
- 积分
- 56
- 威望
- 56
- 包包
- 422
|
Chromatin Remodeling4 g+ t5 F% w4 n7 Q8 H
( t. B- T. H7 K( \Contents; Q5 C( g" r% z* t" M; R
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
( B) m! h* q/ l S& wContributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
5 v ]- l7 a$ }3 w9 L1 Strain Construction and Screening Methods for a Yeast Histone H3/H4- F+ }0 W' r0 a
Mutant Library. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ?/ y. S9 I" b. X A
Junbiao Dai and Jef D. Boeke3 v2 \) T9 W1 U
2 Measuring Dynamic Changes in Histone Modifications and Nucleosome
/ L1 `- V' [( w9 q) R# K, E& KDensity during Activated Transcription in Budding Yeast . . . . . . . . . . . . . . . . . . . . 15
7 M' ^9 Q8 Y$ W; z7 iChhabi K. Govind, Daniel Ginsburg, and Alan G. Hinnebusch
7 i$ k7 U B5 l+ p$ E3 Monitoring the Effects of Chromatin Remodelers on Long-Range
' M7 b* K/ u& {* g/ }( K. \4 \- zInteractions In Vivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
- f1 J$ L/ B& @Christine M. Kiefer and Ann Dean' p6 U2 C, u% |0 p/ R
4 Measuring Nucleosome Occupancy In Vivo by Micrococcal Nuclease . . . . . . . . . . . 47
) y+ _; i5 ?! S( A0 _6 O6 Q2 iGene O. Bryant
' R$ H. G5 p3 A% F! v9 G- W& n5 Analysis of Nucleosome Positioning Using a Nucleosome-Scanning Assay. . . . . . . . 63
: C9 t4 c* m2 zJuan Jose Infante, G. Lynn Law, and Elton T. Young
; \$ B! r$ H( Q' S+ t6 Assaying Chromatin Structure and Remodeling by Restriction Enzyme
' s. z) f6 M* n1 H. \7 X% N+ u; wAccessibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4 T' N. \/ P( w' cKevin W. Trotter and Trevor K. Archer
1 d L; W2 r9 S1 k3 G8 F7 Generation of DNA Circles in Yeast by Inducible Site-Specific ~/ Z( A5 C4 J' k0 I/ y6 w0 m( ]
Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
+ N$ r) j# [* s q# o: fMarc R. Gartenberg
+ b0 g f& ?1 i, `) h8 An Efficient Purification System for Native Minichromosome- \6 r; Z- p R; x3 z
from Saccharomyces cerevisiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 R4 k) ^# h2 m
Ashwin Unnikrishnan, Bungo Akiyoshi, Sue Biggins, and Toshio Tsukiyama
! H$ m" ?: z( t; y, q# y9 Simultaneous Single-Molecule Detection of Endogenous C-5 DNA8 I; x6 M5 z/ z
Methylation and Chromatin Accessibility Using MAPit. . . . . . . . . . . . . . . . . . . . . . 125
- ^# T1 P$ d. ~% ERussell P. Darst, Carolina E. Pardo, Santhi Pondugula,
1 M2 h. C+ @" J# @* o! K/ U! H% MVamsi K. Gangaraju, Nancy H. Nabilsi, Blaine Bartholomew,
* \: y4 \8 J: ^& c9 eand Michael P. Kladde8 Z1 U' F d5 s
10 Analysis of Stable and Transient Protein–Protein Interactions . . . . . . . . . . . . . . . . . 143 h; O1 l" R1 c; R
Stephanie Byrum, Sherri K. Smart, Signe Larson, and Alan J. Tackett* L7 G9 C+ V5 ?8 q$ Q* i# m
11 Monitoring Dynamic Binding of Chromatin Proteins In Vivo& i; {( b7 j1 p' l
by Fluorescence Recovery After Photobleaching . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8 u3 l# I. c+ e7 ^4 e6 f- WFlorian Mueller, Tatiana S. Karpova, Davide Mazza,
& D; V4 f0 |; {. {: yand James G. McNally
; k# B0 D3 S& R( q12 Monitoring Dynamic Binding of Chromatin Proteins In Vivo by Fluorescence
4 l A4 r! m; t8 V5 YCorrelation Spectroscopy and Temporal Image Correlation Spectroscopy . . . . . . . . 177
* E5 u1 `6 S$ p) H5 w oDavide Mazza, Timothy J. Stasevich, Tatiana S. Karpova,
* Z2 h4 V- H# k; G* X! fand James G. McNally
# P" \6 N P* G13 Analysis of Chromatin Structure in Plant Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201' D$ V1 v" C' K. w7 c" z
Mala Singh, Amol Ranjan, Krishan Mohan Rai, Sunil Kumar Singh,
* K* u' F5 \; d- S, s' Z3 DVerandra Kumar, Ila Trivedi, Niraj Lodhi, and Samir V. Sawant( K5 T" q7 x/ x+ S3 |* V
14 Analysis of Histones and Histone Variants in Plants. . . . . . . . . . . . . . . . . . . . . . . . . 225
: P/ Q/ B- b7 C/ z4 lIla Trivedi, Krishan Mohan Rai, Sunil Kumar Singh," f: m- ^" A5 F/ N
Verandra Kumar, Mala Singh, Amol Ranjan, Niraj Lodhi,
: a) z; |+ M, v8 X3 k8 x' band Samir V. Sawant
4 `& i; o7 k: [) L6 |15 Reconstitution of Modified Chromatin Templates for In Vitro" C* f6 m$ i2 g3 n) V/ J
Functional Assays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2379 S3 p1 C. M; Y- z3 y
Miyong Yun, Chun Ruan, Jae-Wan Huh, and Bing Li9 X1 `& J5 Q& V4 x2 ^: \+ t
16 A Defined In Vitro System to Study ATP-Dependent Remodeling
; Q: |* p# N3 J5 b f7 iof Short Chromatin Fibers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 l/ t! w; B" }5 |) ]1 v
Verena K. Maier and Peter B. Becker k. N! ~. T6 F# g7 m- D4 X
17 In Vitro Reconstitution of In Vivo-Like Nucleosome Positioning
3 L* H1 o: I0 b0 J1 Q' Q3 s7 {on Yeast DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271# L a1 W- S5 L, \/ K4 k, p- G
Christian J. Wippo and Philipp Korber# E3 Q5 i# n: W% G0 G l( e9 l
18 Activator-Dependent Acetylation of Chromatin Model Systems. . . . . . . . . . . . . . . . 289
4 {, ?- q$ c2 z" g4 ]+ RHeather J. Szerlong and Jeffrey C. Hansen! p4 H# y+ W( N* r
19 Mapping Assembly Favored and Remodeled Nucleosome Positions& I0 @$ n& K' S8 R+ ]! Y {1 h
on Polynucleosomal Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3113 p- t$ l% }! }) H% B+ [6 ] ?5 _/ e
Hillel I. Sims, Chuong D. Pham, and Gavin R. Schnitzler
: r; E) j& `9 J- J3 `1 h20 Analysis of Changes in Nucleosome Conformation Using Fluorescence
. w# S) I2 k; w$ ~% J& y2 TResonance Energy Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337+ i. R# O1 j* Q
Tina Shahian and Geeta J. Narlikar% M) C3 `; J( F- M' v
21 Preparation of Nucleosomes Containing a Specific H2A–H2A Cross-Link; [1 T$ ~6 P" ^! V# X
Forming a DNA-Constraining Loop Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
0 z4 _- }/ j: ~# dNing Liu and Jeffrey J. Hayes) H$ j! @$ l9 A8 n
22 Sulfyhydryl-Reactive Site-Directed Cross-Linking as a Method for Probing
# N+ c8 z5 x! k- V7 @/ j/ q# ?the Tetrameric Structure of Histones H3 and H4 . . . . . . . . . . . . . . . . . . . . . . . . . . 373
* F' j$ N9 j; A8 I9 d6 g# uAndrew Bowman and Tom Owen-Hughes; m: O! e! f& C, ^
23 Genomic Approaches for Determining Nucleosome Occupancy in Yeast . . . . . . . . . 389
' L0 c5 m) O8 |1 A8 nKyle Tsui, Tanja Durbic, Marinella Gebbia, and Corey Nislow
8 r ?6 A- g0 R4 e24 Genome-Wide Approaches to Determining Nucleosome Occupancy8 @, s' W. k8 n7 {" B3 X
in Metazoans Using MNase-Seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
' ^3 O( A. t! a rKairong Cui and Keji Zhao
5 K5 ?( `4 ^3 t8 [+ S& B25 Salt Fractionation of Nucleosomes for Genome-Wide Profiling . . . . . . . . . . . . . . . . 421% l+ T |; W& w# y
Sheila S. Teves and Steven Henikoff
% j+ |6 I' o% I9 N# n w0 _. d8 [26 Quantitative Analysis of Genome-Wide Chromatin Remodeling . . . . . . . . . . . . . . . 433
) J' v" J4 ~* H6 s" b( ~- J5 H3 `Songjoon Baek, Myong-Hee Sung, and Gordon L. Hager; s/ g: _! X$ k" \, p. ]& w
27 Computational Analysis of Nucleosome Positioning . . . . . . . . . . . . . . . . . . . . . . . . 443
) y% L5 m; i6 IItay Tirosh; W \! \5 b; x1 K$ v% t
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
) R# k C; z/ u, p% n1 O2 v: t |
附件: 你需要登录才可以下载或查看附件。没有帐号?注册
|