 
- 积分
- 631
- 威望
- 631
- 包包
- 1519
|
报告基因(reporter gene)是一种编码可被检测的蛋白质或酶的基因,也就是说,是一个其表达产物非常容易被鉴定的基因。把它的编码序列和基因表达调节序列相融合形成嵌合基因,或与其它目的基因相融合,在调控序列控制下进行表达,从而利用它的表达产物来标定目的基因的表达调控。+ J# p: u' C' k; A
6 R* w% H! Y2 A4 Z( S/ E u0 ?; ?! k
荧光蛋白家族:荧光蛋白家族是从水螅纲和珊瑚类动物中发现的相对分子质量为20 000~30 000的同源蛋白。绿色荧光蛋白(GFP)是应用最多的发光蛋白。GFP存在于发光水母(AequoreaVictoria)中。用395 Bin的紫外线和475 nm的蓝光激发,GFP可在508nm处自行发射绿色荧光,无需辅助因子和底物。GFP最大的优势是无需损伤细胞即可研究细胞内事件。1991年克隆了GFP基因,目前已获得几个突变体,如“红色迁移”突变体(red—shiftmutant),其荧光更强。其他突变体还有蓝色荧光蛋白(BFP)、增强型GFP(EGFP)和去稳定EGFP(destabilizedEGFP)等。红色荧光蛋白(RFP)是从珊瑚(Discosoma sp.)中分离的发光蛋白(drFP583或DsRed),可发射明亮的红色荧光。这些常用的报告基因也可被联合应用,同时检测2个甚至3个基因的表达。报告基因的选择依赖于其灵敏性、可靠性及监测的动力学范围。稳定性好的报告基因适于基因转录动力学研究和高通量筛选,尤其适用于基因转移的定性研究。
4 A6 Q1 h- \8 K3 `9 H# R) }- P
4 e- N7 R, _( g0 p/ z0 X' m) u# r 荧光素酶:荧光素酶是能够催化不同底物氧化发光的一类酶,哺乳细胞无内源性荧光素酶。最常用的荧光素酶有细菌荧光素酶、萤火虫荧光素酶和Renilla荧光素酶。细菌荧光素酶对热敏感,因此在哺乳细胞的应用中受到限制。萤火虫荧光素酶灵敏度高,检测线性范围宽达7~8个数量级,是最常用于哺乳细胞的报道基因,用荧光比色计即可检测酶活性,因而适用于高通量筛选。随着具有膜通透性和光裂解作用的萤火虫荧光素酶的应用,无需裂解细胞即可检测酶活性。Renilla荧光素酶催化肠腔素(coelenterazine)氧化,产物可透过生物膜,可能是最适用于活细胞的报告分子。将荧光素酶报告基因载体转染到细胞中,可用荧光素酶检测系统灵敏方便地测定荧光素酶基因的表达。
' c/ A) g' Z) X( z0 b K 荧光素酶报告基因有许多优点:①非放射性;②比CAT及其他报告基因速度快;③比CAT灵敏100倍;④荧光素酶在哺乳细胞中的半衰期为3小时,在植物中的半衰期为3.5小时。由于半衰期短,故启动子的改变会即时导致荧光素酶活性的改变,而荧光素酶不会积累。相反,CAT在哺乳细胞中的半衰期为50小时。荧光素酶浓度在10—16mol/L(10pS/L)到10-8mol/L(1mg/L)范围内,荧光信号强度与酶浓度成正比。在理想条件下,可检测到l0-20mol/L的荧光素酶。 : B# S8 o1 |: @9 X
0 C2 ?, a( v, a# ^ E 分子影像学借助无创性的影像手段在活体内定量地、可重复性地显示靶细胞或分子变化的信息,并对其生物学行为进行定量和定性研究, 主要包括核素分子成像(PET)、MR分子成像和光学成像等。其中MRI无电离辐射、重复性、能提供三维信息,并比传统的组织学检查更立体、更快速等优点而备受关注。随着分子纳米技术的发展,超顺磁性氧化铁颗粒(superparamagnetic iron oxide particles,SPIO)作
, T$ U! T7 O, }3 v# u为MRI的对比剂尤其在分子影像学方面也成为研究热点。活体细胞标记及追踪、成像技术主要还是依靠MR, 需要在体外将细胞培养液中加入超顺磁性氧化铁微粒superparamagnetic iron oxide (SPIO) particles,使其进入细胞内达到标记目的,然后进行MR,SPIO相当于MR造影剂,从而很容易追踪。但是SPIO可被降解、代谢, 一般经过5-8个细胞分裂周期后就会消失。
, I$ U+ k0 V+ E; u& }: Y3 y |
-
总评分: 威望 + 5
包包 + 10
查看全部评分
|