|
  
- 积分
- 13511
- 威望
- 13511
- 包包
- 32034
|

二、分子演化中性主义的兴起- ?" ^, m0 H# H: _3 n; D/ K
3 T$ g" \' _) d1 \
上个世纪六十年代初,一些有趣的研究结果开始引起了群体遗传学家们的注意。首先,物种间的氨基酸替代数与两物种的分歧时间大致形成一定比例的对应关系(Margoliash 1963; Doolittle and Blomback 1964),这与之前Zuckerkandl和Pauling提出的“分子钟”(Molecular clock; Zuckerkandl and Pauling 1962)假说不谋而合;第二,在非重要蛋白质中氨基酸替换速率要高于重要蛋白质中的氨基酸替换速率(Margoliash and Smith 1965; Zuckerkandl and Pauling 1965),这一观察结果与选择主义者提出的“功能上越重要的蛋白进化越快”的观点恰好相反(Hughes 2);第三,对种间的基因组GC含量的调查发现,很大一部分的变异是来自于ATCG之间的互换,这与自然选择并无必然的联系(Freese1962;Sueoka1962);第四,1966年,Lewontin和Hubby首次将蛋白质凝胶电泳技术运用于群体遗传学研究,并发现在果蝇中存在大量的多态性等位基因位点,并且平均每一位点约有152),近中性理论最近几年得到了一些最新的观察数据的支持,尤其是Ohta关于瓶颈效应后有效种群大小的放大导致净化选择作用于轻微有害突变的观点。
6 @) H1 _" H8 c" R 在以历史上被认为经历了瓶颈效应的人类(Harpending et al. 1998)为例,人类基因组中非同义(nonsynonymous)的单核苷酸多态性(single-nucleotide polymorphisms, SNP),与同义(synonymous)的SNP或者内含子区的SNP相比,显示出较低的多样性水平(Freudenberg-Hua et al., 2003; Hughes et al., 2003; Zhao et al., 2003)。这些多样性水平相对较低的非同义突变说明了在经历瓶颈效应后,这些突变正经历着强烈的净化选择。此外,在许多细菌和病毒的编码蛋白位点上也发现了同样的多样性格局(Hughes, 2005, 2007b; Hughes et al., 2007),这些结果都支持了Ohta的近中性理论。
7 l( H9 D, ]3 I: m 然而,Hughes曾经的导师Nei并不认同近中性理论。Nei对近中性理论的批驳主要来自于两点:第一,Ohta认为小种群里轻微有害突变被容纳进入中性的范畴而被随机固定,因此基因杂合度或者是基因多样性在小种群里应当相对较高。而Nei的研究表明(Nei 1975),在小种群的脊椎动物中,基因平均杂合度要低于大种群的无脊椎动物。Nei和Graur(1984)对341个物种的数据进行统计后发现,平均杂合度随着群体大小的增加而增加,尤其是在经历了瓶颈效应以后。这与上面提到的Ohta关于瓶颈效应的观点截然相反。第二,Ohta的理论认为如果一个基因里有害突变不断积累,那么这个基因就会逐渐变成有害的并最终失去其原有的功能。一些观察发现(Hartl and Taubes 1998),在核糖体RNA中,一些最初的突变是有害的,但最终被随后的补偿突变(compensatory mutation)所代替使得有害效应没有得到积累。Ohta(1973)把这类突变归于轻微有害突变的范畴;而事实上,从长期进化的角度来看,这些轻微有害突变只是一种临时的状态,并没有最终改变基因的功能,所以仍然应该被称之为中性突变(Nei 1987; Itoh et al. 2002)。因此,Nei(2005)认为近中性理论在实质上仍然与原有的中性理论是相同的。( L& r8 Y! s$ v
" l9 e% \- q* m0 N! B7 N
参考文献:
. l' h2 w7 _$ @$ fFreudenberg-Hua Y, Freudenberg J, Kluck N, Cichon S, Propping P, No¨then MM. 2003. Single nucleotide variation analysis in 65 candidate genes for CNS disorders in a representative sample of the European population. Genome Research. 13:2271–2276.# c/ m3 m/ g1 O. k' s
Harpending HC, Batzer MA, Gurven M, Jorde LB, Rogers AR, Sherry ST. 1998. Genetic traces of ancient demography. Proceedings of the National Academy of Sciences, USA. 95: 1961–1967. n8 C$ ?/ P$ k. o( K
Hartl DL, Taubes CH. 1998. Towards a theory of evolutionary adaptation. Genetica. 102:525–533., t) W+ u& f: E# R+ {/ k
Hughes AL. 2005. Evidence for abundant slightly deleterious polymorphisms in bacterial populations. Genetics. 169:553–558.& X) q7 L/ i7 }" r) d5 F
Hughes AL. 2007a. Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity. 99:364-373.
5 ]* Y1 I9 O+ G/ _! K* DHughes AL. 2007b. Micro-scale signature of purifying selection in Marburg virus genomes. Gene. 392:266–272.
# D ]) V" K* |+ i+ o# rHughes AL, Hughes MA, Friedman R. 2007. Variable intensity of purifying selection on cytotoxic T-lymphocyte epitopes in hepatitis C virus. Virus Research. 123:147–153.6 E$ I# H0 \( K( P. Q; k
Hughes AL, Packer B, Welch R, Bergen AW, Chanock SJ, Yeager M. 2003. Widespread purifying selection at polymorphic sites in human protein-coding loci. Proceedings of the National Academy of Sciences, USA. 100:15754–15757.
: z* E# G- J% Z3 H7 L8 S2 UItoh T, Martin W, Nei M. 2002. Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts. Proceedings of the National Academy of Sciences, USA. 99:12944–12948.
2 x l& |' w# A- [: l6 xNei M. 1975. Molecular population genetics and evolution. North-Holland, Amsterdam.
4 ]6 \8 V2 W0 n i6 |0 ] |' x# [Nei M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.
" Y' A+ b- W. s8 u# GNei M. 2005. Selectionism and neutralism in molecular evolution. Molecular Biology and Evolution. 22:2318–2342.
' {/ J: X' v7 d- hNei M, Graur D. 1984. Extent of protein polymorphism and the neutral mutation theory. Evolutionary Biology. 17:73–118.: s9 V1 h9 s! D4 ^% K9 G3 C8 z$ r# ]$ o
Ohta T. 1973. Slightly deleterious mutant substitutions in evolution. Nature. 246: 96–98./ w" J9 k( W" b
Ohta T. 1974. Mutation pressure as the main cause of molecular evolution and polymorphism. Nature. 252:351–354.
' [7 @- e: c: [! i' V! ^% v: C( K) [Ohta T. 1976. Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theoretical population biology. 10:254–275.8 {5 g1 d- q4 V2 C* U
Ohta T. 1992. The nearly neutral theory of molecular evolution. Annual Review of Ecology and Systematics. 23:263–286.
6 `; ^- q& c. l& E2 k3 UOhta T. 2002. Near-neutrality in evolution of genes and gene regulation. Proceedings of the National Academy of Sciences, USA. 99:16134–16137.
6 d @; B6 S& G5 J6 v" E) b* vZhao Z, Fu Y-X, Hewett-Emmett D, Boerwinkle E. 2003. Investigating single nucleotide polymorphism (SNP) density in the human genome and its implications for molecular evolution. Gene. 312:207–213.
/ ~, Z1 O6 S2 N1 G |
|