干细胞之家 - 中国干细胞行业门户第一站

 

 

搜索
朗日生物

免疫细胞治疗专区

欢迎关注干细胞微信公众号

  
查看: 483549|回复: 263
go

Increased Vigilance of Antioxidant Mechanisms in Neural Stem Cells Potentiates T [复制链接]

Rank: 7Rank: 7Rank: 7

积分
威望
0  
包包
483  
楼主
发表于 2009-3-5 00:02 |只看该作者 |倒序浏览 |打印
作者:Lalitha Madhavan, Vclav Ourednik, Jitka Ourednik作者单位:Department of Biomedical Sciences, Iowa State University, Ames, Iowa, USA 8 h* O9 J1 T" b% E0 ^  w# h# h
                  4 v! R( `; G- y* T( S7 W* y; E: W' l
                  # k& G- i# q! Q) b- }, k
          , g" y/ g1 N/ `; f. o
                        
: }! p# V. @" }: ?5 y* t. ?            3 z- D) }- N& ~! P, g- v" Q7 `
            
$ N, \0 M5 d. {0 f4 s            : a+ a. O, C3 l* y9 L( k0 X
            7 L' h0 Y) E& A' G! D
                      0 j/ b& H: C: Q1 d1 D1 L
        
) O' Q9 Q0 K; `" b; z, C8 w        
) P5 [+ K& i6 |. _6 g/ d5 M        8 ^7 z0 x$ @$ c6 X" Y
          【摘要】( D* s& p+ z/ d8 S- R9 j
      Although the potential value of transplanted and endogenous neural stem cells (NSCs) for the treatment of the impaired central nervous system (CNS) has widely been accepted, almost nothing is known about their sensitivity to the hostile microenvironment in comparison to surrounding, more mature cell populations. Since many neuropathological insults are accompanied by oxidative stress, this report compared the alertness of antioxidant defense mechanisms and cell survival in NSCs and postmitotic neural cells (PNCs). Both primary and immortalized cells were analyzed. At steady state, NSCs distinguished themselves in their basal mitochondrial metabolism from PNCs by their lower reactive oxygen species (ROS) levels and higher expression of the key antioxidant enzymes uncoupling protein 2 (UCP2) and glutathione peroxidase (GPx). Following exposure to the mitochondrial toxin 3-nitropropionic acid, PNC cultures were marked by rapidly decreasing mitochondrial activity and increasing ROS content, both entailing complete cell loss. NSCs, in contrast, reacted by fast upregulation of UCP2, GPx, and superoxide dismutase 2 and successfully recovered from an initial deterioration. This recovery could be abolished by specific antioxidant inhibition. Similar differences between NSCs and PNCs regarding redox control efficiency were detected in both primary and immortalized cells. Our first in vivo data from the subventricular stem cell niche of the adult mouse forebrain corroborated the above observations and revealed strong baseline expression of UCP2 and GPx in the resident, proliferating NSCs. Thus, an increased "vigilance" of antioxidant mechanisms might represent an innate characteristic of NSCs, which not only defines their cell fate, but also helps them to encounter oxidative stress in diseased CNS. # R% Z  S/ @; Q4 L* b8 W
          【关键词】 Antioxidants Central nervous system -Nitropropionic acid Mitochondrial activity Reactive oxygen species Redox Neuroprotection Neural stem cells Cell interaction In vitro In vivo Superoxide dismutase Uncoupling protein Glutathione peroxidase Catalase" o) m8 V( i5 w, M1 C; f8 K
                  INTRODUCTION
- V8 a' u! V6 l. d
- ?6 P, L$ s* p$ lThe restorative potential of neural stem cells (NSCs) is based on their abilities to provide cell replacement and serve as vehicles for gene therapy, but also, and importantly, on their capacity to stimulate reparative responses in the diseased host while promoting re-establishment of homeostasis .; b, }# H6 Z4 @9 i: ?
3 o/ O; y8 z$ r: e& u' y/ m
Oxygen is necessary for life, but, paradoxically, its metabolism produces reactive oxygen species (ROS) as by-products highly toxic to cells. Because of its elevated metabolic rate, high oxygen consumption, and relatively reduced capacity for cellular regeneration compared with other organs, the brain is believed to be particularly susceptible to the damaging effects of ROS. This becomes evident in diseases such as Parkinson¡¯s disease or Huntington¡¯s disease, where various indices of ROS damage have been reported within the specific brain regions that undergo selective neurodegeneration. To make matters worse, although mammalian cells have evolved several resistance and repair mechanisms to deal with oxidative stress and the associated damage, the activities of various antioxidant defense molecules that would normally counteract the injurious effects of ROS are reduced in the brain . This is particularly true for the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx).& \+ O$ D: Y4 c, Q0 {

1 F3 r. w4 _5 \5 u# Z: F, U: pWith regard to stem cells, the maintenance of a balance between self-renewal and differentiation is pivotal for their function in development, tissue repair, and homeostasis. In this context, a new role of the cellular redox state control has been recognized, affecting multiple processes related to cell proliferation and differentiation . In the present study, we therefore hypothesized that NSCs and their postmitotic progeny differ in their free radical household to an extent that also changes their ability to resist oxidative stress. This should be reflected, among others, in distinctive expression patterns of their antioxidant enzymes.
3 {# i9 l! G% u$ I
% E# y4 ?5 [: B& M+ dTo explore this thought, we examined cultured NSCs and their 7-day-differentiated progeny (postmitotic neural cells .& Q$ T, c  Y3 c" B
* M5 h5 o8 A% J) ^5 L& T
This report also includes our pilot immunohistochemical data pertaining to steady-state expression of antioxidant modulators in the subventricular stem cell niche in adult mouse brains. These data will serve as the baseline in future studies addressing the vulnerability of endogenous NSCs to 3-NP-induced oxidative stress.
! E; O3 U0 d; O! T7 I6 u0 e5 ]% p: L$ w4 K. d% L
MATERIALS AND METHODS
/ y% {+ R3 C/ N( S6 {: R! B' ~8 d- V) k3 R  g
Cell Cultures
6 o! A9 X" x. E3 ~1 q, W6 \  X7 X; N4 h4 Z
Primary Cells.   NSCs isolated from the subventricular zone of newborn C57BL/6 mice were grown under standard conditions in uncoated dishes and serum-free Neurobasal medium supplemented with 2% B27 (NB27), 20 ng/ml epidermal growth factor (EGF), 10 ng/ml basic fibroblast growth factor (bFGF), and 8 µg/ml heparin. After 7 and 14 days, primary and secondary neurosphere cultures were split and plated at 104 cells per ml in NB27 containing EGF, bFGF, and heparin to allow formation of tertiary neurospheres. The latter were used for all the experiments regarding proliferating NSCs or differentiated in culture on poly(L-lysine) for another 7 days without growth factors but in the presence of 1% fetal bovine serum (FBS) for the derivation of PNCs." d6 |& s: i" D: k, k  H! K/ s

2 K; x9 @/ G9 F# C# _  tImmortalized Cells.   To match the growth conditions of the primary cells, immortalized cells (clone C17.2 . Only early-passage (passages 1¨C3) stocks of the originally immortalized cells were used for the preparation of tertiary neurospheres. To derive PNCs, the latter were grown on poly(L-lysine) without growth factors and in the presence of 1% FBS.8 u6 A1 f3 `0 s: f6 F- l% X
/ x* ?3 W9 ~6 R& v
All cells were grown in a standard humidified incubator at 37¡ãC with 20% O2. The state of cell differentiation from tertiary neurospheres was monitored by immunodetection of Ki-67 and nestin, both markers for proliferating and immature cells (Fig. 1A, a¨Ch), class III-ß-tubulin (Fig. 1A, i¨Cl, Tuj-1), and glial fibrillary acidic protein (GFAP) (Fig. 1A, m¨Cp, glial marker).
) h1 b0 i, W2 e6 L3 C3 v% j& B; s6 L
Induction of Oxidative Stress In Vitro3 `9 \; |* |8 h! y# F/ I

/ @  b. U- ?8 l. @% R. eCultures of NSCs and PNCs at comparable cell densities (2 x 104 cells per well) were treated with 3-NP (0.05 mM) for 24 hours and assayed for the next 5 days in vitro (DIVs) (i.e. 120 hours).9 S) {! \" |$ ?2 ?* P

( L) x9 j: O# [9 _Mitochondrial Activity
% ^  Z, Y4 {3 v' w# `
' C8 f  V; b8 m: W  G# C. B# ?The colorimetric 4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure mitochondrial functionality in cells . Briefly, cells were incubated with 0.25 mg/ml MTT for 3 hours at 37¡ãC, and mitochondrial enzyme activity was measured in culture supernatants in a spectrophotometer (Axon Instruments/Molecular Devices Corp., Union City, CA, http://www.moleculardevices.com) at 570 nm, with a reference wavelength of 630 nm./ w: @% r4 i' L

( n: P4 P$ h, y( c4 q( cROS Levels
/ ]% B' K* G5 Z( G- I: @4 O3 `( @3 I0 X  V
The 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) fluorescence assay  was applied to measure the levels of free radicals in cells. CM-H2DCFDA was added at 10 µM for 45 minutes to 3-NP-treated cells (during the last 45 minutes of exposure) and to control cultures. Then, the cells were washed with phosphate-buffered saline (PBS) (0.1 M, pH 7.2), and fluorescence recorded at a wavelength of 485 nm (excitation) and 535 nm (emission).
- z) [. V1 b4 C% r3 a& t+ ~7 I  y; u& l' O" Y, t
Apoptosis
9 }) ?3 A* s2 H, R" g8 z
6 r' y* O" @; U" |5 r' x5 ^Cultures exposed to 3-NP for 24 hours were fixed in 4% paraformaldehyde (PFA) and incubated with the Hoechst dye 33342 (10 µg/ml) for 3 minutes in the dark. Using UV illumination, a 4,6-diamidino-2-phenylindole filter, and a x40 objective, fluorescent (apoptotic) cells were evaluated in 15¨C20 visual fields with a Zeiss Axioplan-2 microscope and the percentage of apoptotic cells determined (Carl Zeiss, Jena, Germany, http://www.zeiss.com)." ^. ~. I6 J3 B( r; \$ x8 I8 n4 M

5 ^4 D, B8 h2 ?: lInhibition of Antioxidant Enzymes
3 ]  z. B0 _6 g# j* K0 q
" m7 B% q$ q7 O' T. }To assess their direct relevance in the cellular antioxidative response, the enzymes UCP2, GPx, and SOD2 that showed significant differences in their expression levels at steady state and after a 3-NP challenge were inhibited with GDP , respectively. The inhibitors were added to cultures 1 hour prior to 3-NP and left for the same duration as the toxin, or to 3-NP-free controls over the same culture period.8 w5 `& W% F5 }* w/ o+ N8 P

! B- L0 u9 I) t: B/ |! GImmunocytochemistry In Vitro
* H4 d; y; S' J  N  G+ C& t$ W) n$ z7 K2 w$ k: g
Cells grown on poly(L-lysine) (0.1 mg/ml)-coated coverslips were fixed with 4% PFA and rinsed with PBS. Primary antibodies were diluted in blocking solution (5% goat serum supplemented with 0.2% bovine serum albumin, 0.1% Triton X-100 in PBS), and preparations were incubated overnight at 4¡ãC. Specific binding was then revealed with the appropriate secondary antibodies conjugated to Alexa 488, 594, or 647 and diluted 1:500.  b7 o9 A5 e% P
  f4 F0 N1 ?1 ]8 Q9 i
The following markers were used: for NSCs, nestin (1:1,000), Musashi (1:500), and Ki-67 (1:500); for PNCs, Tuj-1 (1:500) as neuronal marker and GFAP (1:1,000) as astroglial marker. Antibodies against UCP2, GPx, and SOD2 were diluted 1:200, 1:500, and 1:1,000, respectively. Stains omitting primary or secondary antibodies and recordings through nonspecific filters were used as signal specificity controls.
/ @1 R4 E" U+ d) n, N1 o6 u2 c) e4 L( t- N
Histology and Immunohistochemistry of Brain Sections$ d+ W8 R! L6 e  o
# d, `; U7 f1 m4 l
Adult 16-week-old C57BL/6 mice were perfused with 4% PFA under deep pentobarbital anesthesia. The brains were postfixed in the same fixative for 24 hours and processed for routine cryostat sectioning, and 20-µm-thick serial coronal sections were collected. Rehydrated sections were blocked and immunostained with antibodies against UCP2 (1:100), Gpx (1:250), nestin (1:500), Ki-67 (1:250), and Musashi (1:2,500) using the same conditions as for the cell cultures described above. Stains occurred in coronal sections from levels 25¨C30 according to the stereotactic atlas of the mouse brain by Sidman et al. .& m4 F5 k7 q% p- @

" q5 W' C! {9 m, ~) ^* A" PWestern Blotting
& P. ~3 Z/ H1 w( n, \" b1 o3 |( ~  C
Cells were harvested, washed with ice-cold Ca2 -free PBS, and resuspended in 2 ml of homogenization buffer (20 mM Tris-HCl, pH 8.0, 10 mM EGTA, 2 mM EDTA, 2 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 25 µg/ml aprotinin, and 10 µg/ml leupeptin). Suspensions were sonicated for 10 seconds and centrifuged at 13,000g for 30 minutes, and the supernatants were collected as whole cell lysate fractions. Samples containing equal amounts of protein were separated by 15% SDS-polyacrylamide gel electrophoresis and blotted onto nitrocellulose membranes. After blocking of nonspecific binding sites with blocking reagent, antioxidant proteins were revealed by incubation of the membranes with antibodies against UCP2 (1:200), GPx (1:1,000), SOD2 (1:2,000), and CAT (1:1,000) overnight at 4¡ãC. Secondary antibodies conjugated to horseradish peroxidase (1:2,000) were applied to visualize bound proteins in Amersham¡¯s enhanced chemiluminescence assay (Amersham Biosciences, Piscataway, NJ, http://www.amersham.com). Equal protein loading was confirmed by reprobing of the membranes for ß-tubulin.
. W( D( E4 j) X1 L
% [- p. Z- h' p8 B8 fDensitometry2 _6 \6 Y2 S9 d9 j0 z4 M
* d& m/ A6 m# P- t3 z4 r
Western blots were scanned and the NIH software ImageJ, version 1.34, used to quantify the densities of immunoreactive bands by calculating the area under the peak curves corresponding to UCP2, GPx, SOD2, and CAT.( A9 l6 O0 O) q! d4 ^0 Z

  M/ x' o; ~' g1 N3 i+ IChemicals
' @9 A5 s. x8 r) [, b  j) w
# ~2 v: |# p. W7 O* {5 y3-NP, GDP, DETC, and MS were obtained from Sigma-Aldrich (St. Louis, http://www.sigmaaldrich.com). CM-H2DCFDA, MTT, and Hoechst 33342 stain were obtained from Molecular Probes Inc. (Eugene, OR, http://probes.invitrogen.com). DMEM, neurobasal medium, DMEM with Ham¡¯s F-12 supplement, FBS, L-glutamine, penicillin/streptomycin, N2 supplement, B27 supplement, EGF, bFGF, and heparin were purchased from Invitrogen (Carlsbad, CA, http://www.invitrogen.com). Primary antibodies against nestin, UCP2, and GPx were received from Chemicon (Temecula, CA, http://www.chemicon.com), anti-SOD2 from Upstate (Lake Placid, NY, http://www.upstate.com), anti-CAT from Genetex (San Antonio, http://www.genetex.com), anti-Musashi from CeMines (Evergreen, CO, http://www.cemines.com), anti-Ki-67 from DakoCytomation, Carpinteria, CA, http://www.dakocytomation.com), Tuj-1 from Covance (Berkeley, CA, http://www.covance.com), and anti-GFAP from Sigma-Aldrich. All secondary antibodies were purchased from Molecular Probes./ z- c2 b7 X$ A/ s

9 G7 }* r3 C9 B9 uData Analysis and Statistics1 ?* A2 R% W2 i9 }

( [3 I% y- F- R$ {. l% l8 ]All data are expressed as means ¡À SEM and derived from at least three separate experiments. Statistical significance was determined by Dunnett¡¯s post hoc test for multiple comparisons with the control or by Bonferoni¡¯s multiple comparison tests performed on data from the different treatment groups. Single comparisons were evaluated using Student¡¯s t test or a Welch-corrected unpaired t test, where appropriate.9 }  I4 @0 u7 @7 E6 u7 E. H3 E
/ k8 k5 V0 [1 X7 I
RESULTS5 j; A" N/ O/ R7 O- _* x
/ V5 E+ I# H5 l" p% Q/ j6 ?3 H
Steady-State Characteristics of NSCs and PNCs Related to Redox State and Cell Survival In Vitro
6 v! l0 Z) W1 Z: P' c$ P, H
+ j2 ?9 u4 T$ f# ]# h) P1 H( [+ r8 ?To obtain reference points for our study of 3-NP-induced oxidative stress in NSCs and PNCs, we first needed to assess basal levels of the evaluated cellular modalities, namely, mitochondrial activity (MTT assay), ROS production (CM-H2DCFDA oxidation), and apoptosis (Hoechst 33342 staining).6 F  |6 T: ^. T6 w

- p! s7 U# U8 D7 T" _In NSC cultures, approximately 80% of the cells proliferated (Fig. 1A, a, b, 1B, d, white columns) and expressed nestin (Fig. 1A, e, f) but no Tuj-1 and GFAP, characterizing more differentiated cell types (Fig. 1A, i, j, m, n). After differentiation for 7 days, PNCs were characterized by less than 5% of dividing cells (Fig. 1A, c, d, 1B, d, hatched columns), had lost their nestin positivity (Fig. 1A, g, h), and expressed neuronal and glial markers (Fig. 1A, k, l, o, p).
  P. _; A1 k! g& x& K0 `
) \3 A; r0 r$ K' q( s, x7 {Figure 1. Steady-state characteristics of NSCs and PNCs related to redox state and cell survival in vitro. (A): Photomicrophotographs comparing the expression of stem cell and postmitotic cell markers in NSCs and PNCs. Most of the cultured NSCs (left panels) expressed the nuclear marker Ki-67 (red), revealing all dividing cells (a, b), and nestin, a prototypic marker for undifferentiated NSCs (e, green; f, red). They were, however, negative for cell type-specific markers, such as the neuronal Tuj-1 (i, j) and the astrocytic GFAP (m, n). PNCs (right panels), on the other hand, had lost their Ki-67 and nestin positivity (c, d, g, h) and began to express Tuj-1 (k, red; l, green) and GFAP (o, green; p, red). The blue signal in a¨Cp indicates nuclear DNA labeled with Hoechst 33342. Scale bar = 40 µm. (B): Quantitative evaluation of cell culture viability. Mitochondrial activity (MTT values; a), levels of free radicals (CM-H2DCFDA reaction; c), number of apoptotic cells (Hoechst 33342 staining; b), and cell proliferation (anti-Ki-67 immunostaining; d) were compared in cultured NSCs (white columns) and PNCs (hatched columns). Both primary and immortalized NSCs displayed stronger mitochondrial activity (a), lower ROS content (c), and less apoptosis (b) than the corresponding PNCs, indicating their better ROS buffering capacity. As expected, approximately 80%¨C85% of the NSCs was proliferating and stained for the Ki-67 marker (d), whereas PNCs remained almost all negative. *, p 4 C: ~, `% Q: L
' [6 t+ |) j! R) p/ U1 r
Striking differences in mitochondrial activity and intracellular ROS levels between NSCs and PNCs were recorded, whether primary or immortalized. NSCs (Fig. 1B, white columns) demonstrated a significantly (p
0 i! U% B' e' E1 P% l6 d7 |
- V9 G0 K% C9 ?7 z3 _9 \A comparison of the analyzed parameters between the primary and immortalized cells revealed subtle cell type-specific differences (Fig. 1B, a¨Cd, compare left and right plots), although the same trend of their changes between NSCs (white columns) and PNCs (hatched columns) prevailed. Possible reasons for this finding will be discussed.
6 x: g( _& a0 ]* p. r: V0 x4 ^* q
Response of NSCs and PNCs to 3-NP-Induced Oxidative Stress7 ]: F5 k% U  _
% G* L+ r/ R1 n1 z
After collection of the data pertaining to steady-state ROS metabolism, apoptosis, and cell proliferation in NSCs and PNCs, we next investigated their response to the mitochondrial toxin 3-NP.
7 j) R7 d4 C( U$ V; h, w# {
+ ^6 G; ^/ D# Z* O' y% @2 \9 KNSCs* z5 A# f$ B9 U% ]# p/ J( V8 r5 v) k

4 b+ q; f( c( z' G, R0 d5 D9 yNo significant changes in NSC number, proliferation, and apoptosis were observed at the time of the toxin removal (t = 0), although the MTT readings had dropped approximately 20%¨C30% below control values (Fig. 2, dashed lines). Cell behavior remained constant during the next 24 hours, after which, mild deterioration became noticeable. The latter reached a peak at approximately 60¨C72 hours post-3-NP, when a spontaneous recovery began, resulting in slightly different end values in primary and immortalized cells. Although by the end of the 5th experimental day (120 hours), primary NSCs had returned to values of the untreated controls (Fig. 2A, 2C, 2E, 2G, 2I), immortalized NSCs remained at 75% in their MTT values (Fig. 2B) and also remained affected in their proliferative activity (Fig. 2J). Both translated to a reduction of 20% in their cell numbers (Fig. 2H) and suggested a less efficient control of intracellular ROS than in primary NSCs.7 Q7 G4 s. ?1 {' p
+ r! b& J- r2 y( H- E7 z
Figure 2. Response of NSCs and PNCs to 3-nitropropionic acid (3-NP)-induced oxidative stress. After a 24-hour-treatment of the cultures with 0.05 mM 3-NP, NSCs (dashed curve) proved to be less susceptible to the resulting oxidative stress than PNCs (solid curve). Not only were the initial effects (t = 0) less pronounced in the NSCs, but they also were capable, after transient deterioration between 36 and 72 hours, to recover. This was reflected in time-dependent changes of the cells¡¯ mitochondrial activity (A, B), increasing ROS levels (C, D), and numbers of apoptotic cells (E, F). Interestingly, although primary NSCs recovered completely within the 5-day experimental period, mitochondrial activity (B), cell numbers (H), and proliferation (J) of immortalized NSCs did not recuperate fully. PNCs (solid line) died within 72 hours (E¨CH); their death was accompanied by their rapidly degrading mitochondrial activity and rising ROS levels (A¨CD). (A¨CH): All values are expressed as percentage of the corresponding controls. (I, J): Control values referred to are those of Ki-67 labeling indices (percentage of labeled cells) in untreated NSC cultures, represented by the horizontal lines. Abbreviations: CM-H2DCFDA, 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate; MTT, 4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; NSC, neural stem cell; PNC, postmitotic neural cell.1 Y% g# {3 d" T  N: Q
# ]1 M' Z  n* B. V
PNCs8 u6 B5 A% }9 H7 c

* e: b9 Z* Z) F1 l) c  H2 V$ ~6 M/ kThe behavior of PNCs in response to 3-NP was radically different from that of the NSC cultures and appeared to perpetuate the initial steady-state difference between both culture types. Immediately after toxin removal (t = 0), PNCs already exhibited obvious detrimental changes in all the measured parameters (Fig. 2, solid lines). In primary and immortalized PNCs, the considerable initial drop in mitochondrial viability quickly became a sigmoid decline, bringing it to almost zero, at 72 hours post-3-NP (Fig. 2A, 2B). This drastic decay of the cultures was mirrored in an exponential increase in ROS content and numbers of apoptotic cells (Fig. 2c¨C2f). A corresponding decrease in cell numbers left hardly any surviving cells in the wells (Fig. 2G, 2H), which made changes of intracellular ROS and apoptosis after 3 DIVs hardly measurable. At all of the evaluated times, PNCs were almost completely negative for the nuclear proliferation marker Ki-67, irrespective of their treatment with 3-NP (Fig. 2I, 2J).
4 e6 Y  P& l$ g; x, y
  {/ J7 P$ Y: ]( HDifferential Expression of Antioxidant Molecules Between NSCs and PNCs During Steady-State and After 3-NP Intoxication8 \: l' D7 _% o% I3 L( I" k. I& B( J

- O+ Z( m1 o1 g+ \The main enzymatic responses resulting in ROS detoxification are carried within the cells by molecules such as GPx, SOD2, and CAT. UCP2, a mitochondrial proton transporter, can also help lower ROS levels by reducing mitochondrial membrane potential . Thus, part of the contributing reasons explaining the difference in the redox state values between NSCs and PNCs were likely to be found in unequal activities of their antioxidant defense mechanisms. To explore this hypothesis, we analyzed the expression levels of the above enzymes, either in qualitative immunostains of cell cultures (Fig. 3) or quantitatively, from scans of Western blots (Fig. 4).
2 x7 l# z4 z: o. g$ l+ m) O, M8 E# J" k' D: Y# _4 z& A2 v( [5 q
Figure 3. Steady-state expression of the antioxidant molecules UCP2 and GPx in NSCs and PNCs in vitro. Cultures of NSCs and PNCs were immunostained for their expression of the antioxidant molecules UCP2 (red) and GPx (red). The blue signal indicates nuclear DNA labeling with Hoechst 33342. Most (90%) primary and immortalized NSCs stained intensively for both proteins (, compare a with c). Steady-state expression of superoxide dismutase 2 and catalase showed no differences between NSCs and PNCs (not shown). Scale bars = 20 µm. Abbreviations: GPx, glutathione peroxidase; NSC, neural stem cell; PNC, postmitotic neural cell; UCP2, uncoupling protein 2.
3 [: r, k& Z# _! L9 o1 G! c: E, t* K: k) b+ O* S% o
Figure 4. Western blot analysis of 3-nitropropionic acid (3-NP)-induced differential expression patterns of antioxidant molecules in NSCs and PNCs. Expression levels of antioxidant molecules (UCP2, GPx, SOD2, and CAT) in NSCs and PNCs were evaluated quantitatively in densitometry scans of Western blots prepared from whole protein extracts 12 and 60 hours after treatment of the cultures with 3-NP. Quantification was achieved by integration of the area under the densitometric peak curve of each protein and the data are plotted in comparison to the untreated controls. The intensity of the 3-NP-induced changes in the levels of antioxidant molecules varied considerably not only between NSCs and PNCs but also between primary and immortalized cells. Although NSCs (white columns) were characterized by strong upregulation of UCP2 and SOD2 (primary) (A, E), as well as GPx (immortalized) (D), no striking response to the toxin was found in PNCs (dashed columns). See main text for more details. *, p
0 n5 g# H6 @7 ^$ X
0 ]2 S6 r; J# {+ rSteady-State Expression of Antioxidants5 j# s! p" c) M3 q5 @9 x% h4 y3 m

8 y! g* @: S" K7 f% VInitial qualitative comparison of antioxidant steady-state levels between NSCs and PNCs revealed a much stronger expression of UCP2 and GPx in the former, for both primary and immortalized cells (Fig. 3). In contrast, both types of cells showed similar levels of SOD2 and CAT activity (not shown). This result was subsequently confirmed and quantified in Western blots, as illustrated in Figure 4 (U values).. n5 f/ Q. l% z

) t2 z" g5 Z. Z3 m( G: J3-NP-Induced Expression of Antioxidants
/ ?9 y( ~8 V) c' e5 n
9 ^& k# \( O. D  E3 I0 S1 @; GAdaptive changes of antioxidant levels during the first 60 hours post-3-NP appeared less prominent in PNCs (dashed columns) than in NSCs (white columns). In neither of the evaluated enzymes did the PNCs show any significant upregulation compared with their U control values, except in the case of UCP2 after 12 hours (p
5 y/ j) f2 y, y! F! ?/ o8 `# V& N/ H
In contrast to PNCs, NSCs responded to 3-NP with considerable upregulation of the enzymes UCP2 and SOD2 in primary (Fig. 4A, 4E, white columns) and GPx in immortalized cells (Fig. 4D, white columns). Thus, in comparison to the steady-state levels (U values), 3-NP exposure could further increase existing enzymatic differences between NSCs and PNCs (Fig. 4a¨C4d) and induced molecules such as SOD2, which did not show any differences at steady-state levels (Fig. 4E).
5 B4 Q- N0 [" W- S+ q2 y
& _3 }1 c, f2 uInhibition of Redox Modulators in NSCs and Its Effects on Their Response to Oxidative Stress
' b& G8 u' N, n6 F5 j8 i4 v- R+ _
6 j6 f6 v6 h/ T# R5 Z6 @$ n0 XIn NSCs, the antioxidative enzymes UCP2 and GPx appeared to play a major role in steady-state ROS metabolism and, together with SOD2, were the ones to be most prominently upregulated in their response to oxidative stress. To test the direct functional relationship between the changing levels of these enzymes and the resistance of NSCs to 3-NP, we inhibited the activity of these molecules with their inhibitors GDP, MS, and DETC, respectively. The resulting cellular behavior (Fig. 5, black lines) was then compared with that of noninhibited NSCs and PNCs (Fig. 5, gray dashed and solid lines). In simultaneously processed 3-NP-free controls, the application of inhibitors alone did not produce any toxic effects (not shown).1 J0 u: v! U! i. F4 J& Y
  F& v" D0 @1 K# u7 {
Figure 5. Inhibition of redox modulators in NSCs and its effects on their response to oxidative stress. A pharmacological block of the redox modulators UCP2, GPx, and SOD2 by guanosine 5'-diphosphate, mercaptosuccinic acid, and dethylthiocarbamate, respectively, led to a drastically increased sensitivity of the proliferating NSCs to the detrimental effects of 3-NP. Inhibition of either individual antioxidants (A¨CC) or all three of them simultaneously (D) occurred. In each of the four panels, the obtained data from the inhibited NSCs (solid black line) pertaining to their mitochondrial viability (a, b), intracellular ROS levels (c, d), and number of apoptotic cells (e, f) were compared with 1) noninhibited NSCs (gray dashed line), and 2) noninhibited PNCs (gray solid line). Although inhibition of UCP2 (A) and GPx (B) resulted in a significant (p * ~7 P* ]/ [% d6 ]
# ^, d* g8 `5 }8 b( [
After inhibition of UCP2 and GPx, the viability of primary and immortalized NSCs exposed to 3-NP was strongly reduced, whereas a block in SOD2 activity, interestingly, did not produce any effects. In contrast to noninhibited NSCs (Fig. 5, gray dashed line), the ones deprived of UCP2 or GPx activity (black solid lines) were unable to recover from the neurotoxic effects, and they continued to deteriorate throughout the experimental period of 5 days. Not surprisingly, blocking of all three tested enzymes simultaneously led to the most severe deterioration of NSC viability, approaching that of the noninhibited PNCs (Fig. 5, compare black and gray solid lines).9 m8 l8 r  a' j% y: P3 d

$ g3 [3 d  N2 H( WExpression of Redox Modulators in the SVZ of the Mouse Brain5 y3 K- s% k5 d5 c
6 B/ O# B3 E9 \9 \
In the in vitro studies described so far, we found that in their ROS household and tolerance of oxidative stress, NSCs are characterized by more active antioxidant defense mechanisms than more differentiated cell types. Since the largest steady-state differences were found in the expression levels of UCP2 and GPx (U values in Fig. 4A¨C4D), we examined immunohistochemically the presence of both proteins in the germinative zones of the adult mouse brain  at coronal levels 25¨C30 according to reference 20.) ?2 f# a" J/ Z) B+ F8 g

  L! W4 B, y; Q0 x7 F* ~Whereas cells positive for both tested antioxidant molecules were dispersed throughout the brain parenchyma, strongly stained cells were predominantly localized within the anterolateral portion of the SVZ (approximately 5% of the resident cells; Fig. 6J) and in the subgranular zone of the dentate gyrus (not shown). Both regions represent the two main stem cell niches of the forebrain .
% k; k9 H: z4 I$ z1 u! |, }, ^7 F
" I# z" ]' X) D' Y/ |( iTo characterize these cells, we used the proliferation marker Ki-67 (Fig. 6G¨C6I) and the stem cell marker Musashi (Fig. 6A¨C6F, 6D1¨C6F1) . Cells positive for these markers were consistently characterized by strong expression of UCP2 and GPx.
3 a! l4 W7 b/ e/ i# I- \/ k$ l, S3 \: u9 T, n" l, `5 X' }
Figure 6. Expression of redox modulators in the subventricular zone (SVZ) of the mouse brain. Coronal, 20-µm cryostat sections of adult mouse forebrains were immunostained to reveal expression of UCP2 and GPx in neural cells. NSCs were monitored for the presence of the stem cell marker Musashi (A¨CF, D1¨CF1) and the proliferation marker Ki-67 (G¨CI). Cells maintaining significant levels of UCP2 and GPx were found mainly within the anterolateral regions of the forebrain SVZ and only rarely within the brain parenchyma (, white crosses). Their location overlapped with that of NSCs labeled with Mus and Ki-67. See main text for more detail. (A¨CI): Scale bars = 20 µm; (D1¨CF1): scale bars = 10 µm. Abbreviations: CC, corpus callosum; CP, caudoputamen; GPx, glutathione peroxidase; LV, lateral ventricle; M, midsagittal line; Mus, Musashi; UCP2, uncoupling protein 2.
* H1 }8 ], x  k5 H' }$ {9 H9 b. i6 u4 Y
DISCUSSION
# J' ^- E7 t- Y6 V. K* l# ~9 i  q( ]* l3 G+ M+ r
Oxidative stress due to excessive presence of ROS is a permanent threat to any cell with aerobic metabolism and accompanies many traumatic CNS pathologies and diseases such as Parkinson¡¯s disease and Huntington¡¯s disease. Particularly in the brain, where 20% of the oxygen consumed by the body is used, cells have to rely on a variety of potent antioxidant defense mechanisms and a close interaction of glial and neuronal cells for constant removal of ROS . Interestingly, although extensive studies have been performed on the mature cell types populating the CNS, almost no data exist about the effects of oxidative stress on NSCs and their postmitotic progeny. In light of the present hopes to use these cells for therapeutic transplantation and/or take advantage of their endogenous counterparts, the investigation of this issue has become an important necessity, and the present report is a first step in this direction.& J: I* H0 }3 d) I

8 a% A" W4 t4 c" ]( qTo be able to realize their therapeutic purpose, grafted and endogenous NSCs have to resist the hostile pathological microenvironment as much as or even better than the other host cell populations. In the present study, we addressed this possibility by comparing NSCs and their PNC counterparts with respect to their steady-state ROS household, cell viability, expression levels of several key proteins with antioxidative functions, and their changes in response to 3-NP-induced oxidative stress.* G& J. d$ L8 L% d% i

% W5 a- O  @# k' jBy interfering with the mitochondrial electron transfer chain and leading to energy depletion, 3-NP exposure results in increased production of ROS such as superoxide (O2¨C) and hydrogen peroxide (H2O2) . To address both mitochondrial and cytoplasmic antioxidant detoxifier mechanisms controlling intracellular accumulation of ROS, we investigated the expression of the redox modulators UCP2, GPx, SOD2, and CAT.+ V& a9 E; ]7 U

! k+ ^2 t/ S7 \; _6 f4 Y3 r! o4 cUCP2 belongs to the family of mitochondrial H  transporters that regulate oxidative phosphorylation by increasing the uncoupling of electron transport and ATP formation .
( w% q1 C( K$ j+ h' r% g( j8 g% s* ~: B
According to recent literature, it appears that the transcriptome of hematopoietic, neural, and embryonic stem cells includes a subset of genes, the products of which not only help to define "stemness" but can also provide the cells with higher resistance against oxidative stress  and may therefore require special regulatory attention. The outcome of the present study is a concrete example of NSC behavior corroborating the first of these suggestions.
) R1 T; Q2 I! o+ ?- f& M
5 ]) G/ b, v& n2 a% _4 sSteady-State Characteristics
( f! J( ~8 _, I1 s( @2 ]; \# o8 A
; [- k6 \# Y- Y* w7 E: ]1 h# D8 FCultured NSCs were found to be by default better equipped to control intracellular ROS than PNCs. This was reflected in their significantly higher mitochondrial activity, lower ROS content, reduced apoptosis, and their comparatively higher basal levels of UCP2 and GPx. It has been reported that proliferating cells can actually produce substantial amounts of ROS endogenously . Our results suggest that the maintenance of higher steady-state levels of UCP2 and GPx in stem cells is one of their strategies to offset this effect.2 Z; N! {- ]8 e) b# K1 F2 r
* n- L+ S; w8 Y% w/ L. U2 W
Response to 3-NP Treatment. o+ F/ f1 j/ b8 T" c
9 K& I' u. H" D- Y6 ]
We observed that NSCs resisted evoked oxidative stress better than the PNCs and were able to recover from its effects within 5 days after the insult. In agreement with these findings, NSCs increased substantially their levels of antioxidant proteins, whereas the latter remained almost unchanged in PNCs. The disparate response of both cell types to oxidative stress suggests, at least in part, an overall higher steady-state "vigilance" of redox control mechanisms in NSCs. Their stem cell characteristics, including proliferation, appear to be associated with a higher "alertness" of proteins such as UCP2 or GPx to changes in intracellular ROS levels. Both proteins can decrease the probability of mitochondrial permeability transition .
* Q1 ^- p/ U# d3 q% Z" d5 S
, i% J: H5 O5 x/ zWe propose that, intriguingly, a molecular network helping NSCs maintain stem cell status .* X/ U4 a: k6 `9 N2 f
: `2 a* s7 I! g* B5 w% F
In the present study, interestingly, primary and immortalized NSCs displayed some minor behavioral differences: in primary NSCs, the contents in UCP2 and SOD2 increased upon exposure to 3-NP, although both remained unchanged in the immortalized NSCs. The latter, on the other hand, upregulated their GPx activity instead. It has been documented that overexpression of the myc gene can cause elevated ROS production in cells and can downregulate NF-B-mediated expression of redox regulators such as SOD2 . Such myc-dependent interference with the expression of antioxidants could explain the slightly worse values pertaining to cell viability and ROS household in immortalized NSCs compared with those recorded from primary NSCs, both in their steady-state behavior and after a challenge with 3-NP. It could also play a role in the differential, 3-NP-induced expression patterns of the three tested redox modulators between primary and immortalized NSCs.
; E% U# C6 Q4 k( k' K$ S
6 Z# X* n  H8 D* CIrrespective of the induction patterns of antioxidants, both primary and immortalized NSCs, in comparison with PNCs, showed an equally high resistance to oxidative stress, even if their levels of the tested antioxidants differed. This indicates that other existing defense mechanisms might help NSCs, in general, to stabilize their redox states. Examples of such mechanisms that we are currently investigating are enhanced adaptive controls of nitric oxide (NO) production and thiol pools due to proliferation- and myc-mediated permanently elevated ROS levels .. w! z- F4 Z" ^/ [* c) D
+ i4 z; @7 V& M" g: F3 z( G
Inhibition of the Antioxidant Response to 3-NP
9 o; _+ w* |+ Y& h3 y9 |9 [/ Y* m# C  x* Z
To test the importance of the 3-NP-induced enzymes UCP2, GPx, and SOD2 for NSC survival, we inhibited their activity before and during the exposure of the cells to the mitochondrial toxin. The blocking of either UCP2 or GPx resulted in a substantial reduction in NSC viability and raised ROS levels and numbers of apoptotic cells. When all three enzymes were inhibited simultaneously, the NSCs died with rapidly increasing ROS levels and decreasing MTT values similarly to PNCs. Thus, although we can assume that additional signaling pathways contribute to the resistance of NSCs to oxidative stress, the cumulative control of membrane potential and efficient ROS clearance appear crucial for their survival and enhanced tolerance.! {1 ^+ E" l4 X! `

1 `& I& L' K& s1 i  {6 sWe found that the inhibition of SOD2 alone did not have any significant effects on the viability of NSCs. Although the steady-state levels of this enzyme were comparable between NSCs and PNCs, it was quickly and strongly induced in primary NSCs responding to 3-NP. No changes were observed in the case of immortalized NSCs, which could have been, as discussed before, the consequence of the inhibitory influence of myc overexpression in these cells. These results suggest that SOD2 is not involved in ROS control during steady-state homeostasis in these cells and that other additional antioxidant mechanisms may have compensated for its inhibition during the stress response. Also, UCP2, which is known to be stimulated by mitochondrial superoxide, may have played an important role in quenching superoxide-induced oxidative stress in the NSCs .
- E- }3 |/ p3 Y. E! E( e1 b2 z' n- p6 D/ @; G8 ?! q2 n
Steady-State Expression of Antioxidants in NSCs In Vivo
' l0 B7 U! |, H# S
+ Y6 H. G5 C* v6 ?, A- }Stem cells represent an important source of building material in both development and regeneration of the CNS and may very well take advantage of the "stemness-defining," enhanced control of their redox state to be better prepared than the rest of the brain for the arrival of oxidative stress. This we found confirmed in vitro, where NSCs were characterized by more active antioxidant defense mechanism than their PNC counterparts. Since the largest differences in steady-state levels of antioxidant enzymes between NSCs and PNCs were those of UCP2 and GPx, we performed a pilot study of the expression of both enzymes in the stem cell niche  of adult mouse forebrain. Intriguingly, we found that endogenous NSCs localized in the SVZ and the subgranular zone of the dentate gyrus are also characterized by higher steady-state levels of UCP2 and GPx compared with neural cells in other brain areas. This finding, being in harmony with our in vitro results, adds a new and important characteristic to the already special nature of neural stem cell niches: they represent a source of cells that, by the nature of their stem cell transcriptome, are relatively well equipped to resist oxidative stress and, perhaps, other forms of pathological insults as well. A better understanding of such stem cell features is therefore likely to have an important impact on our views of CNS development, activation of endogenous NSCs during injury, and NSC transplantation.- v) n9 V6 l" f# q0 L
# g% f* M1 _4 G9 A. s  n
DISCLOSURES
% Z3 ]) u$ f4 n6 r; Z2 f
# `$ ^! g/ c2 R  {& K9 T4 G5 GThe authors indicate no potential conflicts of interest.
1 w5 w5 N. }$ v6 L, H
; _! D/ R' y6 VACKNOWLEDGMENTS; z# Q2 D9 G2 {" w" m

" G! s" d/ q& W2 fWe thank Dr. Petr Jeek for helpful suggestions and comments and Nada Pavlovi for her technical help with immunostaining. This work was supported by intramural funding from Iowa State University (J.O., V.O.). V.O. and J.O. contributed equally to this work.8 G" |! k( M$ o# ~, L" y
          【参考文献】# g1 E  r5 d7 i$ p" {2 N
- \: \# ^/ s2 g
. L9 v3 l# o  U
Ourednik V, Ourednik J. Graft/host relationships in the developing and regenerating CNS of mammals. Ann N Y Acad Sci 2005;1049:172¨C184.
8 R3 _7 j) t! o9 U# y6 V1 }$ o+ |. D1 P. ]/ g* }! f* w2 X, `
Park KI, Teng YD, Snyder EY. The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 2002;20:1111¨C1117.
7 l) N. O5 u9 D" m  x( B" K
& \; h8 P( X6 JPluchino S, Zanotti L, Rossi B et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 2005;436:266¨C271./ ^% y; l7 Y4 y+ d

0 ^* _* k+ ]6 P) l& v' @% iEmsley JG, Mitchell BD, Kempermann G et al. Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells. Prog Neurobiol 2005;75:321¨C341.
$ O! D* e2 u! G8 ?
% P, U# t) k0 X9 dOurednik J, Ourednik V, Lynch WP et al. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol 2002;20:1103¨C1110.1 c( X: T1 q4 i- u/ r3 B* j
- p  f8 @/ \" A
Andersen JK. Oxidative stress in neurodegeneration: Cause or consequence? Nat Med 2004;10:S18¨CS25.. ]2 U6 v# [8 k" S' f7 P

2 W* w. F% ~  H- E' eSmith J, Ladi E, Mayer-Proschel M et al. Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci U S A 2000;97:10032¨C10037.
; `: R; Q9 R; o7 O9 a9 b
- [2 d# {5 W: k, v0 x; VAndrews ZB, Diano S, Horvath TL. Mitochondrial uncoupling proteins in the CNS: In support of function and survival. Nat Rev Neurosci 2005;6:829¨C840.
! H- V; l, y; o5 _( x9 v3 g2 Z  s1 M
. ~8 {2 m) V& C$ w: PNoble M, Smith J, Power J, Mayer-Proschel M. Redox state as a central modulator of precursor cell function. Ann N Y Acad Sci 2003;991:251¨C271.
0 t. o& f. z; q2 W% C
8 P9 ], E4 d! m  l+ b9 nRyder EF, Snyder EY, Cepko CL. Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J Neurobiol 1990;21:356¨C375.
7 u6 Q7 ^9 k6 j9 U9 P
$ P+ R# Q4 |1 |5 h1 kParker MA, Anderson JK, Corliss DA et al. Expression profile of an operationally-defined neural stem cell clone. Exp Neurol 2005;194:320¨C332.2 g8 M( h. o3 U! i9 @( X1 s

7 e4 z( V: X% j8 V* tDringen R, Pawlowski PG, Hirrlinger J. Peroxide detoxification by brain cells. J Neurosci Res 2005;79:157¨C165.
' X; ^3 z4 D  S- t# ~* x8 B+ X4 k1 |
: s7 A# G0 d: n. mMattiasson G, Shamloo M, Gido G et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 2003;9:1062¨C1068.# ?9 Q* O7 x6 w; `2 V. b  B6 J
1 x& |# P/ c* R) I; w, @) l
Kitchens DL, Snyder EY, Gottlieb DI. FGF and EGF are mitogens for immortalized neural progenitors. J Neurobiol 1994;25:797¨C807.
( |2 }9 e( F) |! ^4 {) \8 p4 E5 C* O) u, ?, L. z5 T$ W
Hansen MB, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 1989;119:203¨C210.# B8 u0 `- a" f5 ?: u
( `- E' ~4 H+ w
Ohba M, Shibanuma M, Kuroki T et al. Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J Cell Biol 1994;126:1079¨C1088.
9 [1 {% r% B8 ~0 q+ F( L& Q, @1 E5 J$ l3 R1 a5 k7 F) j
Echtay KS, Esteves TC, Pakay JL et al. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 2003;22:4103¨C4110.4 }) F3 R! F1 B  G& U. C

  M/ y% y1 I8 r) pBaud O, Greene AE, Li J et al. Glutathione peroxidase-catalase cooperativity is required for resistance to hydrogen peroxide by mature rat oligodendrocytes. J Neurosci 2004;24:1531¨C1540.
, x- \8 q  W* o  f' u; y- n( d) y4 I9 I/ F+ J
Ferret PJ, Soum E, Negre O et al. Auto-protective redox buffering systems in stimulated macrophages. BMC Immunol 2002;3:3.
- g" x# O- ~& ?; i" j/ t; E3 Q- R% M) K% L: x3 A/ d- M
Sidman RL, Angevine JB Jr. Taber-Pierce E. Atlas of the Mouse Brain and Spinal Cord. Cambridge, MA: Harvard University Press, 1971;.( C' r3 n5 ~) ^. P9 n) C4 G

" y4 U9 t8 y. U* M. q# U8 Z  pVotyakova TV, Reynolds IJ. DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 2001;79:266¨C277.+ O* `" ^: z% f4 a* O* M

8 A7 p* k% ]$ k9 }Calza L, Giardino L, Pozza M et al. Proliferation and phenotype regulation in the subventricular zone during experimental allergic encephalomyelitis: In vivo evidence of a role for nerve growth factor. Proc Natl Acad Sci U S A 1998;95:3209¨C3214.6 l2 {& X: V6 }$ ?& F3 y9 X
5 V  Z& y" `. H0 \+ w
Alvarez-Buylla A, Lim DA. For the long run: Maintaining germinal niches in the adult brain. Neuron 2004;41:683¨C686.# ~% D' n+ d7 L) H
! ^# {5 l' V& m7 l* I* A
Okano H, Kawahara H, Toriya M et al. Function of RNA-binding protein Musashi-1 in stem cells. Exp Cell Res 2005;306:349¨C356.' Y8 E6 h. i) M8 H/ n/ P( I1 I
3 V2 t* C0 B+ w6 r
Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 2004;3:205¨C214.
* C6 t; k. V' ~+ Z: o" N6 c
0 H2 w2 v# K5 D1 tFloyd RA. Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 1999;222: 236¨C245.$ S* O# e6 F! N9 C

$ y2 r* {! X' ?7 Q0 pMates JM, Sanchez-Jimenez F. Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 1999;4:D339¨CD345.
$ O& i7 g5 Z) Y7 Y
6 {  y' I. s1 U5 aBeal MF, Ferrante RJ, Henshaw R et al. 3-Nitropropionic acid neurotoxicity is attenuated in copper/zinc superoxide dismutase transgenic mice. J Neurochem 1995;65:919.
9 ]  K/ r* T$ u  {) G. B$ k% z; p6 Z. O( c* o5 [3 _0 I/ n
Andrews ZB, Horvath B, Barnstable CJ et al. Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson¡¯s disease. J Neurosci 2005;25:184¨C191.
1 U5 x6 w! I& {8 E; A- o/ f8 n. X' {( j) `( f  Z
Conti B, Sugama S, Lucero J et al. Uncoupling protein 2 protects dopaminergic neurons from acute 1,2,3,6-methyl-phenyl-tetrahydropyridine toxicity. J Neurochem 2005;93:493¨C501.
* p6 m, r8 u7 _' K) V$ t6 n1 P. J/ w' u3 ^9 S. o
Ivanova NB, Dimos JT, Schaniel C et al. A stem cell molecular signature. Science 2002;298:601¨C604.
8 G9 }+ ^) V$ C# e' U; G2 O, t# W4 q
Ramalho-Santos M, Yoon S, Matsuzaki Y et al. "Stemness": Transcriptional profiling of embryonic and adult stem cells. Science 2002;298:597¨C600.  a% c+ Z0 s: L) |0 h" ~$ u& V
# h8 h6 G+ q- l* V; A4 f& I& l
Szatrowski TP, Nathan CF. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991;51:794¨C798.3 X2 ^; }5 s. Y( E( N  `
. S# y1 {% X7 I$ A
Castilho RF, Kowaltowski AJ, Meinicke AR et al. Permeabilization of the inner mitochondrial membrane by Ca2  ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria. Free Radic Biol Med 1995;18:479¨C486.3 y- Y3 R+ F% d  s- Y8 w2 ~4 a1 F
7 \% x2 R+ A5 x" m
Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med 2000;6:513¨C519.
. `5 @! u$ V! p. L) d
4 |# a; R% v0 e! T. w) Q6 q( mBechmann I, Diano S, Warden CH et al. Brain mitochondrial uncoupling protein 2 (UCP2): A protective stress signal in neuronal injury. Biochem Pharmacol 2002;64:363¨C367.
- J( |. `: \9 S  \
" P( W# T9 g5 bKlivenyi P, Andreassen OA, Ferrante RJ et al. Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. J Neurosci 2000;20:1¨C7.
" w% X; k! ?$ T. I0 \9 R) W! |- q
Hori J, Ng TF, Shatos M et al. Neural progenitor cells lack immunogenicity and resist destruction as allografts. STEM CELLS 2003;21:405¨C416.
* F, d2 c7 q& S' w! y; @) L
4 z; x5 l2 w9 f- q  |; \Mammolenti M, Gajavelli S, Tsoulfas P et al. Absence of major histocompatibility complex class I on neural stem cells does not permit natural killer cell killing and prevents recognition by alloreactive cytotoxic T lymphocytes in vitro. STEM CELLS 2004;22:1101¨C1110.6 X5 t0 i- |4 {( g/ |/ x
0 V" _* w2 ^+ Z1 k1 R% [2 |0 H
Tanaka H, Matsumura I, Ezoe S et al. E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell 2002;9:1017¨C1029.7 Y( }3 C' a# p

; |7 z/ K; g5 }. `* @: h) e% v  EVafa O, Wade M, Kern S et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: A mechanism for oncogene-induced genetic instability. Mol Cell 2002;9:1031¨C1044.
+ ^! g2 O) E! p
. \: y7 w$ T( VFraser M, Chan SL, Chan SS et al. Regulation of p53 and suppression of apoptosis by the soluble guanylyl cyclase/cGMP pathway in human ovarian cancer cells. Oncogene 2006;25:2203¨C2212.
5 q; c2 y. K5 }+ J: a) ^
- U( V  x3 Q* e5 F) HHa KS, Kim KM, Kwon YG et al. Nitric oxide prevents 6-hydroxydopamine-induced apoptosis in PC12 cells through cGMP-dependent PI3 kinase/Akt activation. FASEB J 2003;17:1036¨C1047.
- z! k# v2 u. ?; E5 L$ @( Q5 ?3 R. S! h8 o1 H& r0 T
Ridnour LA, Sim JE, Choi J et al. Nitric oxide-induced resistance to hydrogen peroxide stress is a glutamate cysteine ligase activity-dependent process. Free Radic Biol Med 2005;38:1361¨C1371.
4 c( T$ q4 d2 [2 ~% q3 U2 @: ^$ r& |. h6 ?" c( P2 e3 E  y' l
Brand MD, Affourtit C, Esteves TC et al. Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004;37:755¨C767 Public Health Service Policy on Humane Care and Use of Laboratory Animals. 2002.
/ H% W+ E+ G( R1 s/ s7 w
8 E  o) `) j( A0 p4 A; D( h" G4 E9 zPublic Health Service Policy on Humane Care and Use of Laboratory Animals. Office of Laboratory Animal Welfare Bethesda, Maryland: NIH, ammendment 2002. http://grants.nih.gov/grants/olaw/references/phspol.htm.

Rank: 2

积分
64 
威望
64  
包包
1734  
沙发
发表于 2015-6-2 14:10 |只看该作者
干细胞行业门户 干细胞之家

Rank: 2

积分
72 
威望
72  
包包
1942  
藤椅
发表于 2015-6-6 13:40 |只看该作者
人之所以能,是相信能。  

Rank: 2

积分
75 
威望
75  
包包
2118  
板凳
发表于 2015-6-25 12:02 |只看该作者
干细胞之家微信公众号
我帮你 喝喝  

Rank: 2

积分
107 
威望
107  
包包
1889  
报纸
发表于 2015-7-25 22:19 |只看该作者
楼主也是博士后吗  

Rank: 2

积分
77 
威望
77  
包包
1964  
地板
发表于 2015-8-23 19:39 |只看该作者
哈哈 我支持你

Rank: 2

积分
104 
威望
104  
包包
1772  
7
发表于 2015-8-24 09:43 |只看该作者
不管你信不信,反正我信  

Rank: 2

积分
163 
威望
163  
包包
1852  
8
发表于 2015-8-28 18:11 |只看该作者
转基因动物

Rank: 2

积分
84 
威望
84  
包包
1877  
9
发表于 2015-9-6 12:53 |只看该作者
哎 怎么说那~~  

Rank: 2

积分
72 
威望
72  
包包
1730  
10
发表于 2015-9-18 16:54 |只看该作者
看或者不看,贴子就在这里,不急不忙  
‹ 上一主题|下一主题
你需要登录后才可以回帖 登录 | 注册
验证问答 换一个

Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )

GMT+8, 2025-6-8 23:54

Powered by Discuz! X1.5

© 2001-2010 Comsenz Inc.