|
![]() | The following text needs to be harmonized with text in Philosophy of science. |
Working scientists usually take for granted a set of basic assumptions that are needed to justify the scientific method: (1) that there is an objective reality shared by all rational observers; (2) that this objective reality is governed by natural laws; (3) that these laws can be discovered by means of systematic observation and experimentation.[8] Philosophy of science seeks a deep understanding of what these underlying assumptions mean and whether they are valid.
The belief that scientific theories should and do represent metaphysical reality is known as realism. It can be contrasted with anti-realism, the view that the success of science does not depend on it being accurate about unobservable entities such as electrons. One form of anti-realism is idealism, the belief that the mind or consciousness is the most basic essence, and that each mind generates its own reality.[28] In an idealistic world view, what is true for one mind need not be true for other minds.
There are different schools of thought in philosophy of science. The most popular position is empiricism,[29] which holds that knowledge is created by a process involving observation and that scientific theories are the result of generalizations from such observations.[30] Empiricism generally encompasses inductivism, a position that tries to explain the way general theories can be justified by the finite number of observations humans can make and hence the finite amount of empirical evidence available to confirm scientific theories. This is necessary because the number of predictions those theories make is infinite, which means that they cannot be known from the finite amount of evidence using deductive logic only. Many versions of empiricism exist, with the predominant ones being bayesianism[31] and the hypothetico-deductive method.[32]:p236
Empiricism has stood in contrast to rationalism, the position originally associated with Descartes, which holds that knowledge is created by the human intellect, not by observation.[32]:p20 Critical rationalism is a contrasting 20th-century approach to science, first defined by Austrian-British philosopher Karl Popper. Popper rejected the way that empiricism describes the connection between theory and observation. He claimed that theories are not generated by observation, but that observation is made in the light of theories and that the only way a theory can be affected by observation is when it comes in conflict with it.[32]:pp63–7 Popper proposed replacing verifiability with falsifiability as the landmark of scientific theories, and replacing induction with falsification as the empirical method.[32]:p68 Popper further claimed that there is actually only one universal method, not specific to science: the negative method of criticism, trial and error.[33] It covers all products of the human mind, including science, mathematics, philosophy, and art.[34]
Another approach, instrumentalism, colloquially termed "shut up and calculate", emphasizes the utility of theories as instruments for explaining and predicting phenomena.[35] It views scientific theories as black boxes with only their input (initial conditions) and output (predictions) being relevant. Consequences, theoretical entities and logical structure are claimed to be something that should simply be ignored and that scientists shouldn't make a fuss about (see interpretations of quantum mechanics). Close to instrumentalism isconstructive empiricism, according to which the main criterion for the success of a scientific theory is whether what it says about observable entities is true.
Paul K Feyerabend advanced the idea of epistemological anarchism, which holds that there are no useful and exception-free methodological rules governing the progress of science or the growth of knowledge, and that the idea that science can or should operate according to universal and fixed rules is unrealistic, pernicious and detrimental to science itself.[36] Feyerabend advocates treating science as an ideologyalongside others such as religion, magic and mythology, and considers the dominance of science in society authoritarian and unjustified. He also contended (along with Imre Lakatos)[discuss] that the demarcation problem of distinguishing science from pseudoscience on objective grounds is not possible and thus fatal to the notion of science running according to fixed, universal rules.[36] Feyerabend also stated that science does not have evidence for its philosophical precepts, particularly the notion of Uniformity of Law and the Uniformity of Process across time and space.[37]
Finally, another approach often cited in debates of scientific skepticism against controversial movements like "scientific creationism", is methodological naturalism. Its main point is that a difference between natural andsupernatural explanations should be made, and that science should be restricted methodologically to natural explanations.[38] That the restriction is merely methodological (rather than ontological) means that science should not consider supernatural explanations itself, but should not claim them to be wrong either. Instead, supernatural explanations should be left a matter of personal belief outside the scope of science. Methodological naturalism maintains that proper science requires strict adherence to empirical study and independent verification as a process for properly developing and evaluating explanations for observable phenomena.[39] The absence of these standards, arguments from authority, biased observational studies and other common fallacies are frequently cited by supporters of methodological naturalism as characteristic of the non-science they criticize.
Certainty and scienceA scientific theory is empirical,[29][40] and is always open to falsification if new evidence is presented. That is, no theory is ever considered strictly certain as science accepts the concept offallibilism.[41] The philosopher of science Karl Popper sharply distinguishes truth from certainty. He writes that scientific knowledge "consists in the search for truth", but it "is not the search for certainty ... All human knowledge is fallible and therefore uncertain."[42]:p4
New scientific knowledge rarely results in vast changes in our understanding. According to psychologist Keith Stanovich, it may be the media's overuse of words like "breakthrough" that leads the public to imagine that science is constantly proving everything it thought was true to be false.[43]:119–138 While there are such famous cases as the theory of relativity that required a complete reconceptualization, these are extreme exceptions. Knowledge in science is gained by a gradual synthesis of information from different experiments, by various researchers, across different branches of science; it is more like a climb than a leap.[43]:123 Theories vary in the extent to which they have been tested and verified, as well as their acceptance in the scientific community.[44] For example,heliocentric theory, the theory of evolution, relativity theory, and germ theory still bear the name "theory" even though, in practice, they are considered factual.[45] Philosopher Barry Stroud adds that, although the best definition for "knowledge" is contested, being skeptical and entertaining the possibility that one is incorrect is compatible with being correct. Ironically then, the scientist adhering to proper scientific approaches will doubt themselves even once they possess the truth.[46] The fallibilist C. S. Peirce argued that inquiry is the struggle to resolve actual doubt and that merely quarrelsome, verbal, or hyperbolic doubt is fruitless[47]—but also that the inquirer should try to attain genuine doubt rather than resting uncritically on common sense.[48] He held that the successful sciences trust, not to any single chain of inference (no stronger than its weakest link), but to the cable of multiple and various arguments intimately connected.[49]
Stanovich also asserts that science avoids searching for a "magic bullet"; it avoids the single-cause fallacy. This means a scientist would not ask merely "What is the cause of ...", but rather "What arethe most significant causes of ...". This is especially the case in the more macroscopic fields of science (e.g. psychology, cosmology).[43]:141–147 Of course, research often analyzes few factors at once, but these are always added to the long list of factors that are most important to consider.[43]:141–147 For example: knowing the details of only a person's genetics, or their history and upbringing, or the current situation may not explain a behaviour, but a deep understanding of all these variables combined can be very predictive.
Fringe science, pseudoscience and junk scienceAn area of study or speculation that masquerades as science in an attempt to claim a legitimacy that it would not otherwise be able to achieve is sometimes referred to as pseudoscience, fringe science, or junk science.[50] Physicist Richard Feynman coined the term "cargo cult science" for cases in which researchers believe they are doing science because their activities have the outward appearance of science but actually lack the "kind of utter honesty" that allows their results to be rigorously evaluated.[51] Various types of commercial advertising, ranging from hype to fraud, may fall into these categories.
There also can be[discuss] an element of political or ideological bias on all sides of scientific debates.[citation needed] Sometimes, research may be characterized as "bad science", research that may be well-intentioned but is actually incorrect, obsolete, incomplete, or over-simplified expositions of scientific ideas. The term "scientific misconduct" refers to situations such as where researchers have intentionally misrepresented their published data or have purposely given credit for a discovery to the wrong person.[52]
Scientific practiceAlthough encyclopedias such as Pliny (fl. 77 AD) Natural History offered purported fact, they proved unreliable. A skeptical point of view, demanding a method of proof, was the practical position taken to deal with unreliable knowledge. As early as 1000 years ago, scholars such as Alhazen (Doubts Concerning Ptolemy), Roger Bacon, Witelo, John Pecham, Francis Bacon (1605), and C. S. Peirce (1839–1914) provided the community to address these points of uncertainty. In particular, fallacious reasoning can be exposed, such as 'affirming the consequent'.
"If a man will begin with certainties, he shall end in doubts; but if he will be content to begin with doubts, he shall end in certainties." —Francis Bacon (1605) The Advancement of Learning, Book 1, v, 8
The methods of inquiry into a problem have been known for thousands of years,[53] and extend beyond theory to practice. The use of measurements, for example, is a practical approach to settle disputes in the community.
John Ziman points out that intersubjective pattern recognition is fundamental to the creation of all scientific knowledge.[54]:p44 Ziman shows how scientists can identify patterns to each other across centuries: Ziman refers to this ability as 'perceptual consensibility'.[55]:p46 Ziman then makes consensibility, leading to consensus, the touchstone of reliable knowledge.[55]:p104
The scientific method seeks to explain the events of nature in a reproducible way.[56] An explanatory thought experiment or hypothesis is put forward, as explanation, using principles such as parsimony (also known as "Occam's Razor") and are generally expected to seek consilience—fitting well with other accepted facts related to the phenomena.[57] This new explanation is used to make falsifiablepredictions that are testable by experiment or observation. The predictions are to be posted before a confirming experiment or observation is sought, as proof that no tampering has occurred. Disproof of a prediction is evidence of progress.[58][59] This is done partly through observation of natural phenomena, but also through experimentation, that tries to simulate natural events under controlled conditions, as appropriate to the discipline (in the observational sciences, such as astronomy or geology, a predicted observation might take the place of a controlled experiment). Experimentation is especially important in science to help establish causal relationships (to avoid the correlation fallacy).
When a hypothesis proves unsatisfactory, it is either modified or discarded.[60] If the hypothesis survived testing, it may become adopted into the framework of ascientific theory. This is a logically reasoned, self-consistent model or framework for describing the behavior of certain natural phenomena. A theory typically describes the behavior of much broader sets of phenomena than a hypothesis; commonly, a large number of hypotheses can be logically bound together by a single theory. Thus a theory is a hypothesis explaining various other hypotheses. In that vein, theories are formulated according to most of the same scientific principles as hypotheses. In addition to testing hypotheses, scientists may also generate a model based on observed phenomena. This is an attempt to describe or depict the phenomenon in terms of a logical, physical or mathematical representation and to generate new hypotheses that can be tested.[61]
While performing experiments to test hypotheses, scientists may have a preference for one outcome over another, and so it is important to ensure that science as a whole can eliminate this bias.[62][63] This can be achieved by careful experimental design, transparency, and a thorough peer review process of the experimental results as well as any conclusions.[64][65] After the results of an experiment are announced or published, it is normal practice for independent researchers to double-check how the research was performed, and to follow up by performing similar experiments to determine how dependable the results might be.[66] Taken in its entirety, the scientific method allows for highly creative problem solving while minimizing any effects of subjective bias on the part of its users (namely the confirmation bias).[67]
Mathematics and formal sciencesMathematics is essential to the sciences. One important function of mathematics in science is the role it plays in the expression of scientific models. Observing and collecting measurements, as well as hypothesizing and predicting, often require extensive use of mathematics. Arithmetic, algebra, geometry, trigonometry and calculus, for example, are all essential to physics. Virtually every branch of mathematics has applications in science, including "pure" areas such as number theory and topology.
Statistical methods, which are mathematical techniques for summarizing and analyzing data, allow scientists to assess the level of reliability and the range of variation in experimental results. Statistical analysis plays a fundamental role in many areas of both the natural sciences and social sciences.
Computational science applies computing power to simulate real-world situations, enabling a better understanding of scientific problems than formal mathematics alone can achieve. According to theSociety for Industrial and Applied Mathematics, computation is now as important as theory and experiment in advancing scientific knowledge.[68]
Whether mathematics itself is properly classified as science has been a matter of some debate. Some thinkers see mathematicians as scientists, regarding physical experiments as inessential or mathematical proofs as equivalent to experiments. Others do not see mathematics as a science, since it does not require an experimental test of its theories and hypotheses. Mathematical theorems and formulas are obtained by logical derivations which presume axiomaticsystems, rather than the combination of empirical observation and logical reasoning that has come to be known as the scientific method. In general, mathematics is classified as formal science, while natural and social sciences are classified as empirical sciences.[69]
Basic and applied researchAlthough some scientific research is applied research into specific problems, a great deal of our understanding comes from the curiosity-driven undertaking of basic research. This leads to options for technological advance that were not planned or sometimes even imaginable. This point was made by Michael Faraday when, allegedly in response to the question "what is the use of basic research?" he responded "Sir, what is the use of a new-born child?".[70] For example, research into the effects of red light on the human eye's rod cells did not seem to have any practical purpose; eventually, the discovery that our night vision is not troubled by red light would lead search and rescue teams (among others) to adopt red light in the cockpits of jets and helicopters.[43]:106–110 In a nutshell: Basic research is the search for knowledge. Applied research is the search for solutions to practical problems using this knowledge. Finally, even basic research can take unexpected turns, and there is some sense in which the scientific method is built to harness luck.
Research in practiceDue to the increasing complexity of information and specialization of scientists, most of the cutting-edge research today is done by well funded groups of scientists, rather than individuals.[71]D.K. Simonton notes that due to the breadth of very precise and far reaching tools already used by researchers today and the amount of research generated so far, creation of new disciplines or revolutions within a discipline may no longer be possible as it is unlikely that some phenomenon that merits its own discipline has been overlooked. Hybridizing of disciplines and finessing knowledge is, in his view, the future of science.[71]
http://en.wikipedia.org/wiki/Science
Archiver|干细胞之家 ( 吉ICP备2021004615号-3 )
GMT+8, 2025-5-1 20:10
Powered by Discuz! X1.5
© 2001-2010 Comsenz Inc.