Z0 a$ }
) k% m* l! @, S1 Y4 ]$ O# V! E$ x5 N3 |/ @
25. Edwards, A,Silldforff EP,andPallone TL. The renal medullary microcirculation. Front Biosci 5:E36-E52,2000  .
3 P, P* D; G# b* M; l0 k) O6 s' d* X2 j* H
* ]' g! X- k7 `. `# c* w

: }# j9 k9 S( A. j26. Fenoy, FJ,Kauker ML,Milicic I,andRoman RJ. Normalization of pressure-natriuresis by nisoldipine in spontaneously hypertensive rats. Hypertension 19:49-55,1992 .
* M# O- _$ }. z/ U( K: e6 G0 x5 A9 x+ q1 j2 w; U" f% f

8 j3 }0 ?/ b$ q3 a, H: v- }
% C0 E% `4 E, U# q27. Foresti, R,andMotterlini R. The heme oxygenase pathway and its interaction with nitric oxide in the control of cellular homeostasis. Free Radic Res 31:459-475,1999  .
+ ^% N! Y9 b2 q" B3 O9 e! r5 v( R; A! x6 ?1 L7 b

! C9 ^! B5 ]% D" P
' h* ~6 w* O2 C7 A28. Franchini, KG,andCowley AW, Jr. Renal cortical and medullary blood flow responses during water restriction: role of vasopressin. Am J Physiol Regul Integr Comp Physiol 270:R1257-R1264,1996 .
' i8 r9 r# u! \, _
; j9 @2 A/ m7 a' E2 h5 p9 P# M  Q* e- M, [. o3 v. {! O4 j7 u

. ^+ C) @6 q9 H! c$ F29. Franchini, KG,andCowley AW, Jr. Sensitivity of the renal medullary circulation to plasma vasopressin. Am J Physiol Regul Integr Comp Physiol 271:R647-R653,1996 .
: n: P* J+ a1 D$ |) f5 V
3 n2 V# C( x- B5 r1 d# ^$ I8 M& P0 k6 _$ W, Y6 _0 w

- q8 B* t8 H  S  J5 d30. Franchini, KG,Mattson DL,andCowley AW, Jr. Vasopressin modulation of medullary blood flow and pressure-natriuresis-diuresis in the decerebrated rat. Am J Physiol Regul Integr Comp Physiol 272:R1472-R1479,1997 ." k9 j# z; Q0 ~2 W' c

: b$ T) ~0 H: J2 s0 f0 }$ o! r# X$ c& q

- z  k$ u2 |% }3 ^) ]8 T/ \' `31. Garcia, NH,Plato CF,Stoos BA,andGarvin JL. Nitric oxide-induced inhibition of transport by thick ascending limbs from Dahl salt-sensitive rats. Hypertension 34:508-513,1999 .0 D1 D' F! c; s* F8 x

3 [0 ?; t. M: y( m/ I4 ]  {" `! L. }/ j- a* }4 p. \( \. `

9 X& ?* d; ?& u32. Garcia, NH,Pomposiello SI,andGarvin JL. Nitric oxide inhibits ADH-stimulated osmotic water permeability in cortical collecting ducts. Am J Physiol Renal Fluid Electrolyte Physiol 270:F206-F210,1996 .. h: Q2 N# G2 ?5 E. m

4 p9 }2 g( a5 c: x7 F& i
4 y5 j4 F! M2 S0 g7 s
' T: P4 T* c! }33. Garcia, NH,Stoos BA,Carretero OA,andGarvin JL. Mechanism of the nitric oxide-induced blockade of collecting duct water permeability. Hypertension 27:679-683,1996 .
$ U! M: E, Q4 P: `. @1 v4 r# I) L3 |* V( o4 p) Z- A$ u
& [- R  `  }! P6 |8 t% [( p8 k+ N8 k3 m

( w" C, T( t0 p( `# K34. Goligorsky, MS,Li H,Brodsky S,andChen J. Relationships between caveolae and eNOS: everything in proximity and the proximity of everything. Am J Physiol Renal Physiol 283:F1-F10,2002 .
- ]. Z' p  b% K. M8 w% q! g0 w, U4 O9 E3 }( y' D0 a" M& i. V

2 @6 W+ L. q6 ?& J
7 q* ~2 l5 J, t# m) |6 W6 m7 d35. Greenwood, IA,andLarge WA. Modulation of the decay of Ca 2  -activated Cl currents in rabbit portal vein smooth muscle cells by external anions. J Physiol 516:365-376,1999 ." O) I+ z/ z: p

! Y9 |% t7 Y# A0 i1 ?, B$ _$ \( D  `( Y$ b+ a/ J* r" H& F

* J0 g2 v4 x8 t/ R36. Griendling, KK,Mineiri D,Ollerenshaw D,andAlexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141-1148,1994 .$ p7 |% v2 `6 r, R" g5 ]

) M5 X$ u" p- Q+ v# p
( D+ U% o- E* b) J8 b
$ I: o& j9 ?+ C3 `37. Hansell, P,Nygren A,andUeda J. Influence of verapamil on regional renal blood flow: a study using multichannel laser-Doppler flowmetry. Acta Physiol Scand 139:15-20,1990  .% M1 a9 d! |- i7 J  R" g3 K2 v

- o. B3 ^# f7 ^1 F/ J/ s" t% v7 t" x( `6 c

' p2 W, d  ^$ k- V( Z) ~38. Hansen, PB,Jensen BL,Andreasen D,andSkott O. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels. Circ Res 89:630-638,2001 .
0 f; s+ p5 h7 @, W4 {* H7 {8 R
& ^, h/ [" T. B# b# e# d, Y
3 d8 K# c4 f: w! _) J6 \' z: v/ a9 b/ g* [2 q8 P
39. Hansen, PB,Jensen BL,andSkott O. Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension 32:1066-1070,1998 ., W2 `* ?- C- d& E; a

$ S( E! L" m6 @. }. t1 I* O
' t( _3 c3 r: R6 e3 ^) x: M6 J4 `' C2 }$ T4 X. ]
40. Haugen, EN,Croatt AJ,andNath KA. Angiotensin II induces renal oxidant stress in vivo and heme oxygenase-1 in vivo and in vitro. Kidney Int 58:144-152,2000  .
) j2 a! q# Y$ G0 A* T/ Z
' N: p$ _6 E" v+ K- o$ h, O- S8 K9 G2 }, N; O; s8 u. E1 z  q

+ t3 x$ r- l; U' v7 Y  T$ M3 Z41. Hebert, SC,andAndreoli TE. Control of NaCl transport in the thick ascending limb. Am J Physiol Renal Fluid Electrolyte Physiol 246:F745-F756,1984 .
+ o- y& `6 a. t0 G& U. @" _9 s$ n
5 d( x7 Y, u" g- h, e7 n4 Y( f: [+ \8 O( U
+ Z! q/ g1 P3 C6 I9 ^. S# j/ ~
42. Heyman, SN,Goldfarb M,Darmon D,andBrezis M. Tissue oxygenation modifies nitric oxide bioavailability. Microcirculation 6:199-203,1999  .
6 ~# ~) w% A; X, g: G( x
- V/ s, ^, S6 h/ E8 [% w4 B
7 n7 G  J- N$ q1 I3 s
! ?, ~( G4 }3 U1 b  Q43. Hogg, RC,Wang Q,andLarge WA. Effects of Cl channel blockers on Ca-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein. Br J Pharmacol 111:1333-1341,1994  .* R7 m6 S) Q, s, ~4 P- q- b3 s1 s
1 R$ m$ A  I' B1 _1 D: O9 e- R

$ M$ e' R3 B  Q/ @
4 R0 F( k2 c& c8 s5 n" N( [5 p44. Hu, MC,Bankir L,andTrinh-Trang-Tan MM. mRNA expression of renal urea transporters in normal and Brattleboro rats: effect of dietary protein intake. Exp Nephrol 7:44-51,1999  .
) l( l; ^" s% U5 y1 @+ l4 i" I0 I( A' i3 p

' G$ X( T; K& ^5 a0 x' a: e
$ C! D! H# x$ `; e! C0 M% y3 \45. Ishizaka, N,andGriendling KK. Heme oxygenase 1 is regulated by angiotensin II in rat vascular smooth muscle cells. Hypertension 29:790-795,1997 .
9 }, o: x0 A! Q2 u6 x3 f( G- p
( ^- N: @3 z% e4 P2 ]) G4 k

- p8 c0 u, q- J* E# h46. Janssen, LJ,andSims SM. Spontaneous transient inward currents and rhythmicity in canine and guinea-pig tracheal smooth muscle cells. Pflügers Arch 427:473-480,1994  .) N+ K* ?- B7 q9 `) s/ l, p

4 w1 [6 ^$ y' x% L6 V. y
8 l6 a5 D* @# J; a1 o7 ]; v+ n% _; L8 i  |2 z0 o' |
47. Jensen, BL,Ellekvist P,andSkott O. Chloride is essential for contraction of afferent arterioles after agonists and potassium. Am J Physiol Renal Physiol 272:F389-F396,1997 .
) X. b4 Z8 \; I
5 X- g4 I' q$ ~8 l5 D9 S$ S
8 b, {& |4 m' J& X0 q! z
3 W6 Q. t1 Y$ L48. Kaissling, B,de Rouffignac C,Barrett JM,andKriz W. The structural organization of the kidney of the desert rodent Psammomys obesus. Anat Embryol (Berl) 148:121-43,1975 ." ^1 `2 }5 J- w! ^8 f

. `* n, ]; `" y1 n# r/ a! }
# w9 {3 D) j0 A( Y$ H
* U5 \: g! h. m0 ?3 o49. Kaissling, B,andKriz W. Structural analysis of the rabbit kidney. Adv Anat Embryol Cell Biol 56:1-123,1979 .
4 c% ~; f1 Z8 c; q( b. y& m/ t. w7 y
3 S  z9 X( d( u4 G. n
! d( {0 O, F% H, P4 ?5 ~
50. Kakoki, M,Zou AP,andMattson DL. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney. Am J Physiol Regul Integr Comp Physiol 281:R91-R97,2001 .& D, e" I" u1 ~) _6 p  \% m

2 ]5 N2 U% [( L, G5 {- t6 K
( O/ A) C( @, y, G2 U; q& M) ~3 Z+ |
, v+ x* t, o$ c- @; c( \1 t" {1 h51. Kim, YH,Kim DU,Han KH,Jung JY,Sands JM,Knepper MA,Madsen KM,andKim J. Expression of urea transporters in the developing rat kidney. Am J Physiol Renal Physiol 282:F530-F540,2002 .
+ M9 ~9 z4 F7 _- r
0 p* i+ j6 A4 M* l% k5 X
+ G1 f, s  _9 _& \. g4 U4 g- S: f/ C3 n1 a  g8 a+ l( ]  N* _
52. Kim, J,Kim WY,Han KH,Knepper MA,Nielsen S,andMadsen KM. Developmental expression of aquaporin 1 in the rat renal vasculature. Am J Physiol Renal Physiol 276:F498-F509,1999 .
5 }* v9 q- n' ?+ l
: z- z& y/ ]" x5 ?7 m
. I1 A, I; w, p- V5 O; w' i
  A! v, d4 R) Q3 w* |# z  V* n53. Kitiyakara, C,andWilcox CS. Antioxidants for hypertension. Curr Opin Nephrol Hypertens 7:531-538,1998  .. [; \# k1 }7 ]' E; U% S
' F! N; p/ m. F
9 h5 q! a! j9 A' y: d* L7 H* v
8 }4 Z7 S4 t; v6 h* c7 W4 v$ y: y1 M2 M
54. Kreisberg, MS,Silldorff EP,andPallone TL. Localization of adenosine receptor subtype mRNA in rat outer medullary descending vasa recta by RT-PCR. Am J Physiol Heart Circ Physiol 272:H1231-H1238,1997 .  G% i" X& P+ C) U
& R. L" _) d  {+ s3 U- T

! d9 C7 u& w! E1 G: z; a  N. S$ ~' D* k1 @% m: U" I0 C
55. Kriz, W. Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol Regul Integr Comp Physiol 241:R3-R16,1981 .
4 X7 p, E* m/ l  X. U
+ [& i5 |1 H+ G3 T
, L- U* b/ E6 K( m0 n4 R/ X# ~$ M. {( z( l
56. Kriz, W,andKoepsell H. The structural organization of the mouse kidney. Z Anat Entwicklungsgesch 144:137-63,1974  .6 u/ I, y$ k8 Y! y
  A/ O/ r5 U% y6 R# O( H% N& s
$ V/ L+ s9 ?* P
5 h8 k1 l8 W0 x8 ^+ Y9 |6 P
57. Laursen, JB,Rajagopalan S,Galis Z,Tarpey Freeman BA,andHarrison DG. Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95:588-593,1997 .( w) D) E5 f  E; o

9 t& ~& B" y3 N: `
) ?5 p% O( J5 A2 k. V& n/ W. h
, n! I1 }) {+ ~! `+ p' {8 a# E58. Lear, S,Silva P,Kelley VE,andEpstein FH. Prostaglandin E 2 inhibits oxygen consumption in rabbit medullary thick ascending limb. Am J Physiol Renal Fluid Electrolyte Physiol 258:F1372-F1378,1990 .
  P6 C) n& I5 k, O8 K
. {$ Y& j# W4 K1 `
0 @3 W/ G7 T+ N+ `$ {
0 F! X: C$ k0 [) f0 e7 h59. Lemley, KV,andKriz W. Anatomy of the renal interstitium. Kidney Int 39:370-381,1991  .
4 x* V/ p% V0 N) b% y, {* E6 b8 T, U
/ V9 u5 n, J$ n- {& ^

6 v# G% v0 l+ a; @60. Lemley, KV,andKriz W. Cycles and separations: the histotopography of the urinary concentrating process. Kidney Int 31:538-548,1987  .
. i: k9 w, b0 s" F4 \
/ t. W' C0 X5 c
& {; g$ j$ m. C: y; S6 W2 g3 \7 e% l6 M# R2 X; x* b
61. Li, H,Brodsky S,Basco M,Romanov V,De Angelis DA,andGoligorsky MS. Nitric oxide attenuates signal transduction: possible role in dissociating caveolin-1 scaffold. Circ Res 88:229-236,2001 .; E! M' z# s3 q+ ^- f2 Y% P

! E- m0 Z# d; H" c8 g9 {5 A- x8 M9 O  V

* ~7 e: z$ _- V" G" U3 B62. Li, Y,Huang TT,Carlson EJ,Melov S,Ursell PC,Olson JL,Noble LJ,Yoshimura MP,Berger C,Chan PH,Wallace DC,andEpstein CJ. Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 1:376-381,1995.
# S! t: y, x% E% f9 _$ ]: I; }2 V

. z4 [, @! J) S& @9 U! Z. U
% Z# Y5 r- L. E9 F8 N  Y- S63. Loutzenhiser, R,Chilton L,andTrottier G. Membrane potential measurements in renal afferent and efferent arterioles: actions of angiotensin II. Am J Physiol Renal Physiol 273:F307-F314,1997 .1 r3 \8 s% A- `7 i
2 u3 S! k! s. i' L5 M% d

; l- O* I0 J7 `( H
) b2 n' J: J) u% ^( h64. Loutzenhiser, K,andLoutzenhiser R. Angiotensin II-induced Ca 2  influx in renal afferent and efferent arterioles: differing roles of voltage-gated and store-operated Ca 2  entry. Circ Res 87:551-557,2000 .
/ E" m. X8 [8 }- g3 b
5 n# @+ ?/ Q& P
2 x, T! y# `8 U; A+ u% S  g7 S, {. K) O- s! F
65. Lu, S,Roman RJ,Mattson DL,andCowley AW, Jr. Renal medullary interstitial infusion of diltiazem alters sodium and water excretion in rats. Am J Physiol Regul Integr Comp Physiol 263:R1064-R1070,1992 .
' O8 Y/ R: @* `; w
9 @& J8 h7 F/ o: ^  h+ a2 o
3 ^3 O# `) t% |& c, l/ ~% C8 t- h$ ?/ D
66. Ma, T,Yang B,Gillespie A,Carlson EJ,Epstein CJ,andVerkman AS. Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels. J Biol Chem 273:4296-4269,1998 .
0 d6 f' N8 f: [1 w( K: t/ L8 \& {: _) W, Q1 t2 v
, @+ B% d7 }- X; @; b6 }1 Y9 Y

3 v# T& E* X; C& V- K; _6 ^" B) W7 R67. MacPhee, PJ. Estimating rat renal medullary interstitial oncotic pressures and the driving force for fluid uptake into ascending vasa recta. J Physiol 506:529-538,1998 .
/ ?( j* N. ]. e% A7 B
# r; `4 P2 ?7 b( o& O% X  w/ w
6 z! E' j! ]6 d$ P; h% ?
9 Y! G5 E% G$ c8 R/ Z# {4 ~68. MacPhee, PJ,andMichel CC. Fluid uptake from the renal medulla into the ascending vasa recta in anaesthetized rats. J Physiol 487:169-183,1995 .
5 S4 Q, l& d% N. E1 _5 \$ f% S  E# m/ p. y# v
: T4 W$ J' u2 F/ i0 a# l/ ?7 F+ l
% W, n1 }# K9 j5 O
69. MacPhee, PJ,andMichel CC. Subatmospheric closing pressures in individual microvessels of rats and frogs. J Physiol 484:183-187,1995 .
3 {" M7 Q+ l! E. g$ M* s+ p6 b4 X5 b8 p5 [
, |6 x9 M+ n( n) N

5 x4 m3 B5 ?: V0 |8 a1 h70. Majid, DSA,Godfrey M,andOmoro SA. Pressure natriuresis and autoregulation of inner medullary blood flow in canine kidney. Hypertension 29:210-215,1997 .
6 r- D9 r; I7 v" {+ B0 G5 s+ d7 W4 e

6 r8 o: p- K) A3 N7 m3 M" F7 l$ Z# n
71. Manning, J,Beutler K,Knepper MA,andVehaskari VM. Upregulation of renal BSC1 and TSC in prenatally programmed hypertension. Am J Physiol Renal Physiol 283:F202-F206,2002 .
% Z7 v; M' F8 L5 m$ {" Y. k5 v2 D
5 l2 v! d5 R) ~% Q: r& C, R* S* v+ X3 R  g4 Y

7 x1 `% t8 n5 q: M( u0 u* k) a0 A. r! O72. Maric, C,Aldred GP,Antoine AM,Dean RG,Eitle E,Mendelsohn FA,Williams DA,Harris PJ,andAlcorn D. Effects of angiotensin II on cultured rat renomedullary interstitial cells are mediated by AT 1A receptors. Am J Physiol Renal Fluid Electrolyte Physiol 271:F1020-F1028,1996 .2 Q" H2 Y6 }$ p6 {0 Q

# w( x: {  i$ r7 `. s$ F+ r
1 [5 n. v# Z& Z( l. i2 l. {5 L# I* i( o+ t; W# J# ~
73. Mattson DL. Importance of the renal medullary circulation in thecontrol of sodium excretion and blood pressure. Am J PhysiolRegul Integr Comp Physiol. In press.
: c0 l$ s" |' v) H5 B+ ~# o7 _/ [/ p( N5 h1 J+ n! D: f

4 a' W( N4 B/ j2 [3 ?9 f( g3 v, ^( ?( x) \) ^; `) ~
74. Mattson, DL,andBellehumeur TG. Neural nitric oxide synthase in the renal medulla and blood pressure regulation. Hypertension 28:297-303,1996 .
$ s% u$ s( V4 g
  t! r% p$ X+ @( d1 }& \. a! i
' [5 v- L$ b9 D/ T" b3 j% l9 e4 w5 t  B0 b
75. Mattson, DL,Lu SH,andCowley AW, Jr. Role of nitric oxide in the control of the renal medullary circulation. Clin Exp Pharm Physiol 24:587-590,1997  .  q6 A: o5 ?/ r
% L, B, O5 l( J0 C( k
1 e  |' J5 z' ?' x. n% |2 M: w) |
* R6 I0 h- A9 E: l( k: J: i9 {" V
76. Mattson, DL,Lu S,Roman RJ,andCowley AW, Jr. Relationship between renal perfusion pressure and blood flow in different regions of the kidney. Am J Physiol Regul Integr Comp Physiol 264:R578-R583,1993 .
: D( P/ t) ~+ c2 Z6 v' s0 L- q8 P7 a  K" `) ?

, i2 {4 M' x' c+ \
, w1 V2 @. {! A2 `( }, \77. Mattson, DL,Maeda CY,Bachman TD,andCowley AW, Jr. Inducible nitric oxide synthase and blood pressure. Hypertension 31:15-20,1998 .6 f; g' f, z* H3 o3 k
/ X7 X  x: {3 J' X2 U$ f
) K! }3 x1 n5 S: Y/ g$ e- N1 F1 ?; s

- }5 ~3 x$ H/ U* z5 o78. Mattson, DL,Roman RJ,andCowley AW, Jr. Role of nitric oxide in renal papillary blood flow and sodium excretion in the rat. Hypertension 19:766-769,1992 .8 M; z6 r* {" P

+ W. |$ y0 r) r" [: B
3 }) s; W9 M* b
$ ?7 n% ~; r& Z: I0 d79. Mattson, DL,andWu F. Control of arterial blood pressure and renal sodium excretion by nitric oxide synthase in the renal medulla. Acta Physiol Scand 168:149-154,2000  .: ~$ @& m" V( D9 E
. v9 ^5 q; Q9 w/ U

7 S( {' R2 t" b& s, L! k* y
  S% Z2 a, z3 X7 j* v80. Mattson, DL,andWu F. Nitric oxide synthase activity and isoforms in the rat renal vasculature. Hypertension 35:337-341,2000 .
  v& u3 g8 f% J/ |6 M' h: s4 K6 f2 m! b" ?
, w/ A* D% C3 D; y* M9 o

* q8 ]/ z; A8 w, i- k7 @! V9 b81. Michel, CC. Renal medullary microcirculation: architecture and exchange. Microcirculation 2:125-139,1995 .$ n, W; T' M- R5 E8 K2 N0 y  a; l

* {. B4 U' i- G: K, K# L! w( d# D. h. u: [
4 V+ F/ ^" n* q9 d$ r4 f& H
82. Michel, CC,andCurry FE. Microvascular permeability. Physiol Rev 79:703-761,1999 .- P4 J+ T3 k; ~
+ U: u7 g( F4 j- m( T
7 W9 `$ @* M# U0 w* Y% [6 Q
9 J5 G6 F; X" Y* F
83. Miyata, N,andCowley AW, Jr. Renal intramedullary infusion of L -arginine prevents reduction of medullary blood flow and hypertension in Dahl salt-sensitive rats. Hypertension 33:446-450,1999 .
$ w3 F! E' `2 d: J1 I; A  ?
4 t8 d8 d: n! K" F* }% V- u" Y+ y9 v% p
5 B5 q7 h$ L8 e  z( ?' t
84. Miyata, N,Zou AP,Mattson DL,andCowley AW, Jr. Renal medullary interstitial infusion of L -arginine prevents hypertension in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol 275:R1667-R1673,1998 .. Z9 N: x  m2 ]2 [! W  t

! k" e8 M+ g* ?" Q( }6 J; h; h- L1 ^+ v8 j: x1 y
, E, P4 @8 a; x  ]! w& |
85. Moffat, DB,andCreasey M. The fine structure of the intra-arterial cushions at the origins of the juxtamedullary afferent arterioles in the rat kidney. J Anat 110:409-419,1971  .) y5 Q2 h- R, z3 {6 z1 ^4 \
+ t" k% f, t/ ^$ Y5 j# \  I# m

1 z! v- o! q0 _* S  ~; d7 O; M1 p
86. Moffat, DB,andFourman J. A vascular pattern of the rat kidney. J Am Soc Nephrol 12:624-632,2001 .
. M) \; ]3 v( b7 L7 L  e4 @% F9 ^! X# a) ^2 k( w; g' {
  J" D0 Q8 x" ^  u5 g8 e+ [

: D4 u% n* g" a$ n4 s87. Moridani, BA,andKline RL. Effect of endogenous L -arginine on the measurement of nitric oxide synthase activity in the rat kidney. Can J Physiol Pharmacol 74:1210-1214,1996  .% g4 b, y# ]8 j1 d. y; y  y

4 {, P9 l, _/ }& K# l1 X, m0 a, D( ~9 x
9 N7 J2 y# M2 D1 r) Z
88. Nakanishi, K,Mattson DL,andCowley AW, Jr. Role of renal medullary blood flow in the development of L -NAME hypertension in rats. Am J Physiol Regul Integr Comp Physiol 268:R317-R323,1995 .
; N3 E  J  ~; j* M. D; N% ?
( f6 a# n$ p4 j  T6 e. |
$ S3 V% {7 ^' U  h8 ?3 C$ B( k; F; f" j  `! k3 F7 \
89. Navar, LG,Harrison-Bernard LM,Nishiyama A,andKobori H. Regulation of intrarenal angiotensin II in hypertension. Hypertension 39:316-322,2002 .5 {# s4 _1 }2 L2 U0 \' u- W" g" E

3 x( n5 Q0 D2 }. V/ ^8 V, {4 `! C( e( _" ]  P: R
& ^4 G9 ?' z4 A( J$ E9 L1 u, q+ I
90. Navar, LG,Inscho EW,Majid DSA,Imig JD,Harrison BL,andMitchell KD. Paracrine regulation of the renal microcirculation. Physiol Rev 76:425-536,1996 .8 l1 W% X% N3 T  x- R* j" C4 |

9 _+ E9 N: s4 L2 U8 P7 P5 V% f# s" \; X; V% J$ I* ~

/ l5 j3 q' x* a( R# }+ G91. Nelson, MT,andQuayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol Cell Physiol 268:C799-C822,1995 .& {( t. \7 y  ^& B2 t

' B/ W% U1 T1 A6 G+ p0 s+ {% b; b9 ^, u) j2 W
% n4 l0 j; }- X5 [6 }- w
92. Nielsen, S,Frøkiær J,Marples D,Kwon TH,Agre P,andKnepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205-244,2002 .
: r( ?; F; g8 |, o$ |7 }! m% |, O5 P. d4 G

, N$ f, c% s1 I) v) M; [3 d+ v$ p# X/ q, j; W- G
93. Nielsen, S,Pallone T,Smith BL,Christensen EI,Agre P,andMaunsbach AB. Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney. Am J Physiol Renal Fluid Electrolyte Physiol 268:F1023-F1037,1995 .
7 ^4 z/ Q0 _) B, m7 u; A; J- Y) J$ `- O7 o

6 l5 C+ Y8 W$ S7 `
: V) y& j1 |# {5 y! w- U, v, T94. Ortiz, PA,andGarvin JL. Interaction of O 2 − and NO in the thick ascending limb. Hypertension 39:591-6,2002 .) P" g' ~, k! x9 ~
' T- `+ Y- `1 U4 Q# T
8 j) o" i( B7 U( N' A* @6 A$ M7 Y. l: x
6 ?& k. h  A. v1 M) l
95. Ortiz, PA,andGarvin JL. NO Inhibits NaCl absorption by rat thick ascending limb through activation of cGMP-stimulated phosphodiesterase. Hypertension 37:467-471,2001 ." @& {, X, [5 k* D! S
! `% r! Q- f' O

$ D4 h  `& b- N, a! a& h( w
- v4 |! l0 p0 n- ^( Q4 q96. Oury, TD,Day BJ,andCrapo JD. Extracellular superoxide dismutase: a regulator of nitric oxide bioavailability. Lab Invest 75:617-636,1996  .8 Z/ x0 X  _! L$ g% V

: }  w- D  o3 H5 I3 L5 h2 E% g, S0 Q. [

7 q) M; v/ F! K& {3 Y0 r4 I97. Pallone, TL. Characterization of the urea transporter in outer medullary descending vasa recta. Am J Physiol Regul Integr Comp Physiol 267:R260-R267,1994 .
) m! M( O& w( l5 x( L
& x: M. ~) [7 ?0 F- F7 Z$ [0 Y
' n. C+ }* u. l. u5 c* l6 d2 K; E" T+ B* w! b9 b  N
98. Pallone, TL. Effect of sodium chloride gradients on water flux in rat descending vasa recta. J Clin Invest 87:12-19,1991  .3 H* V. R0 X% w3 w% ~( x  l

7 V, G- H* u4 A' [& b  h) j3 s$ f2 T6 x, J" K  {2 Z
2 U! {7 U& [# E% I3 h
99. Pallone, TL. The extraglomerular circulation of the kidney.In: The Kidney: Physiology and Pathophysiology (3rd ed.), edited by Seldin DW,and Giebisch G.. Philadelphia, PA: Lippincott Williams & Wilkins, 2000, p. 791-822.
  |5 x# w2 [1 s0 W9 W
7 ]: Z2 i4 J1 Q6 `/ L% L! y6 V
0 u: ?5 h: b, B+ P( [+ X, Z. H# `( J# O1 n: c& z
100. Pallone, TL. Extravascular protein in the renal medulla: analysis by two methods. Am J Physiol Regul Integr Comp Physiol 266:R1429-R1436,1994 .* o7 l$ c4 x$ V# ]+ \: V. r

9 y) ?3 @! c( C, h. R! Q5 k; z$ F7 f& j5 i* G+ ]* T2 ?; B- e! Z

' m# |: Z2 r9 k101. Pallone, TL. Molecular sieving of albumin by the ascending vasa recta wall. J Clin Invest 90:30-34,1992  .2 D5 ~8 ~# g4 i' B3 R1 R1 O

+ J9 q7 V3 F+ e5 F% |) r% D! W# Z, L3 T

4 U+ n. ^& B/ A9 \% x2 c  a102. Pallone, TL. Resistance of ascending vasa recta to transport of water. Am J Physiol Renal Fluid Electrolyte Physiol 260:F303-F310,1991 .& u- U+ B% ?' F# u
/ J/ C' W, T* d  {; k, H( M( d! s

. h4 a2 d, x9 S) P' c
8 F0 ~4 j) q) i' k5 E% H103. Pallone, TL. Transport of sodium chloride and water in rat ascending vasa recta. Am J Physiol Renal Fluid Electrolyte Physiol 261:F519-F525,1991 .
, \* v& V  S3 E. @4 N6 B( R3 K
+ {  L2 g/ p0 [- y( y' U9 D3 F4 l. B1 z  ~3 ~. x
: M3 `0 {1 x  b0 m* p5 p5 f
104. Pallone, TL. Vasoconstriction of outer medullary vasa recta by angiotensin II is modulated by prostaglandin E 2. Am J Physiol Renal Fluid Electrolyte Physiol 266:F850-F857,1994 .
& D: ]0 L0 }' V2 W2 y' a3 O5 r) R/ w- y- A3 h- ~; x2 j7 A

* P- t/ C5 S- g+ k
9 `& D% C0 y. w8 H9 k105. Pallone, TL,Edwards A,andKreisberg MS. The intrarenal distribution of blood flow. Adv Organ Biol 9:75-92,2000.
: v  y$ z. b+ o1 u. q7 d+ F4 P" S/ g- b1 y* Q
# @3 w" R+ _/ H; h; e$ z) d! g

8 O/ P: C# h9 X& h! t$ p106. Pallone, TL,Edwards A,Ma T,Silldorff EP,andVerkman AS. Requirement of aquaporin-1 for NaCl-driven water transport across descending vasa recta. J Clin Invest 105:215-222,2000  .
, [, Z0 G+ w- ~/ L! C4 ]; n  U8 f; _

* T  h6 m5 M  _8 B3 C1 a8 P' c2 Z  u, V2 s1 Z; o: B- ^, o
107. Pallone, TL,andHuang JMC Control of descending vasa recta pericyte membrane potential by angiotensin II. Am J Physiol Renal Physiol 282:F1064-F1074,2002 .0 T  V! W) T& o7 p" c8 }

  ~; c+ n: V% z
0 j. A6 w+ a' Z9 I$ I! ?) V2 c, a9 P& J) ~
108. Pallone, TL,Kishore BK,Nielsen S,Agre P,andKnepper MA. Evidence that aquaporin-1 mediates NaCl-induced water flux across descending vasa recta. Am J Physiol Renal Physiol 272:F587-F596,1997 .4 I. [9 z! m: p

; i# V2 n, q: ^+ l3 ~' Y8 X2 O3 X( ~4 o3 @

5 h1 ]% C) Z* m( \109. Pallone, TL,Nielsen S,Silldorff EP,andYang S. Diffusive transport of solute in the rat medullary microcirculation. Am J Physiol Renal Fluid Electrolyte Physiol 269:F55-F63,1995 ./ t; D8 [2 p+ q5 y4 A

6 D, j$ b5 K& I/ s9 r5 Z$ O! z3 i
1 l# Z# {: ]. K; h. [! f; ]- P  K) b/ y3 j
110. Pallone, TL,Robertson CR,andJamison RL. Renal medullary microcirculation. Physiol Rev 70:885-920,1990 .
6 l, @% O  Y: t& ^" o
, h/ \" B$ Q7 J" }, A! D9 v$ @4 A4 N8 b4 M

( ^* z- o2 ~; r111. Pallone, TL,andSilldorff EP. Pericyte regulation of renal medullary blood flow. Exp Nephrol 9:165-170,2001  .( E- a8 |0 l! O) a

5 l# L" H1 K: R6 q# u, {2 H; |: b! {1 I* f. ], S! t$ i

$ w# A3 A, x3 C; e5 A112. Pallone, TL,Silldorff EP,andCheung JY. Response of isolated descending vasa recta to bradykinin. Am J Physiol Heart Circ Physiol 274:H752-H759,1998 .+ w+ J( w& d1 G' I- s

- g1 {1 Y1 N$ F, j# Z+ w! I9 s" K; j8 q. }6 ]- t- y

9 l& `* C0 Z# U113. Pallone, TL,Silldorff EP,andTurner MR. Intrarenal blood flow: microvascular anatomy and the regulation of medullary perfusion. Clin Exp Pharmacol Physiol 25:383-392,1998  .
# O! Z8 y  s0 J0 z2 S' p+ ^, c, G, u) q5 e5 c
3 t4 m/ [( t3 s& ^
# Y& d( u  C/ s
114. Pallone, TL,Silldorff EP,andZhang Z. Inhibition of calcium signaling in outer medullary descending vasa recta by angiotensin II. Am J Physiol Heart Circ Physiol 278:H1248-H1255,2000 .+ H& Q+ Y0 G" s; S8 S3 K. F" J

) V6 r0 I: \! A% m
( v, }* z0 [/ `* K7 a
& r2 _) U9 `" a2 V' A6 O1 g; u# ^116. Pallone, TL,Work J,andJamison RL. Resistance of descending vasa recta to the transport of water. Am J Physiol Renal Fluid Electrolyte Physiol 259:F688-F697,1990 .7 }/ @: b9 V' t' r7 |4 ]

) {2 K* Z& G4 ?4 k) z2 o8 F' Z
6 O4 Q* s. c) U6 n0 T8 a) H, W! l' h* f1 X: n, h1 W5 Z6 ^! `
117. Pallone, TL,Work J,Myers RL,andJamison RL. Transport of sodium and urea in outer medullary descending vasa recta. J Clin Invest 93:212-222,1994  .
; }6 ^& l5 M1 J% o; g) i# T9 n2 r9 l
3 ?( `" [9 v# C0 G/ Z4 L$ N
7 C; {' y. Z& s# Z( Q
5 @. q6 t1 t/ d0 `; _3 |" x2 H118. Pallone, TL,Yagil Y,andJamison RL. Effect of small-solute gradients on transcapillary fluid movement in renal inner medulla. Am J Physiol Renal Fluid Electrolyte Physiol 257:F547-F553,1989 .- E" @( p! B/ H+ j3 j; y: [  |
5 T! ~/ E$ M; J  ^
4 q$ R9 s$ ?9 k2 E- u, S
$ V& y6 B8 @" V
119. Parekh, N,andZou AP. Role of prostaglandins in renal medullary circulation: response to different vasoconstrictors. Am J Physiol Renal Fluid Electrolyte Physiol 271:F653-F658,1996 .# D! Z4 j4 J1 O" Q; a
  g! t. g5 }5 p  |' l
( U+ }9 y- m7 E9 K7 I

2 U. ^' N8 N. Q2 R$ Z120. Park, F,Mattson DL,Roberts LA,andCowley AW, Jr. Evidence for the presence of smooth muscle alpha-actin within pericytes of the renal medulla. Am J Physiol Regul Integr Comp Physiol 273:R1742-R1748,1997 .
7 |# }( {/ r  [3 X+ L9 E' T1 h7 R3 h, y6 L% g, c2 |, |
7 @6 }  L" M: I" i0 L! K; n$ Z

" K2 d4 [5 O: D: Y# @121. Park, F,Zou AP,andCowley AW, Jr. Arginine vasopressin-mediated stimulation of nitric oxide within the rat renal medulla. Hypertension 32:896-901,1998 .
$ F0 S4 }6 N5 ]9 E! w: f7 q" ~1 I- T
% H% \) K0 h) E4 ?
% h+ u6 e8 y$ F3 N% b
) C# i% c. ~8 [: [* `- Z4 a122. Plato, CF,Shesely EG,andGarvin JL. eNOS mediates L -arginine-induced inhibition of thick ascending limb chloride flux. Hypertension 35:319-323,2000 .
( B! y% [1 w& V# L5 O  [4 u" q2 D! N
" h! s1 a- M5 ^9 R( H7 v
6 R& H# X" a7 p
123. Plato, CF,Stoos BA,Wang D,andGarvin JL. Endogenous nitric oxide inhibits chloride transport in the thick ascending limb. Am J Physiol Renal Physiol 276:F159-F163,1999 .$ |9 T4 V% G' y" a2 ?# [
+ @2 Z, J; y! X$ l; [# z7 {( ~* B

" q0 [, x9 {, `; E) l# ^( g/ d6 `0 c( H& K# k! \. I
124. Prasad, PV,Priatna A,Spokes K,andEpstein FH. Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J Magn Reson Imaging 13:744-747,2001  .
, b9 s9 g+ u. A( I' {) u* M
9 _0 ]9 I) T6 n" [9 r
- g( |6 T1 Z5 [" f5 ?3 ]! N& ]
- Z; B' @6 F" o7 T+ a' L  C' F7 I125. Promeneur, D,Rousselet G,Bankir L,Bailly P,Cartron JP,Ripoche P,andTrinh-Trang-Tan MM. Evidence for distinct vascular and tubular urea transporters in the rat kidney. J Am Soc Nephrol 7:852-860,1996 .* x1 y1 J- M0 k
4 g1 H  i6 B; m' b
8 `/ f* `4 I7 K* A8 p+ `/ z
) }# h# L) @% k  V. S* B1 R. X
126. Pueyo, ME,Jean-Francois A,Ramland J,andMichel JB. Angiotensin II stimulates the production of NO and peroxynitrite in endothelial cells. Am J Physiol Cell Physiol 274:C214-C220,1998 .' g0 }! B  a/ P. e. ~7 a2 a

( V. A0 m* ^4 y# j% o9 L, S; P4 q7 x; e: ^

" g/ c$ ]" h3 o4 K2 d7 U127. Qi, Z,Hao CM,Langenbach RI,Breyer RM,Redha R,Morrow JD,andBreyer MD. Opposite effects of cyclooxygenase-1 and -2 activity on the pressor response to angiotensin II. J Clin Invest 110:61-69,2002  .
9 G3 Z& }) @3 m. o8 f) k/ s8 V5 z6 f4 _9 H
( J$ C$ C6 T' _  M& J
3 f3 f& T: ?9 D4 c6 r9 g
128. Ramsey, CR,Berndt TJ,andKnox FG. Indomethacin blocks enhanced paracellular backflux in proximal tubules. J Am Soc Nephrol 13:1449-1454,2002 .
  n" e" N& g; \2 q5 |$ }; J" _: R; t4 F3 L# B9 C# U( H0 n# Q" ?
& N. h( q4 B# m
# x4 k' F3 |; }
129. Rhinehart, K,andPallone TL. Nitric oxide generation by isolated descending vasa recta. Am J Physiol Heart Circ Physiol 281:H316-H324,2001 .
2 y: k: Y* W" b5 J- R7 O- ~/ W9 l0 e# n3 m

7 l' W, o- W# j; {1 P# _( v/ T  l6 R: Z, {( |" [
130. Rhinehart, K,Zhang Z,andPallone TL. Ca 2  signaling and membrane potential in descending vasa recta pericytes and endothelia. Am J Physiol Renal Physiol 283:F852-F860,2002 .* y; R; g- @7 O6 S1 L. `; R- O

4 o. D3 N" C# A0 C6 G+ R, Y6 t" L  Z( g$ N1 e1 F* _

8 m+ `+ Z3 Z3 N( t, S3 ]; j+ L9 u131. Roman, RJ,Cowley AW,Garcia-Estan J,andLombard JH. Pressure-diuresis in volume expanded rats: cortical and medullary hemodynamics. Hypertension 12:168-176,1988 .
& A4 n: `$ {# a0 a* `9 T- e4 r% K
  C: K5 m1 ?- @* K! d- ?! y1 d8 }7 G* i" M6 u
7 P8 T* P3 y' e  P& ?6 V' ~+ C
132. Sabolic, I,Valenti G,Verbavatz JM,Van Hoek AN,Verkman AS,Ausiello DA,andBrown D. Localization of the CHIP28 water channel in rat kidney. Am J Physiol Cell Physiol 263:C1225-C1233,1992 .
1 S/ t5 m) @6 W' Q5 s
. n' H; o" `, B5 V2 ^, [' Q/ H$ m$ p& ?+ g8 K8 u$ [
2 U6 Z# d1 i' W, G" I
133. Sanders, KM. Invited review: mechanisms of calcium handling in smooth muscles. J Appl Physiol 91:1438-1449,2001 .3 e& `+ J, R3 A* U! Y2 x
6 z0 {: m+ n  ~$ \

" M: d0 X5 M/ u& B' V
& Q5 Q  v, c! F6 R! E0 l) U- H134. Sands, JM. Regulation of renal urea transporters. J Am Soc Nephrol 10:635-646,1999 .8 H% N! o- K! @  u  ^& M6 Z

1 b' m- L# Y; T1 d. f
. q8 [; X1 S. r# ]# Q( H8 U
1 o$ X. s4 X7 B% `& C135. Sands, JM,Timmer RT,andGunn RB. Urea transporters in kidney and erythrocytes. Am J Physiol Renal Physiol 273:F321-F339,1997 .
5 t- U7 ^' r6 {0 M6 t
8 N4 Z; i+ O4 h0 }9 Q& b+ F1 R9 A5 f! B; ]5 R

, v' ~- C8 J/ w# X  l. h& J0 A$ l. {$ d5 P136. Sanjana, V,Johnston PA,Deen WM,Robertson CR,Brenner BM,andJamison RL. Hydraulic and oncotic pressure measurements in inner medulla of mammalian kidney. Am J Physiol 228:1921-1926,1975 .2 d+ t5 e1 i% a$ w/ z/ y3 M

0 C" l+ N) Q% a. \. C
8 u# d3 O6 \7 o) q- l& Q" A2 ]5 ]9 S" L. n; u
137. Sanjana, VM,Johnston PA,Robertson CR,andJamison RL. An examination of transcapillary water flux in renal inner medulla. Am J Physiol 231:313-318,1976 .
" n8 r/ F6 Y7 X% [' E/ F/ e5 s# {0 M
  l7 A5 F! l; a

# m" A! E1 N# `5 y. |3 J( f138. Schwartz, MM,Karnovsky MJ,andVenkatachalam MA. Ultrastructural differences between rat inner medullary descending and ascending vasa recta. Lab Invest 35:161-170,1976  .
$ ^( p3 X- o% w0 ?* g. N9 _1 g4 l. D% n/ v1 I" W7 U( ^1 x- C
+ S! p8 _8 E  J2 n

3 I* G) [$ @1 d8 b# x% p8 l2 k139. Schnackenberg, CG,Welch WJ,andWilcox CS. Normalization of blood pressure and renal vascular resistance in SHR with a membrane-permeable superoxide dismutase mimetic: role of nitric oxide. Hypertension 32:59-64,1998 .3 Z+ }% Y* y  Q$ K
$ T3 ^( N; x" m7 |: o+ ?/ @

/ @9 O7 N1 O2 z( \( p' i0 p5 c& o3 p# Q0 {+ k2 Q( U) J! j
140. Schnackenberg, CG,Welch WJ,andWilcox CS. TP receptor-mediated vasoconstriction in microperfused afferent arterioles: roles of O 2 − and NO. Am J Physiol Renal Physiol 279:F302-F308,2000 .
% q8 @+ q" x1 D2 g% m6 B9 z; h3 h0 C

# u0 i& o' n9 E. ^! X0 ]& m# [) X
; m; b- n- s2 F5 p141. Schnackenberg, CG,andWilcox CS. Two week administration of tempol attenuates both hypertension and renal excretion of 8-iso prostaglandin F 2. Hypertension 33:124-128,1999 .
  g, J! S+ v$ G1 ]: k( s
9 ~( f; p* s, o! A  n& R- j. I1 P# b0 w1 s& \$ j
) y( m+ F$ o3 f* s7 l3 h! b
142. Seikaly, MG,Arent BS,andSeney FD. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest 86:1352-1357,1990  .
/ ^- I- V) F) _# [% C, H" B  F' T0 i7 T$ Y. g
% ~" M0 ?8 R: c- _, N
# b' T% P- k1 A- b  r
143. Silldorff, EP,Hilbun LR,andPallone TL. Angiotensin II constriction of rat vasa recta is partially thromboxane dependent. Hypertension 40:541-546,2002 .
  p! E. ]$ X/ x4 H. ?( W  B
! V) t% L2 S# z+ i: R" H# j
  c3 w  L0 c- L; Y+ ?
4 C+ |3 T  C* u. i, [8 m2 X144. Silldorff, EP,Kreisberg MA,andPallone TL. Adenosine modulates vasomotor tone in outer medullary descending vasa recta of the rat. J Clin Invest 98:18-23,1996  .
- O, p5 z2 z" s8 I6 U0 R/ h+ _! t  W, J0 a7 Q" z. u

3 S- }2 J3 t) S6 p# Z
( P9 l/ L  j' T' G) P  {" f1 f145. Silldorff, EP,andPallone TL. Adenosine signaling in outer medullary descending vasa recta. Am J Physiol Regul Integr Comp Physiol 280:R854-R861,2001 .
% }9 i% i" o; Z: r8 m
. S" i1 P$ E; ^( w9 I6 l" N9 R6 y/ P* j8 O2 A
& x$ f3 s7 q4 ?  K
146. Silldorff, EP,Yang S,andPallone TL. Prostaglandin E 2 abrogates endothelin-induced vasoconstriction in renal outer medullary descending vasa recta of the rat. J Clin Invest 95:2734-2740,1995  .1 r3 ^% l( L7 G, D4 }. M
) j9 |# S+ l3 p' X  f
( c* X" M5 ?* h* L! u7 V
$ V+ l( \# @( X7 T% u" J6 h) ]
147. Stokes, JB. Effect of prostaglandin E 2 on chloride transport across the rabbit thick ascending limb of Henle. Selective inhibitions of the medullary portion. J Clin Invest 64:495-502,1979  .
& n6 \, T4 x% X1 H) Q: E+ j2 z- k. c
4 ?, ^# Z2 c( |+ f" S

2 d0 Z- N  y7 x% \( W. f148. Stoos, BA,Carretero OA,andGarvin JL. Endothelial-derived nitric oxide inhibits sodium transport by affecting apical membrane channels in cultured collecting duct cells. J Am Soc Nephrol 4:1855-1860,1994 .- A0 ~( b5 H' Z; S& h

: Z  p# q" c; r7 t( `7 i  D% J8 G5 F) A) A

( q% E+ T8 x' [. P; S149. Stoos, BA,Garcia NH,andGarvin JL. Nitric oxide inhibits sodium reabsorption in the isolated perfused cortical collecting duct. J Am Soc Nephrol 6:89-94,1995 .
% N7 K/ w2 ]& g" ^, F! x
! {0 p) C, O$ n( w# S
( h6 m" t( g* I3 D  n* k; B8 |
/ b1 u0 N+ ^5 x150. Szentivanyi, M, Jr,Park F,Maeda CY,andCowley AW, Jr. Nitric oxide in the renal medulla protects from vasopressin-induced hypertension. Hypertension 35:740-745,2000 .- z! O% w6 |7 H- ?3 y- W0 ]
7 m2 C  b( l! k; W' v2 C
- f( p  f$ a; L9 r" Q/ J
' R2 R9 W& d6 k1 y
151. Szentivanyi, M, Jr,Zou AP,Maeda CY,Mattson DL,andCowley AW, Jr. Increase in renal medullary nitric oxide synthase activity protects from norepinephrine-induced hypertension. Hypertension 35:418-423,2000 .5 P+ P( n7 a, w6 J% B. Q

% {, c4 j; p4 J; |% j4 w
1 F; ]5 z% {( _, v! \% x7 q1 J6 k; P0 ^4 c; K# s
152. Thomas, SR. Cycles and separations in a model of the renal medulla. Am J Physiol Renal Physiol 275:F671-F690,1998 ., q. O' ~3 c  i

, A: h  m, u# s: ]! s3 o6 s2 x$ A5 E2 H" _
; |% f: w% h% f' M* S
153. Thorup, C,Kornfeld M,Goligorsky MS,andMoore LC. AT 1 receptor inhibition blunts angiotensin II-stimulated nitric oxide release in renal arteries. J Am Soc Nephrol Suppl 11:S220-S224,1999.
" V! `6 m  n! o8 D* P8 G' L* O& e: T' R) C

" a5 t! Y. W3 A% i1 G+ _3 m* l. P3 Z( Q* D5 w
154. Thorup, C,Kornfeld M,Winaver JM,Goligorsky MS,andMoore LC. Angiotensin-II stimulates nitric oxide release in isolated perfused renal resistance arteries. Pflügers Arch 435:432-434,1998  .
! t1 R6 E5 Q# z0 F" `4 U; U7 o6 q% G& _2 F, c* O
4 y' v+ E0 d! _: K* T( I
/ R$ s) w6 ]9 d) |
155. Timmer, RT,Klein JD,Bagnasco SM,Doran JJ,Verlander JW,Gunn RB,andSands JM. Localization of the urea transporter UT-B protein in human and rat erythrocytes and tissues. Am J Physiol Cell Physiol 281:C1318-C1325,2001 .8 W2 b* Y5 O0 a) |

1 }, ~% }* B3 H. G) j. N* g$ G! k/ w# s7 o6 G, Q; V
9 |$ H5 `9 h+ A* o
156. Tsukaguchi, H,Shayakul C,Berger UV,andHediger MA. Urea transporters in kidney: molecular analysis and contribution to the urinary concentrating process. Am J Physiol Renal Physiol 275:F319-F324,1998 .
1 j  B. E5 L& y0 S8 C- C9 }1 h- ^$ _' e* m# U

  x& d0 `, a( X- y6 b  P0 |$ i/ {6 D5 t0 x3 ]7 y$ E+ n
157. Tsukaguchi, H,Shayakul C,Berger UV,Tokui T,Brown D,andHediger MA. Cloning and characterization of the urea transporter UT3: localization in rat kidney and testis. J Clin Invest 99:1506-1515,1997  .8 w4 b. |! t. c- p0 ?

  |3 G8 Z6 H6 l# h# M* c3 w. C& s' y3 q" x9 w

9 W: e5 r' O- X158. Turner, MR,andPallone TL. Hydraulic and diffusional permeabilities of isolated outer medullary descending vasa recta from the rat. Am J Physiol Heart Circ Physiol 272:H392-H400,1997 .! u6 k+ z3 ~- v. L

. c+ l4 C/ D" W+ i0 U5 s
6 j6 k! R7 b0 T# ^' O2 v4 p* N) B: E9 P
159. Ushio-Fudai, M,Zafari AM,Fukui T,Ishizaka N,andGriending KK. P22 phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 271:23317-23321,1996 .
  F$ g/ r: u; `; o. ]0 N" N: G  G

7 a* ~9 @: h% s: ]* W& c: _5 w# J4 g
160. Wang, W,andMichel CC. Effects of anastomoses on solute transcapillary exchange in countercurrent systems. Microcirculation 4:381-390,1997  .- L7 B7 l/ Q2 o2 ^( ~* d- E

; T4 G  f4 C! }
: u7 p0 k1 Y6 v: L3 `) w3 j' u- d  ~. O, G. f4 o
161. Wang, W,andMichel CC. Modeling exchange of plasma proteins between microcirculation and interstitium of the renal medulla. Am J Physiol Renal Physiol 279:F334-F344,2000 .
" D7 _. _/ I+ t/ l. o& d8 M! V) j: }+ T9 ]1 A4 \6 {
5 `7 n1 i6 t/ Q: w
* m. _' D$ P1 Z  O% @% z8 N
162. Wang, W,Parker KH,andMichel CC. Theoretical studies of steady-state transcapillary exchange in countercurrent systems. Microcirculation 3:301-311,1996 .
$ H1 U# A  y7 o4 U! ^  }' k- S) E* E, ]2 I0 Q2 p7 Q. G
' L6 s4 G  I5 x4 K2 N! `
9 K5 C! o% L. i: s5 M6 K
163. Wang, X,Thomas SR,andWexler AS. Outer medullary anatomy and the urine concentrating mechanism. Am J Physiol Renal Physiol 274:F413-F424,1998 .' F( L5 Z, s! T$ ~$ M( P" m

- J, A# V) w2 R% U# o7 d& s5 s; G$ V1 Z9 q. K& {3 T- Z  T; u
, k2 U  t6 n1 c' [/ Y/ G- E& u
164. Welch, WJ,Tojo A,andWilcox CS. Roles of NO and oxygen radicals in tubuloglomerular feedback in SHR. Am J Physiol Renal Physiol 278:F769-F776,2000 .) j  c' q: V3 {9 i# b; h; Q) t

. p0 V, S) Y* X8 U
& v3 h" a: l2 o1 p7 G7 T1 ?# c) G1 k4 q+ @" f/ i
165. Wilcox, CS. Reactive oxygen species: roles in blood pressure and kidney function. Curr Hypertens Rep 4:160-166,2002  .
  B3 Y& @) s9 P( r! w$ A( E4 k
2 {# T  y) Z, g: U, A$ {% N% m' o7 S" A% ^4 W2 a' `  t: k$ T

# g1 Z( U$ ]: y* X# L! o166. Wu, F,Cholewa B,andMattson DL. Characterization of L -arginine transporters in isolated rat renal inner medullary collecting duct cells. Am J Physiol Regul Integr Comp Physiol 278:R1506-R1512,2000 .- c8 ?; p' x$ ]( k+ i* @

; W7 f( I( I, z" Q# Q' `  P; N
& h$ c! {6 H: ]4 {! O5 m, g( ~) a9 Y$ x2 ?( W$ A
167. Wu, F,Park F,Cowley AW, Jr,andMattson DL. Quantification of nitric oxide synthase activity in microdissected segments of the rat kidney. Am J Physiol Renal Physiol 276:F874-F881,1999 .1 T  @% k- _6 z! k

1 _: m9 t. ~; W3 y( F% |' j
+ h' l1 I% N2 K$ |  M  F4 \& P% G. s  B9 _  m, I1 `9 f  L! T
168. Xu Y, Olives B, Bailly P, Fischer E, Ripoche P, Ronco P, Cartron JP,and Rondeau E. Endothelial cells of the kidney vasa recta expressthe urea transporter HUT11. Kidney Int 51: 138-146.3 G. j7 O# h/ b" n" d4 a
0 z# c! _/ `! C) M
% N1 y+ O% Y5 L

3 g  g: u, B9 }169. Yagil, Y,Miyamoto M,Frasier L,Oizumi K,andKoike H. Effects of CS-905, a novel dihydropyridine calcium channel blocker, on arterial pressure, renal excretory function, and inner medullary blood flow in the rat. Am J Hypertension 7:637-646,1994  .
; p; q+ {: X5 M3 ?& O, @. [! Z1 \, I/ A6 X( y
7 B) a8 Z7 C; ~1 k7 Y. ~
! g$ }  T9 E7 {
170. Yang, B,Bankir L,Gillespie A,Epstein CJ,andVerkman AS. Urea-selective concentrating defect in transgenic mice lacking urea transporter UT-B. J Biol Chem 277:10633-10637,2002 .
; ~; l0 \  U' A. G: h4 Y& M* z. |3 G$ I* |" V8 b) j. i

. C% C: `0 K: M9 k) ^# D4 T6 E5 Z) K; X* `/ |5 n" c; N8 h! l2 D" k
171. Yang, B,andVerkman AS. Analysis of double knockout mice lacking aquaporin-1 and urea transporter UT-B: evidence for UT-B facilitated water transport in erythrocytes. J Biol Chem. 277:36782-36786,2002 .
# c- }' z: O1 [7 @3 z+ W8 }# d  K4 C3 M8 f* T% R
* ^2 a" Z: o0 l6 n

+ a# Q% F; r; D7 [1 X7 o6 W4 C172. Yang, B,andVerkman AS. Urea transporter UT3 functions as an efficient water channel. Direct evidence for a common water/urea pathway. J Biol Chem 273:9369-9372,1998 .
; _6 ?% y, F; X0 o* v# l: o
' {, Q/ D9 ]' l* I/ H6 J) `7 l3 z' M
' z, h) F# B* Y0 @3 S. r
! W6 J% S$ t7 w; r3 {173. Zhang, W,andEdwards A. Oxygen transport across vasa recta in the renal medulla. Am J Physiol Heart Circ Physiol 283:H1042-H1055,2002 .) r5 p0 E& g9 x9 @6 E( u( |

! j+ I8 Z' B. f; c* ?5 S9 P( z' b1 o% M, |# a
. F1 H$ I  d" m( ^$ c- E
174. Zhang, W,andEdwards A. Transport of plasma proteins across vasa recta in the renal medulla. Am J Physiol Renal Physiol 281:F478-F492,2001 .3 J3 ^. x, K5 c2 M. E
# y  z  E  g% {

1 M  W+ A/ s# n' O5 P
# j2 p6 T( [0 z8 Q- }# u, p$ Y175. Zhang, Z,Huang JMC,Rhinehart K,Turner MR,andPallone TL. Role of chloride in constriction of descending vasa recta by angiotensin II. Am J Physiol Regul Integr Comp Physiol 280:R1878-R1886,2001 ." f' Q# C- g: T+ W9 `

$ G( T1 [4 t+ Y$ }  i. P) D) U7 t

) S$ j2 I0 k9 `0 G176. Zhang, Z,Rhinehart K,andPallone TL. Membrane potential controls calcium entry into descending vasa recta pericytes. Am J Physiol Regul Integr Comp Physiol 283:R949-R957,2002 .
! x! @7 H* E# ]
3 v, W+ a* Q( s* ]) S; x# L
& ^# j- m% e. M! r
( J0 f1 B+ `/ c* {0 G+ y$ O9 g; M177. Zhang, H,Schmeisser A,Garlichs CD,Plotze K,Damme U,Mugge A,andDaniel WG. Angiotensin II-induced superoxide anion generation in human vascular endothelial cells: role of membrane-bound NADH-/NADPH-oxidases. Cardiovasc Res 44:215-222,1999 .' o2 G* a+ ]6 E
) v- _  i" M% s) x0 R" P4 h5 g) y
0 N, D( l( Z& P1 b, ~) V3 }
# o2 B; Y. M5 }7 C7 K  q& w
178. Zhuo, J,Dean R,Maric C,Aldred PG,Harris P,Alcorn D,andMendelsohn FA. Localization and interactions of vasoactive peptide receptors in renomedullary interstitial cells of the kidney. Kidney Int 67:S22-S28,1998.7 l+ W! J8 C  O/ \" f% \/ t

2 x! U8 r9 X4 O( I
; X) t8 p( ?1 y& `0 d4 X* G7 e: x) Y  e5 b; p. e) ?
179. Zhuo, JL. Renomedullary interstitial cells: a target for endocrine and paracrine actions of vasoactive peptides in the renal medulla. Clin Exp Pharmacol Physiol 27:465-473,2000  .$ T$ T1 k' D: G

% D, R1 j6 `. F! N  y7 v! `) `/ R( B* ~

1 b3 u8 n# N1 c# N7 M" t180. Zou, AP,Billington H,Su N,andCowley AW, Jr. Expression and actions of heme oxygenase in the renal medulla of rats. Hypertension 35:342-347,2000 .  s3 K# C5 l+ K1 h- D" M

$ k9 L) q9 q, u* ~) W3 i) I+ d9 W1 |  X3 A* c9 ?
1 \, H# A, d3 `, O* B2 h8 m5 r
181. Zou, AP,andCowley AW, Jr. 2 -Adrenergic receptor-mediated increase in NO production buffers renal medullary vasoconstriction. Am J Physiol Regul Integr Comp Physiol 279:R769-R777,2000 .: F2 z# N+ d/ L: V" r  j
1 K3 R4 d% n+ u4 N% i! M

  M# E# F/ D: }9 F$ I& d& B! P% y. T6 Q9 o  n- G
182. Zou, AP,andCowley AW, Jr. Nitric oxide in renal cortex and medulla. An in vivo microdialysis study. Hypertension 29:194-198,1997 ./ I& L# M: @- I

- v0 F' p) K% @. h6 x- r
# K. `; G% |# O3 O
3 q( U; h+ v3 F0 A183. Zou, AP,Li N,andCowley AW, Jr. Production and actions of superoxide in the renal medulla. Hypertension 37:547-553,2001 .# }; N0 D' y% x7 U  T: F

4 n) p( i% v+ d: m1 j* Y5 ^3 k  v% a. j
* ^9 X9 y/ F" p1 h8 q9 E( [
184. Zou, AP,Nithipatikom K,Li PL,andCowley AW, Jr. Role of renal medullary adenosine in the control of blood flow and sodium excretion. Am J Physiol Regul Integr Comp Physiol 276:R790-R798,1999 .7 X, c# W7 i' e6 O+ A

( N! Z1 o' R6 `7 I* c
2 J) y, Z. @4 H, N- q7 t) c! `* \+ }
185. Zou, AP,Wu F,andCowley AW, Jr. Protective effect of angiotension II-induced increase in nitric oxide in the renal medullary circulation. Hypertension 31:271-276,1998 .) v; d- U: p: P
" u9 |4 E/ {- y1 G( Y( b

; w/ g$ s7 @1 s9 b* ^0 n: N
( N7 @* d6 T4 w; x( ?/ ~. P186. Zusman, RM,andKeiser HR. Prostaglandin E 2 biosynthesis by rabbit renomedullary interstitial cells in tissue culture. Mechanism of stimulation by angiotensin II, bradykinin, and arginine vasopressin. J Biol Chem 252:2069-2071,1997.

Rank: 2

积分
104 
威望
104  
包包
1772  
沙发
发表于 2015-6-20 16:09 |只看该作者
既然来了,就留个脚印  

Rank: 2

积分
98 
威望
98  
包包
2211  
藤椅
发表于 2015-7-7 08:35 |只看该作者
顶你一下,好贴要顶!  

Rank: 2

积分
84 
威望
84  
包包
1877  
板凳
发表于 2015-8-20 22:01 |只看该作者
干细胞之家微信公众号
干细胞库  

Rank: 2

积分
101 
威望
101  
包包
1951  
报纸
发表于 2015-8-22 18:01 |只看该作者
应该加分  

Rank: 2

积分
72 
威望
72  
包包
1859  
地板
发表于 2015-8-26 16:43 |只看该作者
顶的就是你  

Rank: 2

积分
69 
威望
69  
包包
1788  
7
发表于 2015-9-10 22:35 |只看该作者
小心大家盯上你哦  

Rank: 2

积分
80 
威望
80  
包包
1719  
8
发表于 2015-9-15 13:43 |只看该作者
哈哈,这么多的人都回了,我敢不回吗?赶快回一个,很好的,我喜欢  

Rank: 2

积分
98 
威望
98  
包包
1756  
9
发表于 2015-10-11 14:10 |只看该作者
初来乍到,请多多关照。。。  

Rank: 2

积分
98 
威望
98  
包包
1756  
10
发表于 2015-10-16 08:54 |只看该作者
爷爷都是从孙子走过来的。  
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2024-6-6 09:22

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.